Assessing the Impacts of Electric Vehicle Penetration in Curaçao’s Power Network
Abstract
:1. Introduction
- A representative prototype of Curaçao’s power grid is proposed, the data of which was made available to the academic community to carry out further studies;
- The impacts of EVs on line chargeability and voltage profiles are analyzed considering different EV participation scenarios, as well as voltage and chargeability indices;
- An upgrade of the network is proposed and validated to mitigate the impacts of EVs in the power grid.
2. Curaçao’s Electric Power Grid Representation
2.1. Generation
2.2. Transformers
2.3. Buses
2.4. Underground Lines
2.5. Aggregated Loads
3. Methodology to Assess the Effect of EVs
3.1. Charging of EVs
- Level 1 or AC trickling charging;
- Level 2 or AC fast charging;
- Level 3 or DC fast charging.
3.2. Load Modeling
3.3. Indices for Chargeability and Voltage Assessment
4. Tests and Results
- Curaçao’s network is capable of hosting an EV penetration of up to 3.5% relative to the current vehicle fleet in high-, medium-, and low-demand scenarios;
- The network is capable of supporting an EV penetration of up to 4% in the medium- and low-demand scenarios;
- To enable the network to support an EV penetration of 4.5% in all scenarios, it is necessary to carry out some network upgrades.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Mobility and Transport. EU transport in Figures: Statistical Pocketbook 2022; Publications Office: Brussels, Belgium, 2022. [Google Scholar] [CrossRef]
- Gruetzmacher, S.B.; Bento Vaz, C.; Ferreira, A. Sustainability performance assessment of the transport sector in European countries. Rev. Fac. Ing. Univ. Antioq. 2021, 1, 42–52. [Google Scholar] [CrossRef]
- Qiu, D.; Wang, Y.; Hua, W.; Strbac, G. Reinforcement learning for electric vehicle applications in power systems: A critical review. Renew. Sustain. Energy Rev. 2023, 173, 113052. [Google Scholar] [CrossRef]
- Alsharif, A.; Tan, C.W.; Ayop, R.; Al Smin, A.; Ali Ahmed, A.; Kuwil, F.H.; Khaleel, M.M. Impact of electric Vehicle on residential power distribution considering energy management strategy and stochastic Monte Carlo algorithm. Energies 2023, 16, 1358. [Google Scholar] [CrossRef]
- Saberi-Beglar, K.; Zare, K.; Seyedi, H.; Marzband, M.; Nojavan, S. Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads. Appl. Energy 2023, 329, 120265. [Google Scholar] [CrossRef]
- Gomez, J.; Morcos, M. Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans. Power Deliv. 2003, 18, 975–981. [Google Scholar] [CrossRef]
- Tripathi, S.; Singh, V.P.; Kishor, N.; Pandey, A. Load frequency control of power system considering electric Vehicles’ aggregator with communication delay. Int. J. Electr. Power Energy Syst. 2023, 145, 108697. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, F.; Min, H.; Tian, H.; Hu, W.; Liu, J. Review on optimal planning of new power systems with distributed generations and electric vehicles. Energy Rep. 2023, 9, 501–509. [Google Scholar] [CrossRef]
- Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Impact of Electric Vehicle Charging Station Load on Distribution Network. Energies 2018, 11, 178. [Google Scholar] [CrossRef]
- Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of electric vehicles in the electric power system. Proc. IEEE 2010, 99, 168–183. [Google Scholar] [CrossRef]
- Stiasny, J.; Zufferey, T.; Pareschi, G.; Toffanin, D.; Hug, G.; Boulouchos, K. Sensitivity analysis of electric vehicle impact on low-voltage distribution grids. Electr. Power Syst. Res. 2021, 191, 106696. [Google Scholar] [CrossRef]
- Kühnbach, M.; Stute, J.; Gnann, T.; Wietschel, M.; Marwitz, S.; Klobasa, M. Impact of electric vehicles: Will German households pay less for electricity? Energy Strategy Rev. 2020, 32, 100568. [Google Scholar] [CrossRef]
- Rahman, S.; Khan, I.A.; Khan, A.A.; Mallik, A.; Nadeem, M.F. Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system. Renew. Sustain. Energy Rev. 2022, 153, 111756. [Google Scholar] [CrossRef]
- Zuluaga-Ríos, C.D.; Florián-Ceballos, D.F.; Ángel Rojo-Yepes, M.; Saldarriaga-Zuluaga, S.D. Review of Charging Load Modeling Strategies for Electric Vehicles: A Comparison of Grid-to-Vehicle Probabilistic Approaches. Tecnura 2021, 25, 108–125. [Google Scholar] [CrossRef]
- Gil-Aguirre, J.; Perez-Londoño, S.; Mora-Flórez, J. A measurement-based load modelling methodology for electric vehicle fast-charging stations. Electr. Power Syst. Res. 2019, 176, 105934. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Peng, Z.; Wang, A.; Wang, W. A data-driven two-level clustering model for driving pattern analysis of electric vehicles and a case study. J. Clean. Prod. 2019, 206, 827–837. [Google Scholar] [CrossRef]
- Frendo, O.; Graf, J.; Gaertner, N.; Stuckenschmidt, H. Data-driven smart charging for heterogeneous electric vehicle fleets. Energy AI 2020, 1, 100007. [Google Scholar] [CrossRef]
- Gerossier, A.; Girard, R.; Kariniotakis, G. Modeling and Forecasting Electric Vehicle Consumption Profiles. Energies 2019, 12, 1341. [Google Scholar] [CrossRef]
- Sun, K.; Sarker, M.R.; Ortega-Vazquez, M.A. Statistical characterization of electric vehicle charging in different locations of the grid. In Proceedings of the 2015 IEEE Power Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X. Modeling of Plug-in Hybrid Electric Vehicle Charging Demand in Probabilistic Power Flow Calculations. IEEE Trans. Smart Grid 2012, 3, 492–499. [Google Scholar] [CrossRef]
- Khoo, Y.B.; Wang, C.H.; Paevere, P.; Higgins, A. Statistical modeling of Electric Vehicle electricity consumption in the Victorian EV Trial, Australia. Transp. Res. Part D Transp. Environ. 2014, 32, 263–277. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, H.; Sun, C.; Watts, D. The temporal-spatial stochastic model of plug-in hybrid electric vehicles. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Tian, H.; Tzelepis, D.; Papadopoulos, P.N. Electric Vehicle Charger Static and Dynamic Modelling for Power System Studies. Energies 2021, 14, 1801. [Google Scholar] [CrossRef]
- Arif, S.M.; Lie, T.T.; Seet, B.C.; Ayyadi, S.; Jensen, K. Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques. Electronics 2021, 10, 1910. [Google Scholar] [CrossRef]
- Ahmad, A.; Alam, M.S.; Chaban, R.C. Efficiency enhancement of wireless charging for Electric vehicles through reduction of coil misalignment. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 22–24 June 2017; pp. 21–26. [Google Scholar]
- Sarker, M.R.; Pandžić, H.; Ortega-Vazquez, M.A. Electric vehicle battery swapping station: Business case and optimization model. In Proceedings of the 2013 International Conference on Connected Vehicles and Expo (ICCVE), Las Vegas, NV, USA, 2–6 December 2013; pp. 289–294. [Google Scholar] [CrossRef]
- Dharmakeerthi, C.; Mithulananthan, N.; Saha, T. Impact of electric vehicle fast charging on power system voltage stability. Int. J. Electr. Power Energy Syst. 2014, 57, 241–249. [Google Scholar] [CrossRef]
- Bulbaai, R.R. Toward 100% Sustainable Energy Production and a Structural Decrease in Energy Demand: Curaçao, as a Case Study of Small Island Developing States. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; Jouanne, A. Advanced Electric Vehicle Fast-Charging Technologies. Energies 2019, 12, 1839. [Google Scholar] [CrossRef]
- Brenna, M.; Foiadelli, F.; Leone, C.; Longo, M. Electric vehicles charging technology review and optimal size estimation. J. Electr. Eng. Technol. 2020, 15, 2539–2552. [Google Scholar] [CrossRef]
- Dericioglu, C.; Yirik, E.; Unal, E.; Cuma, M.; Onur, B.; Tumay, M. A review of charging technologies for commercial electric vehicles. Int. J. Adv. Automot. Technol. 2018, 2, 61–70. [Google Scholar]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Zuluaga Ríos, C.D.; Villa Jaramillo, A. Effects of the Incorporation of Electric Vehicles on Protection Coordination in Microgrids. World Electr. Veh. J. 2022, 13, 163. [Google Scholar] [CrossRef]
Power Plant | Number of Generators | Nominal Power [MW] |
---|---|---|
Station 1a | 4 | 8.9 |
Station 1b | 4 | 9.8 |
Station 2 | 4 | 8.3 |
Station 3 | 6 | 6.25 |
Station 3 | 1 | 5.3 |
Total | 19 | 150.8 |
Wind Park | Turbine Quantity | Nominal Power [MW] | Power Factor | Voltage [kV] |
---|---|---|---|---|
1 | 5 | 2.8 | 0.95 | 1 |
2 | 5 | 3.0 | 0.95 | 1 |
3 | 5 | 3.45 | 0.95 | 1 |
Quantity | Name | Rated Power MVA | Voltage-In kV | Voltage-Out kV | Reactance x1 p.u. | Resistance r1 p.u. |
---|---|---|---|---|---|---|
1 | TRG 1.2 | 1.5 | 11 | 11 | 0.03 | 0 |
1 | TRG 1.3 | 1.5 | 11 | 11 | 0.03 | 0 |
2 | TRG 1.1 | 50 | 11 | 66 | 0.05913048 | 0.00290888 |
2 | TGR 1.4 | 50 | 11 | 66 | 0.05913048 | 0.00290888 |
1 | TGR 2.1 | 1.5 | 11 | 11 | 0.05 | 0.00656212 |
1 | TGR 2.2 | 1.5 | 11 | 11 | 0.05 | 0.00656212 |
1 | TGR 2.3 | 45 | 11 | 66 | 0.05913 | 0.00198434 |
1 | TGR 2.4 | 45 | 11 | 66 | 0.05913 | 0.00198434 |
1 | TGR 2.5 | 75 | 66 | 30 | 0.05913043 | 0.00450707 |
1 | TGR 2.6 | 75 | 66 | 30 | 0.05913043 | 0.00450707 |
1 | TGR 3.1 | 8 | 11 | 30 | 0.05 | 0.0041349 |
6 | TGR 3.1 | 16 | 11 | 30 | 0.05913043 | 0.00256748 |
1 | TG 3.1 | 1.5 | 30 | 30 | 0.05 | 0.00715276 |
1 | TG 3.2 | 1.5 | 30 | 30 | 0.05 | 0.00715276 |
2 | TR2 | 16 | 30 | 12 | 0.05913043 | 0.00290888 |
2 | TR3 | 25 | 30 | 12 | 0.05 | 0.00329128 |
2 | TR4 | 16 | 30 | 12 | 0.05913043 | 0.00290888 |
2 | TR5 | 16 | 30 | 12 | 0.05913043 | 0.00290888 |
2 | TR6 | 25 | 30 | 12 | 0.05 | 0.00329128 |
2 | TR7 | 10 | 30 | 12 | 0.05 | 0.00423796 |
2 | TR7.3 | 8 | 30 | 6 | 0.05 | 0.00450707 |
2 | TR8 | 16 | 30 | 12 | 0.05913043 | 0.00290888 |
2 | TR9 | 16 | 30 | 12 | 0.05913043 | 0.00290888 |
2 | TR10 | 10 | 30 | 12 | 0.05 | 0.00423796 |
2 | TR11 | 16 | 30 | 12 | 0.05913043 | 0.00290888 |
2 | TR12 | 10 | 30 | 12 | 0.05 | 0.00423796 |
2 | TR13 | 16 | 30 | 12 | 0.05913043 | 0.00290888 |
5 | TRW1 | 3.1 | 30 | 1 | 0.05 | 0.00437125 |
5 | TRW2 | 3.1 | 30 | 1 | 0.05 | 0.00437125 |
2 | TRW3 | 3.75 | 30 | 1 | 0.05 | 0.00414761 |
Nominal Voltage kV | Type |
---|---|
66 | Double Bus |
11 | Single Bus |
30 | Double Bus |
30 | Single Bus |
30 | Single Bus |
30 | Single (short) Bus |
30 | Double (short) Bus |
12 | Single Bus with Tie Breaker |
12 | Double Bus |
6 | Single Bus (ABC-N) |
RateinVoltage kV | Rated Current | AC Resistance R’ (20 °C) | Reactance X’ | AC-Resistance R0’ | Reactance X0’ |
---|---|---|---|---|---|
60 | 0.814 | 0.0314 | 0.1162389 | 0.1257 | 0.4649556 |
30 | 0.525 | 0.0833 | 0.1099557 | 0.3333 | 0.4398228 |
Name | Active Power MW | Reactive Power Mvar |
---|---|---|
LD2A | 10.55 | 3.49 |
LD2AB | 10.55 | 3.49 |
LD3A | 4.31 | 1.4166 |
LD3B | 4.31 | 1.4166 |
LD4A | 8.02 | 2.636 |
LD4B | 8.02 | 2.636 |
LD5A | 3.49 | 1.147 |
LD5B | 3.49 | 1.147 |
LD6A | 3.93 | 1.2917 |
LD6B | 3.93 | 1.2917 |
LD7A | 1.61 | 0.5292 |
LD7B | 1.61 | 0.5292 |
LD8A | 8.87 | 2.9154 |
LD8B | 8.87 | 2.9154 |
LD9A | 7.64 | 2.511 |
LD9B | 7.64 | 2.511 |
LD10A | 2.29 | 0.7527 |
LD10B | 2.29 | 0.7527 |
LD11A | 2.33 | 0.7658 |
LD11B | 2.33 | 0.7658 |
LD12A | 6.78 | 2.2285 |
LD12B | 6.78 | 2.2285 |
LD13A | 3.85 | 1.265 |
LD13B | 3.85 | 1.265 |
Charging Levels | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Phase | 1 phase AC | 1/3 phase AC | 3 phase AC or DC |
Voltage | 120 V | 240 V | 208 V–600 V |
Current | 11 A, 16 A | 16 A, 32 A, 80 A | 240 A, 480 A |
Power | 1.4 kW, 1.9 kW | 4 kW, 8 kW, 19.2 kW | 50 kW, 100 kW |
Installation | Domestic location | Domestic/Public location | Public location |
Type | |||
---|---|---|---|
AC Fast Charging | 0.0034 | −0.1199 | 1.086 |
DC Fast Charging | 0.0620 | −0.2199 | 1.156 |
DC Super Fast Charging | 0.1816 | 0.951 |
EV Stations | Charge Level | Case 0.5% [MW] | Case 1% [MW] | Case 1.5% [MW] | Case 2% [MW] | Case 2.5% [MW] | Case 3% [MW] | Case 3.5% [MW] | Case 4% [MW] | Case 4.5% [MW] |
---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 9 | 17 | 22.5 | 30 | 47 | 57.5 | 78.8 | 90 | 112 |
2 | 3 | 2.5 | 5 | 11.25 | 15 | 16.25 | 20 | 21.9 | 25 | 30.5 |
3 | 3 | 4.25 | 8.75 | 15.25 | 20.35 | 22.85 | 27.5 | 32.8 | 37.5 | 39 |
4 | 2 | 4.25 | 8.75 | 12.75 | 17 | 23.75 | 28.5 | 30.6 | 35 | 35 |
5 | 2 | 0.19 | 0.39 | 0.42 | 0.55 | 0.61 | 0.74 | 0.87 | 0.99 | 1.25 |
6 | 2 | 0.18 | 0.37 | 0.41 | 0.55 | 0.61 | 0.74 | 0.85 | 0.97 | 1.06 |
7 | 2 | 0.18 | 0.37 | 0.41 | 0.55 | 0.61 | 0.74 | 0.65 | 0.74 | 0.77 |
8 | 2 | 0.18 | 0.37 | 0.41 | 0.55 | 0.61 | 0.5624 | 0.49 | 0.56 | 0.56 |
Vehicles | - | 412 | 824 | 1235 | 1647 | 2059 | 2471 | 2883 | 3294 | 3706 |
EVs Penetration | Case 3% | Case 3.5% | Case 4% | Case 4.5% |
---|---|---|---|---|
High Demand | 0 | 0.29 | 1.25 | 2.23 |
Medium Demand | 0 | 0 | 0 | 0.59 |
Low Demand | 0 | 0 | 0 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles-Lozano, G.; Saldarriaga-Zuluaga, S.D.; Zuluaga-Ríos, C.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Assessing the Impacts of Electric Vehicle Penetration in Curaçao’s Power Network. World Electr. Veh. J. 2023, 14, 231. https://doi.org/10.3390/wevj14080231
Robles-Lozano G, Saldarriaga-Zuluaga SD, Zuluaga-Ríos CD, López-Lezama JM, Muñoz-Galeano N. Assessing the Impacts of Electric Vehicle Penetration in Curaçao’s Power Network. World Electric Vehicle Journal. 2023; 14(8):231. https://doi.org/10.3390/wevj14080231
Chicago/Turabian StyleRobles-Lozano, Geolain, Sergio D. Saldarriaga-Zuluaga, Carlos D. Zuluaga-Ríos, Jesús M. López-Lezama, and Nicolás Muñoz-Galeano. 2023. "Assessing the Impacts of Electric Vehicle Penetration in Curaçao’s Power Network" World Electric Vehicle Journal 14, no. 8: 231. https://doi.org/10.3390/wevj14080231
APA StyleRobles-Lozano, G., Saldarriaga-Zuluaga, S. D., Zuluaga-Ríos, C. D., López-Lezama, J. M., & Muñoz-Galeano, N. (2023). Assessing the Impacts of Electric Vehicle Penetration in Curaçao’s Power Network. World Electric Vehicle Journal, 14(8), 231. https://doi.org/10.3390/wevj14080231