Simulation-Based Assessment of Energy Consumption of Alternative Powertrains in Agricultural Tractors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Model Development
2.2. Model Parameters
2.3. Operating Cycles
3. Results
3.1. Driving Performance
3.2. Energy Consumption
3.3. Distribution of Losses
3.4. Operating Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajanovic, A.; Haas, R.; Schrödl, M. On the Historical Development and Future Prospects of Various Types of Electric Mobility. Energies 2021, 14, 1070. [Google Scholar] [CrossRef]
- Balazadeh Meresht, N.; Moghadasi, S.; Munshi, S.; Shahbakhti, M.; McTaggart-Cowan, G. Advances in Vehicle and Powertrain Efficiency of Long-Haul Commercial Vehicles: A Review. Energies 2023, 16, 6809. [Google Scholar] [CrossRef]
- Hegazy, O.; Barrero, R.; Van den Bossche, P.; El Baghdadi, M.; Smekens, J.; Van Mierlo, J.; Vriens, W.; Bogaerts, B. Modeling, analysis and feasibility study of new drivetrain architectures for off-highway vehicles. Energy 2016, 109, 1056–1074. [Google Scholar] [CrossRef]
- Lin, T.; Lin, Y.; Ren, H.; Chen, H.; Chen, Q.; Li, Z. Development and key technologies of pure electric construction machinery. Renew. Sustain. Energy Rev. 2020, 132, 110080. [Google Scholar] [CrossRef]
- Bilgin, B.; Magne, P.; Malysz, P.; Yang, Y.; Pantelic, V.; Preindl, M.; Korobkine, A.; Jiang, W.; Lawford, M.; Emadi, A. Making the Case for Electrified Transportation. IEEE Trans. Transp. Electrif. 2015, 1, 4–17. [Google Scholar] [CrossRef]
- Khan, A.U.; Huang, L. Toward Zero Emission Construction: A Comparative Life Cycle Impact Assessment of Diesel, Hybrid, and Electric Excavators. Energies 2023, 16, 6025. [Google Scholar] [CrossRef]
- Lajunen, A.; Kivekäs, K.; Freyermut, V.; Vijayagopal, R.; Kim, N. Simulation of Alternative Powertrains in Agricultural Tractors. In Proceedings of the International Electric Vehicle Symposium and Exhibition (EVS36), Sacramento, CA, USA, 11–14 June 2023. [Google Scholar]
- Scolaro, E.; Beligoj, M.; Perez Estevez, M.; Alberti, L.; Renzi, M.; Mattetti, M. Electrification of Agricultural Machinery: A Review. IEEE Access 2021, 9, 164520–164541. [Google Scholar] [CrossRef]
- Tetzlaff, S. System-wide electrification and appropriate functions of tractor and implement. Landtechnik 2015, 70, 203–216. [Google Scholar]
- Nizam Uddin Khan, F.M.; Rasul, M.G.; Sayem, A.S.M.; Mandal, N. Maximizing energy density of lithium-ion batteries for electric vehicles: A critical review. Energy Rep. 2023, 9 (Suppl. S11), 11–21. [Google Scholar] [CrossRef]
- Martinez-Boggio, S.; Monsalve-Serrano, J.; García, A.; Curto-Risso, P. High Degree of Electrification in Heavy-Duty Vehicles. Energies 2023, 16, 3565. [Google Scholar] [CrossRef]
- Vijayagopal, R.; Rousseau, A. Benefits of Electrified Powertrains in Medium- and Heavy-Duty Vehicles. World Electr. Veh. J. 2020, 11, 12. [Google Scholar] [CrossRef]
- Lajunen, A. Energy Efficiency of Conventional, Hybrid Electric, and Fuel Cell Hybrid Powertrains in Heavy Machinery (2015-01-2829); SAE Technical Paper; SAE: Warrendale, PA, USA, 2015. [Google Scholar]
- Lajunen, A.; Lipman, T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy 2016, 106, 329–342. [Google Scholar] [CrossRef]
- Beltrami, D.; Iora, P.; Tribioli, L.; Uberti, S. Electrification of Compact Off-Highway Vehicles—Overview of the Current State of the Art and Trends. Energies 2021, 14, 5565. [Google Scholar] [CrossRef]
- Renius, K.T. Fundamentals of Tractor Design; Springer Nature: Baldham, Germany, 2020. [Google Scholar]
- Troncon, D.; Alberti, L.; Mattetti, M. A feasibility study for agriculture tractors electrification: Duty cycles simulation and consumption comparison. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019. [Google Scholar]
- Troncon, D.; Alberti, L.; Bolognani, S.; Bettella, F.; Gatto, A. Electrification of agricultural machinery: A feasibility evaluation. In Proceedings of the International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 8–10 May 2019. [Google Scholar]
- Dalboni, M.; Santarelli, P.; Patroncini, P.; Soldati, A.; Concari, C.; Lusignani, D. Electrification of a Compact Agricultural Tractor: A Successful Case Study. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019. [Google Scholar]
- Mendes, F.E.G.; Brandao, D.I.; Maia, T.; Braz de Filho, J.C. Off-Road Vehicle Hybridization Methodology Applied to a Tractor Backhoe Loader. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019. [Google Scholar]
- Mocera, F.; Martini, V. Numerical Performance Investigation of a Hybrid eCVT Specialized Agricultural Tractor. Appl. Sci. 2022, 12, 2438. [Google Scholar] [CrossRef]
- Nevzorova, T.; Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Rev. 2019, 26, 00414. [Google Scholar] [CrossRef]
- Simikic, M.; Tomic, M.; Savin, L.; Micic, R.; Ivanisevic, I.; Ivanisevic, M. Influence of biodiesel on the performances of farm tractors: Experimental testing in stationary and non-stationary conditions. Renew. Energy 2018, 121, 677–687. [Google Scholar] [CrossRef]
- Briggs, I.; Murtagh, M.; Kee, R.; McCulloug, G.; Douglas, R. Sustainable non-automotive vehicles: The simulation challenges. Renew. Sustain. Energy Rev. 2017, 68, 840–851. [Google Scholar] [CrossRef]
- Birkmann, C.; Fedde, T.; Frerichs, L. Drivetrain, Chassis and Tire-Soil Contact Influence on Power Shift Operations in Standard Tractors. Landtechnik 2018, 73, 146–160. [Google Scholar]
- Witzel, P. The Hohenheim Tyre Model: A validated approach for the simulation of high volume tyres–Part I: Model structure and parameterisation. J. Terramech. 2018, 75, 3–14. [Google Scholar] [CrossRef]
- Battiato, A.; Diserens, E. Tractor traction performance simulation on differently textured soils and validation: A basic study to make traction and energy requirements accessible to the practice. Soil Tillage Res. 2017, 166, 18–32. [Google Scholar] [CrossRef]
- Witzel, P. The Hohenheim Tyre Model: A validated approach for the simulation of high volume tyres–Part II: Validation. J. Terramech. 2018, 75, 15–24. [Google Scholar] [CrossRef]
- Vijayagopal, R.; Rousseau, A. System Analysis of Multiple Expert Tools (2011-01-0754); SAE Technical Paper; SAE: Warrendale, PA, USA, 2011. [Google Scholar]
- AMBER. Argonne National Laboratory. Available online: https://amber.anl.gov/ (accessed on 31 December 2023).
- Lajunen, A. Simulation of energy efficiency and performance of electrified powertrains in agricultural tractors. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), Merced, CA, USA, 1–4 November 2022. [Google Scholar]
- Seeger, J. New Dual Clutch Transmission for Tractors. ATZ Offhighway 2012, 5, 58–67. [Google Scholar] [CrossRef]
- Tebaldi, D.; Zanasi, R. Modeling Control and Simulation of a Parallel Hybrid Agricultural Tractor. In Proceedings of the Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June 2021. [Google Scholar]
- Zahidi, Y.; El Moufid, M.; Benhadou, S.; Medromi, H. An Assessment of Low-Cost Tractor Motorization with Main Farming Implements. World Electr. Veh. J. 2020, 11, 74. [Google Scholar] [CrossRef]
- Beligoj, M.; Scolaro, E.; Alberti, L.; Renzi, M.; Mattetti, M. Feasibility Evaluation of Hybrid Electric Agricultural Tractors Based on Life Cycle Cost Analysis. IEEE Access 2022, 10, 28853–28867. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Wang, X.; Star, A.G.; Papadias, D.D. Performance and cost of fuel cells for off-road heavy-duty vehicles. Int. J. Hydrog. 2022, 47, 10990–11006. [Google Scholar] [CrossRef]
- Ahlgren, S.; Baky, A.; Bernesson, S.; Nordberg, Å.; Norén, O.; Hansson, P.A. Tractive power in organic farming based on fuel cell technology–Energy balance and environmental load. Agric. Syst. 2009, 102, 67–76. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Tsolakis, A.; Alagumalai, A.; Mahian, O.; Lam, S.S.; Pan, J.; Peng, W.; Tabatabaei, M.; Aghbashlo, M. Use of hydrogen in dual-fuel diesel engines. Prog. Energy Combust. Sci. 2023, 98, 101100. [Google Scholar] [CrossRef]
- Brenna, M.; Foiadelli, F.; Leone, C.; Longo, M.; Zaninelli, D. Feasibility Proposal for Heavy Duty Farm Tractor. In Proceedings of the International Conference of Electrical and Electronic Technologies for Automotive, Milan, Italy, 9–11 July 2018. [Google Scholar]
- Lagnelöv, O. Electric Autonomous Tractors in Swedish Agriculture: A Systems Analysis of Economic, Environmental and Performance Effects. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2023. [Google Scholar]
- Martelli, S.; Mocera, F.; Somà, A. Carbon Footprint of an Orchard Tractor through a Life-Cycle Assessment Approach. Agriculture 2023, 13, 1210. [Google Scholar] [CrossRef]
- Saetti, M.; Mattetti, M.; Varani, M.; Lenzini, N.; Molari, G. On the power demands of accessories on an agricultural tractor. Biosyst. Eng. 2021, 206, 109–122. [Google Scholar] [CrossRef]
- Molari, G.; Mattetti, M.; Lenzini, N.; Fiorati, S. An updated methodology to analyse the idling of agricultural tractors. Biosyst. Eng. 2019, 187, 160–170. [Google Scholar] [CrossRef]
Component | Medium-Sized Tractor | Large-Sized Tractor |
---|---|---|
Diesel engine | maximum power 112 kW, maximum torque 580 Nm | maximum power 225 kW, maximum torque 1154 Nm |
Transmission | eight-speed dual-clutch transmission (DCT) with three ranges | eight-speed dual-clutch transmission (DCT) with three ranges |
Rear axle 1 | bevel set ratio of 2.93:1 and planetary gear ratio of 6:1 | bevel set ratio of 3.28:1 and planetary gear ratio of 6:1 |
Front axle 1 | bevel set ratio of 2.30:1 and planetary gear ratio of 6:1 | bevel set ratio of 2.48:1 and planetary gear ratio of 6:1 |
Tires 1 | front: 380/85R28, rear: 460/85R38 | front: 540/65R30, rear: 650/65R42 |
Weight 1 | 5000 kg | 10,000 kg |
Component | Parallel Hybrid | Series Hybrid | Fuel Cell Hybrid | Electric |
---|---|---|---|---|
Diesel engine/Fuel cell stack | Diesel engine: power 90 kW, torque 466 Nm | Diesel engine: power 92.5 kW, torque 480 Nm | Fuel cell stack: max power 80 kW | --- |
Transmission | Eight-speed (DCT) with two ranges | Three-speed gearbox | Three-speed gearbox | Three-speed gearbox |
Battery configuration | 6 Ah cell, 180 cells in series in a pack, 648 V, 3.9 kWh | 6 Ah cell, 180 cells in series in a pack, 648 V, 3.9 kWh | 6 Ah cell, 180 cells in series in a pack, 648 V, 3.9 kWh | 33 Ah cell, four packs in parallel, 192 cells in series in a pack, 720 V, 95 kWh |
Electric motor | max power 50 kW, max torque 201 Nm, max speed 4400 rpm | max power 112 kW, max torque 304 Nm, max speed 8000 rpm | max power 112 kW, max torque 304 Nm, max speed 8000 rpm | max power 112 kW, max torque 304 Nm, max speed 8000 rpm |
Component | Parallel Hybrid | Series Hybrid | Fuel Cell Hybrid | Electric |
---|---|---|---|---|
Diesel engine/Fuel cell stack | Diesel engine: power 175 kW, torque 898 Nm | Diesel engine: power 185 kW, torque 949 Nm | Fuel cell stack: max power 160 kW | --- |
Transmission | Eight-speed (DCT) with two ranges | Three-speed gearbox | Three-speed gearbox | Three-speed gearbox |
Battery configuration | 6 Ah cell, 180 cells in series in a pack, 648 V, 3.9 kWh | 6 Ah cell, 180 cells in series in a pack, 648 V, 3.9 kWh | 6 Ah cell, 180 cells in series in a pack, 648 V, 3.9 kWh | 33 Ah cell, eight packs in parallel, 192 cells in series in a pack, 720 V, 190 kWh |
Electric motor | max power 100 kW, max torque 542 Nm, max speed 4400 rpm | max power 225 kW, max torque 611 Nm, max speed 8000 rpm | max power 225 kW, max torque 611 Nm, max speed 8000 rpm | max power 225 kW, max torque 611 Nm, max speed 8000 rpm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lajunen, A.; Kivekäs, K.; Freyermuth, V.; Vijayagopal, R.; Kim, N. Simulation-Based Assessment of Energy Consumption of Alternative Powertrains in Agricultural Tractors. World Electr. Veh. J. 2024, 15, 86. https://doi.org/10.3390/wevj15030086
Lajunen A, Kivekäs K, Freyermuth V, Vijayagopal R, Kim N. Simulation-Based Assessment of Energy Consumption of Alternative Powertrains in Agricultural Tractors. World Electric Vehicle Journal. 2024; 15(3):86. https://doi.org/10.3390/wevj15030086
Chicago/Turabian StyleLajunen, Antti, Klaus Kivekäs, Vincent Freyermuth, Ram Vijayagopal, and Namdoo Kim. 2024. "Simulation-Based Assessment of Energy Consumption of Alternative Powertrains in Agricultural Tractors" World Electric Vehicle Journal 15, no. 3: 86. https://doi.org/10.3390/wevj15030086
APA StyleLajunen, A., Kivekäs, K., Freyermuth, V., Vijayagopal, R., & Kim, N. (2024). Simulation-Based Assessment of Energy Consumption of Alternative Powertrains in Agricultural Tractors. World Electric Vehicle Journal, 15(3), 86. https://doi.org/10.3390/wevj15030086