Handling Complexity in Virtual Battery Development with a Simplified Systems Modeling Approach
Abstract
:1. Introduction
2. Complexity in Battery Engineering
2.1. General Development Models
2.2. Systems Engineering Approaches
2.3. Challenges in Battery Modeling
3. MBSE Methodologies
3.1. MBSE Methods in Literature
3.2. Assessment of MBSE Methods
3.3. Conclusion of the Assessment
4. MBSE for Battery Engineering
Simplified Domain-Based Systems Engineering Approach
5. Application for Thermal Modeling of a Single Battery Cell
5.1. The Battery Modeling Framework in Usage
5.2. The Simulation Pipeline
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehr, R.; Lüder, A. Managing Complexity Within the Engineering of Product and Production Systems. In Security and Quality in Cyber-Physical Systems Engineering; Biffl, S., Eckhart, M., Lüder, A., Weippl, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 57–79. ISBN 978-3-030-25311-0. [Google Scholar]
- Frith, J.T.; Lacey, M.J.; Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 2023, 14, 420. [Google Scholar] [CrossRef] [PubMed]
- Weißinger, C.; Späth, B.; Li, R.Y.; Radtke, J. Effiziente Ansätze zur Beschleunigung der Batteriezellentwicklung. ATZ Extra 2024, 29, 20–25. [Google Scholar] [CrossRef]
- Kampker, A.; Heimes, H.; Frieges, M.; Späth, B.; Li, R.Y.; Gorsch, J.; Ludwigs, R.; Müller, M.; Fiege, M.; Weißinger, C.; et al. Accelerating Battery Cell Development.
- Löbberding, H.; Wessel, S.; Offermanns, C.; Kehrer, M.; Rother, J.; Heimes, H.; Kampker, A. From Cell to Battery System in BEVs: Analysis of System Packing Efficiency and Cell Types. World Electr. Veh. J. 2020, 11, 77. [Google Scholar] [CrossRef]
- Heimes, H.H.; Kampker, A.; Haunreiter, A.; Davids, H.; Klohs, D. Product-requirement-model to approach the identification of uncertainties in battery systems development. Int. J. Interact Des. Manuf. 2020, 14, 911–922. [Google Scholar] [CrossRef]
- Morkevicius, A.; Aleksandraviciene, A.; Mazeika, D.; Bisikirskiene, L.; Strolia, Z. MBSE Grid: A Simplified SysML-Based Approach for Modeling Complex Systems. INCOSE Int. Symp. 2017, 27, 136–150. [Google Scholar] [CrossRef]
- Deng, Q.; Yu, D. Mapping Knowledge in Product Development through Process Modelling. J. Info. Know. Mgmt. 2006, 05, 233–242. [Google Scholar] [CrossRef]
- Schuh, G.; Rebentisch, E.; Riesener, M.; Diels, F.; Dolle, C.; Eich, S. Agile-waterfall hybrid product development in the manufacturing industry—Introducing guidelines for implementation of parallel use of the two models. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 725–729, ISBN 978-1-5386-0948-4. [Google Scholar]
- Neumann, F. Analyzing and Modeling Interdisciplinary Product Development; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2015; ISBN 978-3-658-11091-8. [Google Scholar]
- Nielsen, C.B.; Larsen, P.G.; Fitzgerald, J.; Woodcock, J.; Peleska, J. Systems of Systems Engineering. ACM Comput. Surv. 2015, 48, 1–41. [Google Scholar] [CrossRef]
- Madni, A.; Purohit, S. Economic Analysis of Model-Based Systems Engineering. Systems 2019, 7, 12. [Google Scholar] [CrossRef]
- Mazeika, D. Model-Based Systems Engineering method for Creating Secure Systems. Ph.D. Thesis, Kaunas University of Technology, Kaunas, Lithuania, 2021. [Google Scholar]
- Krause, D.; Heyden, E. Design Methodology for Future Products: Data Driven, Agile and Flexible; Krause, D., Heyden, E., Eds.; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-78367-9. [Google Scholar]
- Akundi, A.; Ankobiah, W.; Mondragon, O.; Luna, S. Perceptions and the extent of Model-Based Systems Engineering (MBSE) use—An industry survey. In Proceedings of the 2022 IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 25–28 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7, ISBN 978-1-6654-3992-3. [Google Scholar]
- Koh, E.C.Y.; Caldwell, N.H.M.; Clarkson, P.J. A method to assess the effects of engineering change propagation. Res. Eng. Design 2012, 23, 329–351. [Google Scholar] [CrossRef]
- Roques, P. MBSE with the ARCADIA Method and the Capella Tool. In Proceedings of the 8th European Congress on Embedded Real Time Software and Systems, Toulouse, France, 27–29 January 2016. [Google Scholar]
- Di Maio, M.; Weilkiens, T.; Hussein, O.; Aboushama, M.; Javid, I.; Beyerlein, S.; Grotsch, M. Evaluating MBSE Methodologies Using the FEMMP Framework. In Proceedings of the 2021 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 13 September–13 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8, ISBN 978-1-6654-3168-2. [Google Scholar]
- Khandoker, A.; Sint, S.; Gessl, G.; Zeman, K.; Jungreitmayr, F.; Wahl, H.; Wenigwieser, A.; Kretschmer, R. Towards a logical framework for ideal MBSE tool selection based on discipline specific requirements. J. Syst. Softw. 2022, 189, 111306. [Google Scholar] [CrossRef]
- Kaiser, L. Rahmenwerk zur Modellierung einer plausiblen Systemstruktur mechatronischer Systeme. Dissertation, Universität Paderborn, Paderborn, Germany, 2013. [Google Scholar]
- Estefan, J. Survey of Model-Bases Systems Engineering Methodology; California Institute of Technology: Pasadena, CA, USA, 2008. [Google Scholar]
- Gao, S.; Cao, W.; Fan, L.; Liu, J. MBSE for Satellite Communication System Architecting. IEEE Access 2019, 7, 164051–164067. [Google Scholar] [CrossRef]
- Weilkiens, T.; Lamm, J.; Roth, S.; Walker, M. Chapter 14: The FAS Method. In Model-Based System Architecture; John Wiley & Sons Ltd., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015; ISBN 9780198814269. [Google Scholar]
- Eigner, M.; Dickopf, T.; Schulte, T.; Schneider, M. mecPro²—Entwurf einer Beschreibungssystematik zur Entwicklung cybertronischer Systeme mit SysML. Tag Des Syst. Eng. 2015, 163–172. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure. Entwicklung Mechatronischer und Cyber-Physischer Systeme, 2021, VDI 2206. Available online: https://www.vdi.de/richtlinien/programme-zu-vdi-richtlinien/vdi-2206 (accessed on 14 November 2024).
- Dori, D.; Crawley, E.; Crawley, E.F. Model-Based Systems Engineering with OPM and SysML; Springer: New York, NY, USA, 2016; ISBN 1493932942. [Google Scholar]
- Madni, A.M.; Boehm, B.; Erwin, D.; Moghaddam, M.; Sievers, M.; Wheaton, M. Recent Trends and Advances in Model Based Systems Engineering, 1st ed.; Springer International Publishing; Imprint Springer: Cham, Switzerland, 2022; ISBN 9783030820831. [Google Scholar]
- Güdemann, M.; Kegel, S.; Ortmeier, F.; Poenicke, O.; Richter, K. SysML in digital engineering. In Proceedings of the First International Workshop on Digital Engineering—IWDE ’10, Magdeburg, Germany, 14 June 2010; Saake, G., Köppen, V., Eds.; ACM Press: New York, NY, USA, 2010; pp. 1–8, ISBN 9781605589923. [Google Scholar]
- Jagla, P.; Jacobs, G.; Hopfner, G.; Berroth, J.; Jin, K. Classification of Engineering Models by Physical Effects. In Proceedings of the 2022 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 24–26 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8, ISBN 978-1-6654-8182-3. [Google Scholar]
- Zerwas, T.; Jacobs, G.; Spütz, K.; Höpfner, G.; Drave, I.; Berroth, J.; Guist, C.; Konrad, C.; Rumpe, B.; Kohl, J. Mechanical concept development using principle solution models. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1097, 12001. [Google Scholar] [CrossRef]
- Menninger, B.; Berroth, J.; Jacobs, G. Development of System Alternatives using Generative Engineering. In Proceedings of the 2022 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 24–26 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6, ISBN 978-1-6654-8182-3. [Google Scholar]
- Weilkiens, T.; Scheithauer, A.; Di Maio, M.; Klusmann, N. Evaluating and comparing MBSE methodologies for practitioners. In Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, UK, 3–5 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–8, ISBN 978-1-5090-0793-6. [Google Scholar]
- Eclipse-Capella. Let Yourself be Guided with Arcadia: A Comprehensive Methodological and Tool-Supported Model-Based Engineering Guidance. Available online: https://www.eclipse.org/capella/arcadia.html (accessed on 14 November 2024).
- Bonnet, S. Arcadia and Capella: Rationale, Status, and Perspectives. 2019. Available online: https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:smswg:arcadia_and_capella_-_rationale_status_perspecives_-_stephane_bonnet.pdf (accessed on 14 November 2024).
- Binder, C.; Draxler, D.; Neureiter, C.; Lastro, G. IEEE ISSE 2019: Towards a Model-Centric Approach for developing Functional Architectures in Industry 4.0 Systems. In Proceedings of the 5th IEEE International Symposium on Systems Engineering, ISSE 2019, 5th IEEE International Symposium on Systems Engineering. Symposium Proceedings Edinburgh, Scotland, UK, 1–3 October 2019. [Google Scholar]
- Melzer, S.; Wittke, U.; Hintze, H.; God, R. Physische Architekturen variantengerecht aus Funktionalen Architekturen für Systeme (FAS) spezifizieren. In Tag des Systems Engineering; Schulze, S.-O., Tschirner, C., Kaffenberger, R., Ackva, S., Eds.; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2016; pp. 429–438. ISBN 978-3-446-45126-1. [Google Scholar]
- Douglass, B. Harmony aMBSE Deskbook Version 1.02: Agile Model-Based Systems Engineering Best Practices with IBM Rhapsody. 2017. Available online: https://www.merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/9/13_Harmony_aMBSE_Deskbook_files/Harmony%20aMBSE%20Deskbook%20Version%201.pdf (accessed on 14 November 2024).
- Li, X.; Hu, X.; Xiao, J.; Zhang, G.; Liu, L. Research on Modeling Method of Aeronautical Weapon Flight Control System Based on Harmony-SE. In Proceedings of the 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 1–4 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2064–2069, ISBN 978-1-6654-2248-2. [Google Scholar]
- Munker, F. Ein Ansatz zur Anwenderorientierten Systemmodellierung für die Interdisziplinäre Produktentwicklung = A User-Oriented Concept of Systems Modeling for Interdisciplinary Product Engineering. Dissertation, KIT, Karlsruhe, Germany, 2016. [Google Scholar]
- Pietrusewicz, K. Metamodelling for Design of Mechatronic and Cyber-Physical Systems. Appl. Sci. 2019, 9, 376. [Google Scholar] [CrossRef]
- Mazeika, D.; Morkevicius, A.; Aleksandraviciene, A. MBSE driven approach for defining problem domain. In Proceedings of the 2016 11th System of Systems Engineering Conference (SoSE), Kongsberg, Norway, 12–16 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6, ISBN 978-1-4673-8727-9. [Google Scholar]
- Börner, M.F.; Frieges, M.H.; Späth, B.; Spütz, K.; Heimes, H.H.; Sauer, D.U.; Li, W. Challenges of second-life concepts for retired electric vehicle batteries. Cell Rep. Phys. Sci. 2022, 3, 101095. [Google Scholar] [CrossRef]
- Meisner, M.; Dehn, S.; Jacobs, G.; Berges, J.; Berroth, J.; Guist, C. Towards Digitalization of Physical Effect Libraries. In Proceedings of the 2022 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 24–26 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8, ISBN 978-1-6654-8182-3. [Google Scholar]
- Höpfner, G.; Jacobs, G.; Zerwas, T.; Drave, I.; Berroth, J.; Guist, C.; Rumpe, B.; Kohl, J. Model-Based Design Workflows for Cyber-Physical Systems Applied to an Electric-Mechanical Coolant Pump. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1097, 12004. [Google Scholar] [CrossRef]
- Long, D.; Scott, Z. A Primer for Model Based Systems Engineering, 2nd ed.; Vitech Corporation: Westford, MA, USA, 2011; ISBN 978-1-105-58810-5. Available online: https://books.google.de/books?hl=de&lr=&id=pCaoAwAAQBAJ&oi=fnd&pg=PR1&ots=eRPeof_fdM&sig=irxgJJdVPiF9xPYbE9u-jmJG0YI&redir_esc=y#v=onepage&q&f=false (accessed on 14 November 2024).
- Tim Weilkiens. SYSMOD—Die Systems Modeling Toolbox. 2015. ISBN-10 3981787501; ISBN-13 978-3981787504. Available online: https://www.amazon.com/SYSMOD-Systems-Modeling-Toolbox-Pragmatic/dp/3981787501 (accessed on 14 November 2024).
- Vogel-Heuser, B.; Böhm, M.; Brodeck, F.; Kugler, K.; Maasen, S.; Pantförder, D.; Zou, M.; Buchholz, J.; Bauer, H.; Brandl, F.; et al. Interdisciplinary engineering of cyber-physical production systems: Highlighting the benefits of a combined interdisciplinary modelling approach on the basis of an industrial case. Des. Sci. 2020, 6, e5. [Google Scholar] [CrossRef]
- Kampker, A.; Heimes, H.H.; Offermanns, C.; Sasse, K.; Frieges, M.H.; Späth, B. Domain based product architecture approach for innovative battery system design. In Proceedings of the 2022 International Symposium on Electromobility (ISEM), Puebla, Mexico, 17–19 October 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Kampker, A.; Heimes, H.; Offermanns, C.; Sasse, K.; Frieges, M.H.; Späth, B. Innovative modeling approach for battery cell optimization in the context of new product architectures, 2022. In Proceedings of the Adavanced Automotive Battery Conference, San Diego, CA, USA, 5–8 December 2022. [Google Scholar]
- Kampker, A.; Heimes, H.H.; Offermanns, C.; Sasse, K.; Frieges, M.H.; Späth, B. Impact of innovative cell-to-x design approaches on conventional lithium-ion battery product architectures, 2022. In Proceedings of the Adavanced Automotive Battery Conference, San Diego, CA, USA, 5–8 December 2022. [Google Scholar]
- Saidani, F.; Hutter, F.X.; Scurtu, R.-G.; Braunwarth, W.; Burghartz, J.N. Lithium-ion battery models: A comparative study and a model-based powerline communication. Adv. Radio Sci. 2017, 15, 83–91. [Google Scholar] [CrossRef]
- VDA QMC Working Group 13/Automotive SIG. Automotive SPICE Process Assessment/Reference Model. No. 3.1, 2017. Available online: https://www.automotivespice.com/ (accessed on 14 November 2024).
- Bender, B.; Gericke, K. Pahl/Beitz Konstruktionslehre; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-662-57302-0. [Google Scholar]
- LG Chem. PRODUCT SPECIFICATION: Rechargeable Lithium Ion Battery Model: INR21700 M50 18.20Wh, 2016. Available online: https://www.dnkpower.com/wp-content/uploads/2019/02/LG-INR21700-M50-Datasheet.pdf (accessed on 14 November 2024).
- Song, W.; Chen, M.; Bai, F.; Lin, S.; Chen, Y.; Feng, Z. Non-uniform effect on the thermal/aging performance of Lithium-ion pouch battery. Appl. Therm. Eng. 2018, 128, 1165–1174. [Google Scholar] [CrossRef]
- Zilberman, I.; Ludwig, S.; Schiller, M.; Jossen, A. Online aging determination in lithium-ion battery module with forced temperature gradient. J. Energy Storage 2020, 28, 101170. [Google Scholar] [CrossRef]
- Murbach, M.; Gerwe, B.; Dawson-Elli, N.; Tsui, L. impedance.py: A Python package for electrochemical impedance analysis. J. Open Source Softw. 2020, 5, 2349. [Google Scholar] [CrossRef]
- Barletta, G.; DiPrima, P.; Papurello, D. Thévenin’s Battery Model Parameter Estimation Based on Simulink. Energies 2022, 15, 6207. [Google Scholar] [CrossRef]
- Dai, H.; Xu, T.; Zhu, L.; Wei, X.; Sun, Z. Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales. Appl. Energy 2016, 184, 119–131. [Google Scholar] [CrossRef]
- Roe, C.; Feng, X.; White, G.; Li, R.; Wang, H.; Rui, X.; Li, C.; Zhang, F.; Null, V.; Parkes, M.; et al. Immersion cooling for lithium-ion batteries—A review. J. Power Sources 2022, 525, 231094. [Google Scholar] [CrossRef]
- Trimbake, A.; Singh, C.P.; Krishnan, S. Mineral Oil Immersion Cooling of Lithium-Ion Batteries: An Experimental Investigation. J. Electrochem. Energy Convers. Storage 2022, 19, 021007. [Google Scholar] [CrossRef]
Intuition | Reusability | Adaptability | Flexibility | Scalability | Comparability | Multi- Domain | Integrated Validation | Sources | |
---|---|---|---|---|---|---|---|---|---|
ARCADIA | [19,34,35] | ||||||||
F4S4M & FAS | [21,24,25,36,37] | ||||||||
Harmony SE | n.a. | [8,22,38,39,40] | |||||||
Magic/MBSE Grid | n.a. | [14,41,42] | |||||||
Motego | n.a. | [15,30,31,32,43,44,45] | |||||||
STRATA | [14,19,23,46] | ||||||||
OPM | [19,21,22,27,28] | ||||||||
OOSEM | n.a. | [22,23,25,41] | |||||||
SYSMOD | [14,29,33,47] |
Input Set | ID | Description | Explanation | Source |
---|---|---|---|---|
Use-Case | U.01 | Simple fast charging is considered: 2 C charging rate; SOC [10%; 80%]. | A first indication of charging behavior is needed. | Stakeholder |
U.xx | … | … | … | |
Requirements | R.01 | The maximum temperature in the battery cell must not exceed 60 °C. | The cell manufacturer defines a maximum working temperature. | Datasheet [55] |
R.02 | The maximum temperature spread within the battery cell must not exceed 5 °C at any time of charging. | A high-temperature gradient within a battery cell supports accelerated aging. This mechanism shall be limited [56]. | Following [57] | |
R.xx | … | … | … | |
Interfaces | I.01 | The thermal management provides a fluid at 20 °C. | Stakeholder | |
I.xx | … | … | … |
Domain | Model | Input Parameters | Output Parameters |
---|---|---|---|
All | Global |
|
|
Electrical | ECM parametrization |
|
|
Electrical | Local ECM |
|
|
Thermal | 3D FEM thermal |
|
|
Mechanical | Geometry |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampker, A.; Heimes, H.H.; Frieges, M.H.; Späth, B.; Bauer, E. Handling Complexity in Virtual Battery Development with a Simplified Systems Modeling Approach. World Electr. Veh. J. 2024, 15, 525. https://doi.org/10.3390/wevj15110525
Kampker A, Heimes HH, Frieges MH, Späth B, Bauer E. Handling Complexity in Virtual Battery Development with a Simplified Systems Modeling Approach. World Electric Vehicle Journal. 2024; 15(11):525. https://doi.org/10.3390/wevj15110525
Chicago/Turabian StyleKampker, Achim, Heiner H. Heimes, Moritz H. Frieges, Benedikt Späth, and Eva Bauer. 2024. "Handling Complexity in Virtual Battery Development with a Simplified Systems Modeling Approach" World Electric Vehicle Journal 15, no. 11: 525. https://doi.org/10.3390/wevj15110525
APA StyleKampker, A., Heimes, H. H., Frieges, M. H., Späth, B., & Bauer, E. (2024). Handling Complexity in Virtual Battery Development with a Simplified Systems Modeling Approach. World Electric Vehicle Journal, 15(11), 525. https://doi.org/10.3390/wevj15110525