Model Predictive Control with Powertrain Delay Consideration for Longitudinal Speed Tracking of Autonomous Electric Vehicles
Abstract
:1. Introduction
- By incorporating a FOPDT model into the MPC, the controller effectively handles the inherent delays in electric vehicle powertrains, which has been largely overlooked in previous studies.
- The creation of detailed torque maps for the motor and brake systems, enabling precise control over throttle and brake inputs in response to the target wheel torque.
- A comprehensive evaluation of the proposed controller through both simulation and real-world experiments, demonstrating significant improvements in speed tracking accuracy and control smoothness compared to conventional MPC and PID controllers.
2. Overall System Architecture
3. MPC Module
3.1. Baseline Vehicle Model
3.2. Powertrain Delayed Vehicle Model
3.3. MPC Problem Formulation
4. Wheel Torque Table Module
4.1. For the Throttle Pedal
4.2. For the Brake Pedal
5. Experiment
5.1. Comparative Controllers
5.2. Simulation Validation
5.3. Real-World Vehicle Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geamanu, M.S.; Mounier, H.; Niculescu, S.I.; Cela, A.; LeSolliec, G. Longitudinal control for an all-electric vehicle. In Proceedings of the 2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–6. [Google Scholar]
- He, H.; Han, M.; Liu, W.; Cao, J.; Shi, M.; Zhou, N. MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle. Energy 2022, 253, 124004. [Google Scholar] [CrossRef]
- El Majdoub, K.; Giri, F.; Ouadi, H.; Chaoui, F. Nonlinear cascade strategy for longitudinal control of electric vehicle. J. Dyn. Syst. Meas. Control. 2014, 136, 011005. [Google Scholar] [CrossRef] [PubMed]
- Hamersma, H.A.; Els, P.S. Longitudinal vehicle dynamics control for improved vehicle safety. J. Terramechanics 2014, 54, 19–36. [Google Scholar] [CrossRef]
- Nie, L.; Guan, J.; Lu, C.; Zheng, H.; Yin, Z. Longitudinal speed control of autonomous vehicle based on a self-adaptive PID of radial basis function neural network. IET Intell. Transp. Syst. 2018, 12, 485–494. [Google Scholar] [CrossRef]
- Lu, C.; Gong, J.; Lv, C.; Chen, X.; Cao, D.; Chen, Y. A personalized behavior learning system for human-like longitudinal speed control of autonomous vehicles. Sensors 2019, 19, 3672. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Peng, H.; Song, Z.; Chen, K.; Tang, Y. Accurate and smooth speed control for an autonomous vehicle. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1976–1982. [Google Scholar]
- MacAdam, C.C. Application of an optimal preview control for simulation of closed-loop automobile driving. IEEE Trans. Syst. Man Cybern. 1981, 11, 393–399. [Google Scholar] [CrossRef]
- Nouveliere, L. Experimental vehicle longitudinal control using a second order sliding mode technique. Control. Eng. Pract. 2007, 15, 943–954. [Google Scholar] [CrossRef]
- Ferrara, A.; Incremona, G.P. Sliding modes control in vehicle longitudinal dynamics control. In Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications; Springer: Berlin/Heidelberg, 2018; pp. 357–383. [Google Scholar]
- Jo, A.; Lee, H.; Seo, D.; Yi, K. Model-reference adaptive sliding mode control of longitudinal speed tracking for autonomous vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2023, 237, 493–515. [Google Scholar] [CrossRef]
- Perng, J.W.; Lai, Y.H. Robust longitudinal speed control of hybrid electric vehicles with a two-degree-of-freedom fuzzy logic controller. Energies 2016, 9, 290. [Google Scholar] [CrossRef]
- Jung, H.; Jung, D.; Choi, S.B. LQR control of an all-wheel drive vehicle considering variable input constraint. IEEE Trans. Control. Syst. Technol. 2021, 30, 85–96. [Google Scholar] [CrossRef]
- Matute, J.A.; Marcano, M.; Zubizarreta, A.; Perez, J. Longitudinal model predictive control with comfortable speed planner. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 60–64. [Google Scholar]
- Sun, X.; Cai, Y.; Wang, S.; Xu, X.; Chen, L. Optimal control of intelligent vehicle longitudinal dynamics via hybrid model predictive control. Robot. Auton. Syst. 2019, 112, 190–200. [Google Scholar] [CrossRef]
- Qiu, W.; Ting, Q.; Shuyou, Y.; Hongyan, G.; Hong, C. Autonomous vehicle longitudinal following control based on model predictive control. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 8126–8131. [Google Scholar]
- Yu-Geng, X.; De-Wei, L.; Shu, L. Model predictive control—Status and challenges. Acta Autom. Sin. 2013, 39, 222–236. [Google Scholar]
- Huang, Y.; Wang, H.; Khajepour, A.; He, H.; Ji, J. Model predictive control power management strategies for HEVs: A review. J. Power Sources 2017, 341, 91–106. [Google Scholar] [CrossRef]
- He, Z.; Gong, L.; Zhou, E.; Wei, B.; Li, E.; Huang, J. Lateral and Longitudinal Coordinated Control of Intelligent Vehicle Based on High-Precision Dynamics Model under High-Speed Limit Condition. IEEE Trans. Intell. Veh. 2024. [Google Scholar] [CrossRef]
- Chen, S.p.; Xiong, G.m.; Chen, H.y.; Negrut, D. MPC-based path tracking with PID speed control for high-speed autonomous vehicles considering time-optimal travel. J. Cent. South Univ. 2020, 27, 3702–3720. [Google Scholar] [CrossRef]
- Bagheri, P.; Sedigh, A.K. Analytical approach to tuning of model predictive control for first-order plus dead time models. IET Control. Theory Appl. 2013, 7, 1806–1817. [Google Scholar] [CrossRef]
- Rajamani, R. Vehicle Dynamics and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Frison, G.; Diehl, M. HPIPM: A high-performance quadratic programming framework for model predictive control. IFAC-PapersOnLine 2020, 53, 6563–6569. [Google Scholar] [CrossRef]
- Frison, G.; Kouzoupis, D.; Sartor, T.; Zanelli, A.; Diehl, M. BLASFEO: Basic linear algebra subroutines for embedded optimization. ACM Trans. Math. Softw. TOMS 2018, 44, 1–30. [Google Scholar] [CrossRef]
- Dekraker, P.; Barba, D.; Moskalik, A.; Butters, K. Constructing Engine Maps for Full Vehicle Simulation Modeling; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- De Boor, C.; De Boor, C. A Practical Guide to Splines; Springer: New York, NY, USA, 1978; Volume 27. [Google Scholar]
Parameter | Symbol | Value | Units |
---|---|---|---|
Model update interval time | 0.02 | s | |
Number of prediction steps | T | 100 | - |
Delayed steps | 5 | - | |
Time constant | 0.15 | s | |
Weight matrix for states | Q | - | |
Weight matrix for input | R | 0.0001 | - |
Max driving force | 10,819.0 | N | |
Min driving force | −14,485.0 | N |
Parameter | Symbol | Value | Units |
---|---|---|---|
Vehicle mass | m | 2300.0 | kg |
Rolling resistance coefficient | f | 0.015 | - |
Mass density of air | 1.21 | kg/m3 | |
Frontal area of the vehicle | A | 2.88 | m2 |
Aerodynamic drag coefficient | 0.35 | - | |
Wheel radius | 0.32 | m |
Max Speed Error (km/h) | Mean Speed Error (km/h) | |
---|---|---|
PID | 20.69 | 2.13 |
Conventional MPC | 14.68 | 1.09 |
Proposed MPC | 11.48 | 0.68 |
Max Speed Error (km/h) | Mean Speed Error (km/h) | Mean Acceleration Error (m/s2) | |
---|---|---|---|
PID | 8.93 | 1.43 | 0.59 |
Conventional MPC | 2.19 | 0.47 | 0.45 |
Proposed MPC | 0.77 | 0.29 | 0.18 |
Max Speed Error (km/h) | Mean Speed Error (km/h) | Mean Acceleration Error (m/s2) | |
---|---|---|---|
PID | 8.53 | 2.12 | 0.48 |
Conventional MPC | 1.71 | 0.88 | 0.32 |
Proposed MPC | 1.98 | 0.54 | 0.22 |
Mean Computation Time (millisec) | |
---|---|
PID | 0.02 |
Conventional MPC | 0.74 |
Proposed MPC | 1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Jo, K. Model Predictive Control with Powertrain Delay Consideration for Longitudinal Speed Tracking of Autonomous Electric Vehicles. World Electr. Veh. J. 2024, 15, 433. https://doi.org/10.3390/wevj15100433
Lee J, Jo K. Model Predictive Control with Powertrain Delay Consideration for Longitudinal Speed Tracking of Autonomous Electric Vehicles. World Electric Vehicle Journal. 2024; 15(10):433. https://doi.org/10.3390/wevj15100433
Chicago/Turabian StyleLee, Junhee, and Kichun Jo. 2024. "Model Predictive Control with Powertrain Delay Consideration for Longitudinal Speed Tracking of Autonomous Electric Vehicles" World Electric Vehicle Journal 15, no. 10: 433. https://doi.org/10.3390/wevj15100433
APA StyleLee, J., & Jo, K. (2024). Model Predictive Control with Powertrain Delay Consideration for Longitudinal Speed Tracking of Autonomous Electric Vehicles. World Electric Vehicle Journal, 15(10), 433. https://doi.org/10.3390/wevj15100433