Dynamic Programming of Electric Vehicle Reservation Charging and Battery Preheating Strategies Considering Time-of-Use Electricity Price
Abstract
:1. Introduction
2. Thermal Management System Modeling
2.1. Integrated Thermal Management System Scheme
2.2. Battery Model
- Heat production by the internal resistance of the battery;
- Effective heating by the PTC heater;
- Heat transfer between the battery pack and the environment.
3. Battery AC Charge–Preheat Strategy
3.1. Optimal Control Modeling
3.2. Dynamic Programming Solution
4. Results and Discussion
4.1. Conventional Preheating Strategy
4.2. Comparison and Analysis of Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lei, S.; Xin, S.; Liu, S. Separate and integrated thermal management solutions for electric vehicles: A review. J. Power Sources 2022, 550, 232133. [Google Scholar] [CrossRef]
- Wang, J.; Ruan, L. Performance investigation of integrated thermal management system based on a pumped two-phase cooling system for electric vehicles. J. Energy Storage 2023, 72, 107922. [Google Scholar] [CrossRef]
- Ye, J.; Aldaher, A.Y.M.; Tan, G. Thermal performance analysis of 18,650 battery thermal management system integrated with liquid-cooling and air-cooling. J. Energy Storage 2023, 72, 108766. [Google Scholar] [CrossRef]
- Dai, X.; Ping, P.; Kong, D.; Gao, X.; Zhang, Y.; Wang, G.; Peng, R. Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation. J. Energy Chem. 2023, 89, 226–238. [Google Scholar] [CrossRef]
- Huang, Z.; Gao, Z.; Liu, Y.; Guan, K.; Lu, Y.; Zhou, F.; Jiang, F.; Peng, J. A low temperature preheating strategy with optimized fuzzy controller for lithium-ion batteries. J. Energy Storage 2022, 52, 104709. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, J.; Sun, W.; Xu, X.; Li, C.; Li, Y. Research on liquid preheating performance for battery thermal management of electric vehicles at low temperature. J. Energy Storage 2022, 55, 105497. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Chen, Z. Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges. Appl. Energy 2022, 313, 118832. [Google Scholar] [CrossRef]
- Ruan, H.; Jiang, J.; Sun, B.; Su, X.; He, X.; Zhao, K. An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction. Appl. Energy 2019, 256, 113797. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Z.; Wei, X.; Dai, H.; Gu, W. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures. J. Power Sources 2017, 367, 145–157. [Google Scholar] [CrossRef]
- Wu, X.; Cui, Z.; Chen, E.; Du, J. Capacity degradation minimization oriented optimization for the pulse preheating of lithium-ion batteries under low temperature. J. Energy Storage 2020, 31, 101746. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, G.; Wu, C.; Huang, W.; Xu, C.; Jin, C.; Wu, Y.; Jiang, Z.; Dai, H.; Feng, X.; et al. Multi-objective optimization design for a double-direction liquid heating system-based Cell-to-Chassis battery module. Int. J. Heat Mass Transf. 2022, 183, 122184. [Google Scholar] [CrossRef]
- Qin, P.; Sun, J.; Yang, X.; Wang, Q. Battery thermal management system based on the forced-air convection: A review. eTransportation 2021, 7, 100097. [Google Scholar] [CrossRef]
- Qin, P.; Liao, M.; Mei, W.; Sun, J.; Wang, Q. The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure. Appl. Therm. Eng. 2021, 195, 117212. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Z.; Liu, S.; Li, X.; Li, H.; Xiong, R. Evaluating the performance of liquid immersing preheating system for Lithium-ion battery pack. Appl. Therm. Eng. 2021, 190, 116811. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Cheng, W.-L.; Zhao, R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Conv. Manag. 2019, 182, 9–20. [Google Scholar] [CrossRef]
- Li, X.; Deng, J.; Huang, Q.; Zhang, G.; Chen, K.; Wang, Y. Experimental investigation on immersion liquid cooled battery thermal management system with phase change epoxy sealant. Chem. Eng. Sci. 2022, 264, 118089. [Google Scholar] [CrossRef]
- Luo, M.; Ling, Z.; Zhang, Z.; Fang, X. A fast-response preheating system coupled with supercapacitor and electric conductive phase change materials for lithium-ion battery energy storage system at low temperatures. J. Energy Storage 2023, 73, 109255. [Google Scholar] [CrossRef]
- Liu, X.; Hong, X.; Jiang, X.; Li, Y.; Xu, K. Novel approach for liquid-heating lithium-ion battery pack to shorten low temperature charge time. J. Energy Storage 2023, 68, 107507. [Google Scholar] [CrossRef]
- Antoun, J.; Kabir, M.E.; Atallah, R.; Moussa, B.; Ghafouri, M.; Assi, C. Assisting Residential Distribution Grids in Overcoming Large-Scale EV Preconditioning Load. IEEE Syst. J. 2022, 16, 4345–4355. [Google Scholar] [CrossRef]
- Sørensen, Å.L.; Ludvigsen, B.; Andresen, I. Grid-connected cabin preheating of Electric Vehicles in cold climates–A non-flexible share of the EV energy use. Appl. Energy 2023, 341, 121054. [Google Scholar] [CrossRef]
- Liang, S.; Zhu, B.; He, J.; He, S.; Ma, M. A pricing strategy for electric vehicle charging in residential areas considering the uncertainty of charging time and demand. Comput. Commun. 2023, 199, 153–167. [Google Scholar] [CrossRef]
- Tian, X.; Cheng, B.; Liu, H. V2G optimized power control strategy based on time-of-use electricity price and comprehensive load cost. Energy Rep. 2023, 10, 1467–1473. [Google Scholar] [CrossRef]
- Yin, W.; Wen, T.; Zhang, C. Cooperative optimal scheduling strategy of electric vehicles based on dynamic electricity price mechanism. Energy 2023, 263, 125627. [Google Scholar] [CrossRef]
- Ouyang, Q.; Fang, R.; Xu, G.; Liu, Y. User-involved charging control for lithium-ion batteries with economic cost optimization. Appl. Energy 2022, 314, 118878. [Google Scholar] [CrossRef]
- Guo, R.; Li, L.; Sun, Z.; Xue, X. An integrated thermal management strategy for cabin and battery heating in range-extended electric vehicles under low-temperature conditions. Appl. Therm. Eng. 2023, 228, 120502. [Google Scholar] [CrossRef]
- Hou, J.; Xu, J.; Lin, C.; Jiang, D.; Mei, X. State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method. Energy 2024, 290, 130056. [Google Scholar] [CrossRef]
- Wu, M.; Qin, L.; Wu, G. State of power estimation of power lithium-ion battery based on an equivalent circuit model. J. Energy Storage 2022, 51, 104538. [Google Scholar] [CrossRef]
- Shahjalal, M.; Shams, T.; Islam, M.E.; Alam, W.; Modak, M.; Hossain, S.B.; Ramadesigan, V.; Ahmed, M.R.; Ahmed, H.; Iqbal, A. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues. J. Energy Storage 2021, 39, 102518. [Google Scholar] [CrossRef]
- Liu, J.; Yadav, S.; Salman, M.; Chavan, S.; Kim, S.C. Review of thermal coupled battery models and parameter identification for lithium-ion battery heat generation in EV battery thermal management system. Int. J. Heat Mass Transf. 2024, 218, 124748. [Google Scholar] [CrossRef]
- Wang, C.; Liu, F.; Tang, A.; Liu, R. A dynamic programming-optimized two-layer adaptive energy management strategy for electric vehicles considering driving pattern recognition. J. Energy Storage 2023, 70, 107924. [Google Scholar] [CrossRef]
- Li, F.; Gao, L.; Zhang, Y.; Liu, Y. Hierarchical operation switch schedule algorithm for energy management strategy of hybrid electric vehicle using adaptive dynamic programming. Sustain. Energy Grids Netw. 2023, 35, 101107. [Google Scholar] [CrossRef]
Mode | Battery | Motor | Cabin |
---|---|---|---|
1 | PTC heating | Heat storage | Heating |
2 | PTC heating | Heat storage | Non-heating |
3 | Temperature maintenance mode | Cooling | Heating |
4 | Temperature maintenance mode | Cooling | Heating |
5 | Temperature maintenance mode | Heat storage | Heating |
6 | Temperature maintenance mode | Heat storage | Heating |
7 | PTC heating + waste heat recovery | Waste heat recovery | Heating |
8 | PTC heating + waste heat recovery | Waste heat recovery | Non-heating |
9 | Cooling | Cooling | Heating |
10 | Cooling | Cooling | Non-heating |
Mode | Pump 1 | Pump 2 | Pump 3 | Three-Way Valve 1 | Three-Way Valve 2 | Four-Way Valve | Blower |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | AB | AC | AB, CD | 1 |
2 | 1 | 1 | 1 | AB | AC | AB, CD | 0 |
3 | 1 | 1 | 1 | AC | AB | AB, CD | 1 |
4 | 1 | 0 | 1 | AC | AB | AB, CD | 0 |
5 | 1 | 1 | 1 | AB | AB | AB, CD | 1 |
6 | 1 | 0 | 1 | AB | AB | AB, CD | 0 |
7 | 1 | 1 | 1 | AB | AC | AD, BC | 1 |
8 | 1 | 1 | 1 | AB | AC | AD, BC | 0 |
9 | 1 | 1 | 1 | AC | AB | AD, BC | 1 |
10 | 1 | 1 | 1 | AC | AB | AD, BC | 0 |
Parameters | Value | Unit |
---|---|---|
Total mass | 240 | kg |
Specific heat capacity | 1140 | j/(kg·k) |
Capacity | 163 | A·h |
Heat exchange area | 0.7474 | m2 |
Heat transfer coefficient | 10 | W/(m2·K) |
Cumulative heating efficiency | 0.9 | — |
Series-parallel connection | 96S1P | — |
Ambient Temperature/°C | Preheating Time/s | Energy Consumption/(kw·h) |
---|---|---|
−20 | 2008.4 | 3.91 |
−15 | 1779.7 | 3.46 |
−10 | 1552.5 | 3.02 |
−5 | 1326.6 | 2.58 |
0 | 1102.1 | 2.14 |
Target Departure Time/h | Ambient Temperature/°C | ||||
---|---|---|---|---|---|
−20 | −15 | −10 | −5 | 0 | |
7:00 | 0.25 | 0.21 | 0.18 | 0.15 | 0.13 |
7:30 | 0.25 | 0.21 | 0.18 | 0.14 | 0.13 |
8:00 | 0.24 | 0.20 | 0.18 | 0.14 | 0.12 |
8:30 | 1.54 | 1.49 | 1.31 | 1.11 | 0.93 |
9:00 | 1.61 | 1.42 | 1.25 | 1.05 | 0.88 |
9:30 | 3.16 | 2.96 | 2.60 | 2.21 | 1.85 |
10:00 | 3.26 | 2.86 | 2.50 | 2.13 | 1.79 |
10:30 | 3.15 | 2.77 | 2.42 | 2.05 | 1.72 |
11:00 | 3.00 | 2.67 | 2.34 | 1.98 | 1.65 |
11:30 | 2.84 | 2.52 | 2.22 | 1.90 | 1.59 |
12:00 | 2.62 | 2.36 | 2.09 | 1.80 | 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Bao, C.; Yao, M.; Qi, Z. Dynamic Programming of Electric Vehicle Reservation Charging and Battery Preheating Strategies Considering Time-of-Use Electricity Price. World Electr. Veh. J. 2024, 15, 90. https://doi.org/10.3390/wevj15030090
Zhu B, Bao C, Yao M, Qi Z. Dynamic Programming of Electric Vehicle Reservation Charging and Battery Preheating Strategies Considering Time-of-Use Electricity Price. World Electric Vehicle Journal. 2024; 15(3):90. https://doi.org/10.3390/wevj15030090
Chicago/Turabian StyleZhu, Bo, Chengwu Bao, Mingyao Yao, and Zhengchun Qi. 2024. "Dynamic Programming of Electric Vehicle Reservation Charging and Battery Preheating Strategies Considering Time-of-Use Electricity Price" World Electric Vehicle Journal 15, no. 3: 90. https://doi.org/10.3390/wevj15030090
APA StyleZhu, B., Bao, C., Yao, M., & Qi, Z. (2024). Dynamic Programming of Electric Vehicle Reservation Charging and Battery Preheating Strategies Considering Time-of-Use Electricity Price. World Electric Vehicle Journal, 15(3), 90. https://doi.org/10.3390/wevj15030090