State of Health Prediction of Lithium-Ion Batteries Based on Multi-Kernel Relevance Vector Machine and Error Compensation
Abstract
:1. Introduction
2. Methodology
2.1. Overview of the Proposed SOH Prediction Framework
2.2. Multi-Kernel Relevance Vector Machine
2.3. Error Compensation Model
3. Materials and Experiments
3.1. Data Description
3.2. Performance Evaluation Criterion
3.3. Case 1: Performance Test of the Error Compensation Model
3.4. Case 2: Comparison with Other Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Ding, Y.; Liu, B.; Wu, S.; Wang, Y.; Pan, H. Remaining useful life prediction of lithium-ion battery using a novel particle filter framework with grey neural network. Energy 2022, 244, 122581. [Google Scholar] [CrossRef]
- Luo, K.; Chen, X.; Zheng, H.; Shi, Z. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries. J. Energy Chem. 2022, 74, 159–173. [Google Scholar] [CrossRef]
- Pham, L.T.D.; Nagarajan, R. Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery. Microelectron. Reliab. 2018, 81, 232–243. [Google Scholar]
- Liu, Z.; Sun, G.; Bu, S.; Han, J.; Tang, X.; Pecht, M. Particle learning framework for estimating the remaining useful life of lithium-ion batteries. IEEE Trans. Instrum. Meas. 2017, 66, 280–293. [Google Scholar] [CrossRef]
- Xu, W.; Wang, S.; Jiang, C.; Fernandez, C.; Yu, C.; Fan, Y.; Cao, W. A novel adaptive dual extended Kalman filtering algorithm for the Li-ion battery state of charge and state of health co-estimation. Int. J. Energy Res. 2021, 45, 14592–14602. [Google Scholar] [CrossRef]
- Meng, H.; Geng, M.; Han, T. Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis. Reliab. Eng. Syst. Saf. 2023, 236, 109288. [Google Scholar] [CrossRef]
- Li, Z.; Shen, S.; Zhou, Z.; Cai, Z.; Gu, W.; Zhang, F. Novel method for modelling and adaptive estimation for SOC and SOH of lithium-ion batteries. J. Energy Storage 2023, 62, 106927. [Google Scholar] [CrossRef]
- Yan, G.; Li, H.; Duan, S.; Cai, C.; Liu, Y.; Li, J.; Xia, B. Energy Storage Battery State Estimation Based on Model Parameter Identification. Proc. CSEE 2020, 40, 8145–8154. [Google Scholar]
- Yang, N.; Song, Z.; Hofmann, H.; Sun, J. Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest. J. Energy Storage 2022, 48, 103857. [Google Scholar] [CrossRef]
- Meng, H.; Geng, M.; Xing, J.; Zio, E. A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena. Energy 2022, 261, 125278. [Google Scholar] [CrossRef]
- Xiong, R.; Sun, F.; Chen, Z.; He, H. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Appl. Energy 2014, 113, 463–476. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Chang, C.; Wang, Q.; Jiang, J.; Wu, T. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm. J. Energy Storage 2021, 38, 102570. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron. Reliab. 2016, 65, 265–273. [Google Scholar] [CrossRef]
- You, G.W.; Park, S.; Oh, D. Diagnosis of electric vehicle batteries using recurrent neural networks. IEEE Trans. Ind. Electron. 2017, 64, 4885–4893. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, C.; Chen, Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl. Energy 2016, 173, 134–140. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, J.; Liao, H.; Peng, Y.; Peng, X. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 915–928. [Google Scholar]
- Klass, V.; Behm, M.; Lindbergh, G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J. Power Sources 2014, 270, 262–272. [Google Scholar] [CrossRef]
- Wu, T.; Huang, Y.; Xu, Y.; Jiang, J.; Liu, S.; Li, Z. SOH prediction for lithium-ion battery based on improved support vector regression. Int. J. Green Energy 2023, 20, 227–236. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y. Data-driven online health estimation of Li-ion batteries using a novel energy-based health indicator. IEEE Trans. Energy Convers. 2020, 35, 1715–1718. [Google Scholar] [CrossRef]
- Hou, X.; Guo, X.; Yuan, Y.; Zhao, K.; Tong, L.; Yuan, C.; Teng, L. The state of health prediction of Li-ion batteries based on an improved extreme learning machine. J. Energy Storage 2023, 70, 108044. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Li, C.; Wu, L.; Wang, Y. A data-driven method with mode decomposition mechanism for remaining useful life estimation of lithium-ion batteries. IEEE Trans. Power Electron. 2022, 37, 13684–13695. [Google Scholar] [CrossRef]
- Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, N.; Ji, Y.; Niu, M.; Wang, Y. Lithium-ion batteries remaining useful life estimation based on BLS-RVM. Energy 2021, 234, 121269. [Google Scholar] [CrossRef]
- Yin, J.; Zhou, X.; Ma, Y.; Wu, Y.; Xu, X. Power transformer fault diagnosis based on multi-class multi-kernel learning relevance vector machine. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 217–221. [Google Scholar]
- Wang, F.; Wang, S.; Zhang, L. Ultra-short-term power estimation of photovoltaic power generation based on VMD-LSTM and error compensation. Acta Energiae Solaris Sin. 2022, 43, 96–103. [Google Scholar]
- Yang, H.; Cheng, Y.; Li, G. A new traffic flow estimation model based on cosine similarity variational mode decomposition, extreme learning machine and iterative error compensation strategy. Eng. Appl. Artif. Intell. 2022, 115, 105234. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Cheng, F.; Zhou, C.; Zhang, Y.; Xu, H. A novel wind power estimation model improved with feature enhancement and autoregressive error compensation. J. Clean. Prod. 2023, 420, 138386. [Google Scholar] [CrossRef]
- Deng, Y.; Ying, H.; Jiaqiang, E.; Zhu, H.; Wei, K.; Chen, J.; Zhang, F.; Liao, G. Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries. Energy 2019, 176, 91–102. [Google Scholar] [CrossRef]
- Yang, P.; Yang, H.; Meng, C.; Song, T.; He, J.; Cai, Y.; Xu, K. Joint evaluation and prediction of SOH and RUL for lithium batteries based on a GBLS booster multi-task model. J. Power Sources 2024, 75, 109741. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Y.; Zheng, Y.; Shi, X.; Wang, J. Remaining useful life estimation of lithium-ion batteries based on support vector regression optimized and ant lion optimizations. Proc. CSEE 2021, 41, 1445–1457. [Google Scholar]
Battery Characteristics | Value |
---|---|
Rated capacity | 1.1 Ah |
Cell chemistry | LiCoO2 cathode and graphite anode |
Dimensions | 5.4 mm × 33.6 mm × 50.6 mm |
Weight | 21.1 g |
Battery | Evaluation Indexes | MKRVM | EC-MKRVM |
---|---|---|---|
CS2_35 | MAE (%) | 2.02 | 0.83 |
RMSE (%) | 2.63 | 1.15 | |
R2 | 0.964 | 0.993 | |
CS2_36 | MAE (%) | 2.28 | 0.99 |
RMSE (%) | 3.08 | 1.36 | |
R2 | 0.955 | 0.991 | |
CS2_37 | MAE (%) | 1.95 | 0.86 |
RMSE (%) | 2.46 | 1.26 | |
R2 | 0.918 | 0.978 | |
CS2_38 | MAE (%) | 2.09 | 0.83 |
RMSE (%) | 2.76 | 1.12 | |
R2 | 0.850 | 0.972 |
Battery | Prediction Model | SP | END | MAE (%) | RMSE (%) |
---|---|---|---|---|---|
CS2_35 | ALO-SVR [31] | 309 | 778 | 1.60 | 2.64 |
EC-MKRVM | 0.90 | 1.31 | |||
ALO-SVR [31] | 386 | 778 | 1.58 | 2.37 | |
EC-MKRVM | 0.98 | 1.40 | |||
CS2_36 | ALO-SVR [31] | 294 | 735 | 1.96 | 3.37 |
EC-MKRVM | 0.97 | 1.33 | |||
ALO-SVR [31] | 367 | 735 | 1.32 | 2.17 | |
EC-MKRVM | 1.06 | 1.47 | |||
CS2_37 | Optimize-LSTM [6] | 210 | 700 | 1.58 | 2.02 |
EC-MKRVM | 0.75 | 0.93 | |||
Optimize-LSTM [6] | 280 | 700 | 1.31 | 1.64 | |
EC-MKRVM | 0.70 | 0.88 | |||
CS2_38 | Optimize-LSTM [6] | 210 | 700 | 0.87 | 1.13 |
EC-MKRVM | 0.77 | 0.94 | |||
Optimize-LSTM [6] | 280 | 700 | 0.56 | 0.73 | |
EC-MKRVM | 0.55 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Sun, C.; Liu, S. State of Health Prediction of Lithium-Ion Batteries Based on Multi-Kernel Relevance Vector Machine and Error Compensation. World Electr. Veh. J. 2024, 15, 248. https://doi.org/10.3390/wevj15060248
Zhang L, Sun C, Liu S. State of Health Prediction of Lithium-Ion Batteries Based on Multi-Kernel Relevance Vector Machine and Error Compensation. World Electric Vehicle Journal. 2024; 15(6):248. https://doi.org/10.3390/wevj15060248
Chicago/Turabian StyleZhang, Li, Chao Sun, and Shilin Liu. 2024. "State of Health Prediction of Lithium-Ion Batteries Based on Multi-Kernel Relevance Vector Machine and Error Compensation" World Electric Vehicle Journal 15, no. 6: 248. https://doi.org/10.3390/wevj15060248
APA StyleZhang, L., Sun, C., & Liu, S. (2024). State of Health Prediction of Lithium-Ion Batteries Based on Multi-Kernel Relevance Vector Machine and Error Compensation. World Electric Vehicle Journal, 15(6), 248. https://doi.org/10.3390/wevj15060248