Tesla Log Data Analysis Approach from a Digital Forensics Perspective
Abstract
:1. Introduction
- Inspection of event data recorder (EDR) for traffic accidents;
- Analysis of dashcam to identify accident/incident videos;
- Examination of telematics and infotainment systems to understand accident/incident conditions.
- Restraints control module (RCM);
- Media control unit (MCU);
- –
- eMMC memory (Onboard);
- –
- MicroSDHC (Insert);
- Over-the-air (OTA)-Tesla Server.
2. Materials and Methods
2.1. Restraints Control Module
2.1.1. Extracting Data from a Corrupt RCM
2.1.2. EDR Data Validation
2.2. Media Control Unit
2.2.1. Analyze EDR Folders
2.2.2. Various Bin Files Extracted from the EDR Folder
2.2.3. Analyze LOG Folders
2.3. OTA-TESLA Server
3. Implementation of the Forensic Process on a Vehicle
3.1. Damaged Model X Log Data from a Digital Forensics Perspective-I
3.1.1. Comparison of LOG Folder and OTA Report
3.1.2. Comparison of RCM Folder, LOG Folder, and OTA Report
3.2. Damaged Model X Log Data from a Digital Forensics Perspective-II
3.2.1. Comparison of the LOG Folder and OTA Report
3.2.2. Comparison of the OTA Report and EDR Report
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nouzovský, L.; Kohout, T.; Vrtal, P.; Kocián, K. Validation of EDR Data for the Purpose of the Forensic Expertise. In Proceedings of the 2022 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 26–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Lee, J.H.; Hyeon, B.S.; Jeon, O.Y.; Park, N.I. Analysis of real-time operating systems’ file systems: Built-in cameras from vehicles. Forensic Sci. Int. Digit. Investig. 2023, 44, 301500. [Google Scholar] [CrossRef]
- Jung, J.; Han, S.; Park, M.; Cho, S.J. Automotive digital forensics through data and log analysis of vehicle diagnosis Android apps. Forensic Sci. Int. Digit. Investig. 2024, 49, 301752. [Google Scholar] [CrossRef]
- Vdovic, H.; Babic, J.; Podobnik, V. Automotive software in connected and autonomous electric vehicles: A review. IEEE Access 2019, 7, 166365–166379. [Google Scholar] [CrossRef]
- Häckel, T.; Schmidt, A.; Meyer, P.; Korf, F.; Schmidt, T.C. Strategies for integrating control flows in software-defined in-vehicle networks and their impact on network security. In Proceedings of the 2020 IEEE Vehicular Networking Conference (VNC), New York, NY, USA, 16–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Jacobs, D.; Choo, K.K.R.; Kechadi, M.T.; Le-Khac, N.A. Volkswagen car entertainment system forensics. In Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, 1–4 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 699–705. [Google Scholar]
- El-Fatyany, A.; Wang, X.; Duggirala, P.S.; Chakraborty, S.; Pasricha, S.; Singh, A.K. Special Session: Emerging Architecture Design, Control, and Security Challenges in Software Defined Vehicles. In Proceedings of the 2024 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), Raleigh, NC, USA, 29 September–4 October 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 27–36. [Google Scholar]
- Manser, M.; Campbell, J.; Fincannon, T.; Krake, A.; Hoekstra-Atwood, L.; Crump, C.; Wu, L. Role of System Status Information in the Development of Trust and Mental Model in Automated Driving Systems. In Proceedings of the 27th International Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Administration (No. 23-0342), Yokohama, Japan, 3–6 April 2023. [Google Scholar]
- Giannaros, A.; Karras, A.; Theodorakopoulos, L.; Karras, C.; Kranias, P.; Schizas, N.; Kalogeratos, G.; Tsolis, D. Autonomous vehicles: Sophisticated attacks, safety issues, challenges, open topics, blockchain, and future directions. J. Cybersecur. Priv. 2023, 3, 493–543. [Google Scholar] [CrossRef]
- Bodei, C.; De Vincenzi, M.; Matteucci, I. From hardware-functional to software-defined vehicles and their security issues. In Proceedings of the 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), Lemgo, Germany, 18–20 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–10. [Google Scholar]
- Jiang, S. Vehicle E/E Architecture and Key Technologies Enabling Software-Defined Vehicle; No. 2024-01-2035. SAE Technical Paper; SAE International: Warrendale, PA, USA, 2024. [Google Scholar]
- NHTSA. Code of Federal Regulation (CFR) 49: Part 563—Event Data Recorders. Available online: https://www.govinfo.gov/content/pkg/CFR-2018-title49-vol6/xml/CFR-2018-title49-vol6-part563.xml (accessed on 20 December 2024).
- National Transportation Safety Board. Collision Between a Car Operating with Automated Vehicle Control Systems and a Tractor-Semitrailer Truck near Williston, Florida, May 7, 2016; National Transportation Safety Board: Washington, DC, USA, 2017; p. 42. [Google Scholar]
- Böhm, K.; Kubjatko, T.; Paula, D.; Schweiger, H.G. New developments on EDR (Event Data Recorder) for automated vehicles. Open Eng. 2020, 10, 140–146. [Google Scholar] [CrossRef]
- United Nations Economic and Social Council. Revised Framework Document on Automated/Autonomous Vehicles; World Forum for Harmonization of Vehicle Regulations—178th Session; United Nations Economic and Social Council: New York, NY, USA, 2022. [Google Scholar]
- Feng, X.; Dawam, E.S.; Amin, S. A new digital forensics model of smart city automated vehicles. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 274–279. [Google Scholar]
- Servida, F.; Casey, E. IoT forensic challenges and opportunities for digital traces. Digit. Investig. 2019, 28, S22–S29. [Google Scholar] [CrossRef]
- Le-Khac, N.A.; Jacobs, D.; Nijhoff, J.; Bertens, K.; Choo, K.K.R. Smart vehicle forensics: Challenges and case study. Future Gener. Comput. Syst. 2020, 109, 500–510. [Google Scholar] [CrossRef]
- Buquerin, K.K.G.; Corbett, C.; Hof, H.J. A generalized approach to automotive forensics. Forensic Sci. Int. Digit. Investig. 2021, 36, 301111. [Google Scholar] [CrossRef]
- Ergin, U. One of the First Fatalities of a Self-Driving Car: Root Cause Analysis of the 2016 Tesla Model S 70D Crash. Trafik Ve Ulaşım Araştırmaları Derg. 2022, 5, 83–97. [Google Scholar] [CrossRef]
- Guides for Retrieving EDR Data from Tesla Vehicles. Available online: https://crashdatagroup.com/products/edr-kit-for-tesla-vehicles (accessed on 20 December 2024).
- Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A review of battery fires in electric vehicles. Fire Technol. 2020, 56, 1361–1410. [Google Scholar] [CrossRef]
- Datasheet—M95640-W M95640-R M95640-DF. Available online: https://www.st.com/resource/en/datasheet/m95640-w.pdf (accessed on 20 December 2024).
- Tesla Event Data Recorder (EDR) Resources. Available online: https://edr.tesla.com/ (accessed on 20 December 2024).
- Marchetti, M.; Stabili, D. READ: Reverse engineering of automotive data frames. IEEE Trans. Inf. Forensics Secur. 2018, 14, 1083–1097. [Google Scholar] [CrossRef]
- Wouters, L.; Gierlichs, B.; Preneel, B. My other car is your car: Compromising the Tesla Model X keyless entry system. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 149–172. [Google Scholar] [CrossRef]
- Tesla Owner’s Manual. Available online: https://www.tesla.com/ownersmanual/modelx/en_us/ (accessed on 20 December 2024).
- ISO 14229-1:2020(en); Road Vehicles—Unified Diagnostic Services (UDS). Available online: https://www.iso.org/standard/72439.html (accessed on 20 December 2024).
- Wajape, M.; Elamana, N.B. Study of ISO 14229-1 and ISO 15765-3 and Implementation in EMS ECU for EEPROM for UDS application. In Proceedings of the 2014 IEEE International Conference on Vehicular Electronics and Safety, Hyderabad, India, 16–17 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 168–173. [Google Scholar]
- Hoogendijk, F. Reverse engineering and evaluation of Tesla vehicle logs. In Proceedings of the 29th Annual Congress of the European Association for Accident Research (EVU), Haifa, Israel, 6–7 October 2021. [Google Scholar]
- NetherlandsForensicInstitute/Teslalogs. Available online: https://github.com/NetherlandsForensicInstitute/teslalogs (accessed on 20 December 2024).
- Harris, M. The radical scope of Tesla’s Data Hoard: Every Tesla is providing reams of sensitive data about its driver’s life. IEEE Spectr. 2022, 59, 40–45. [Google Scholar] [CrossRef]
Vehicle Type | File Name | ||||||||
---|---|---|---|---|---|---|---|---|---|
ModelX-2020 | f014 | f015 | f190 | fd00 | fd52 | fd60 | fd61 | fd62 | fd63 |
fd64 | fd65 | fd66 | fd67 | fd68 | fd69 | 5817 | 5818 | - | |
ModelS-2017 | - | - | - | - | - | - | - | - | - |
- | - | - | - | - | - | - | - | - | |
Model3-2018 * | f014 | f015 | f190 | fd60 | fd61 | fd62 | fd63 | fd64 | fd65 |
fd66 | fd67 | fd68 | fd69 | 5817 | 5818 | - | - | - | |
ModelY-2020 * | f014 | f015 | f190 | fe01 | fe02 | fe04 | fe05 | fe06 | fe07 |
fe0c | fe0d | fe0e | fe0f | 5817 | 5818 | - | - | - |
UDS DID Data Identifier | DID Name | DID Description |
---|---|---|
0x0100 1-0xA5FF 1 | Vehicle Manufacturer Specific | This range of values shall be used to reference vehicle manufacturer specific record data |
0xF010 1-0xF0FF 1 | Vehicle Manufacturer Specific | This range of values shall be used to reference vehicle manufacturer specific record data |
0xF190 1 | VIN Data Identifier | This value shall be used to reference the VIN number |
0xFD00 1-0xFEFF 1 | System Supplier Specific | This range of values shall be used to reference the record data identifiers and input/output identifiers within the server |
Periodically Log | Aperiodically Log |
---|---|
Vehicle Speed | AEB State |
Accelerator Pedal Pressure | Cruise State 1 |
Steering Wheel Angle | Front Crash |
Torque Motor | Auto Pilot State |
Longitudinal/Later Acceleration | Auto Park Ready |
Longitudinal/Lateral Delta-V data | Gear Poison |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Lim, S.H.; Hyeon, B.; Jeon, O.-Y.; Park, J.J.; Park, N.I. Tesla Log Data Analysis Approach from a Digital Forensics Perspective. World Electr. Veh. J. 2024, 15, 590. https://doi.org/10.3390/wevj15120590
Lee J-H, Lim SH, Hyeon B, Jeon O-Y, Park JJ, Park NI. Tesla Log Data Analysis Approach from a Digital Forensics Perspective. World Electric Vehicle Journal. 2024; 15(12):590. https://doi.org/10.3390/wevj15120590
Chicago/Turabian StyleLee, Jung-Hwan, Seong Ho Lim, Bumsu Hyeon, Oc-Yeub Jeon, Jong Jin Park, and Nam In Park. 2024. "Tesla Log Data Analysis Approach from a Digital Forensics Perspective" World Electric Vehicle Journal 15, no. 12: 590. https://doi.org/10.3390/wevj15120590
APA StyleLee, J.-H., Lim, S. H., Hyeon, B., Jeon, O.-Y., Park, J. J., & Park, N. I. (2024). Tesla Log Data Analysis Approach from a Digital Forensics Perspective. World Electric Vehicle Journal, 15(12), 590. https://doi.org/10.3390/wevj15120590