Lightweight Type-IV Hydrogen Storage Vessel Boss Based on Optimal Sealing Structure
Abstract
:1. Introduction
2. Literature Review and Research Ideas
3. Optimization and Verification of the Boss Seal Structure
3.1. Working Principle of Sealing Structure
3.2. Seal Simulation Analysis
3.2.1. Establishment of Sealing Model
3.2.2. Analysis of Sealing Simulation Results
3.3. Optimization of Sealing Parameters
3.3.1. Establishment of Optimization Framework
3.3.2. Analysis of Optimization Results
3.4. Experimental Verification
4. Lightweight Boss Based on Optimal Sealing Structure
4.1. Establishment of Topology Optimization Model
4.2. Analysis of Topology Optimization Results
4.2.1. Iterative Result Analysis
4.2.2. Reconstruction Model Check Analysis
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salehabadi, A.; Dawi, E.A.; Sabur, D.A.; Al-Azzawi, W.K.; Salavati-Niasari, M. Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; an overview. J. Energy Storage 2023, 61, 106722. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Li, J.; Yang, Q.; Wang, J. Investigation of optimal operating temperature for the PEMFC and its tracking control for energy saving in vehicle applications. Energy Convers. Manag. 2021, 249, 114842. [Google Scholar] [CrossRef]
- Pugi, L.; Berzi, L.; Cirillo, F.; Vecchi, A.; Pagliazzi, V. A tool for rapid simulation and sizing of hybrid traction systems with fuel cells. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2023, 237, 104–113. [Google Scholar] [CrossRef]
- Hu, H.; He, Q.; Meng, Z. Analysis on safety of high-pressure hydrogen storage vessel in hydrogen fueling station. Mod. Chem. Ind. 2022, 42, 9–15. [Google Scholar]
- Fang, Q.; Ji, D. Molecular simulation of hydrogen permeation behavior in liner polymer materials of Type IV hydrogen storage vessels. Mater. Today Commun. 2023, 35, 106302. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, X.; Bujlo, P.; Chen, B.; Zhang, X.; Sheng, X.; Liang, C. Review on the safety analysis and protection strategies of fast filling hydrogen storage system for fuel cell vehicle application. J. Energy Storage 2022, 45, 103451. [Google Scholar] [CrossRef]
- Hu, D.; Hou, W.; Xiang, C.; Lu, D.; Yang, Q.; Li, J.; Wang, J. Waste heat utilization performance verification of Heat Exchanger Only Thermal Management System for fuel cell vehicle. J. Clean. Prod. 2023, 428, 139479. [Google Scholar] [CrossRef]
- Duan, Z.; Mei, N.; Feng, L.; Yu, S.; Jiang, Z.; Chen, D.; Xu, X.; Hong, J. Research on hydrogen consumption and driving range of hydrogen fuel cell vehicle under the CLTC-P condition. World Electr. Veh. J. 2021, 13, 9. [Google Scholar] [CrossRef]
- Yao, J.; Chen, X.; Lu, H.; Xu, Z.; Zhang, Z.; Liu, B. Dynamic response characteristics and damage modes of multifunctional layered hydrogen storage vessels under impact loads. Int. J. Hydrogen Energy 2024, 54, 526–539. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Z.; Cui, J.; Li, Y.; Luan, Y. The effect of winding patterns on the mechanical behavior of filament-wound cylinder shells. Multidiscip. Model. Mater. Struct. 2020, 16, 508–518. [Google Scholar] [CrossRef]
- Park, W.R.; Jeon, S.K.; Kim, S.M.; Kwon, O. A study on the design safety of type III high-pressure hydrogen storage vessel. J. Korean Soc. Saf. 2019, 34, 7–14. [Google Scholar]
- Zhang, C.; Gholipour, G.; Mousavi, A.A. State-of-the-art review on responses of RC structures subjected to lateral impact loads. Arch. Comput. Methods Eng. 2021, 28, 2477–2507. [Google Scholar] [CrossRef]
- He, Q.; Li, X.; Mao, W.; Yang, X.; Wu, H. Research on Vehicle Frame Optimization Methods Based on the Combination of Size Optimization and Topology Optimization. World Electr. Veh. J. 2024, 15, 107. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Y.; Cao, W.; Li, Y.; Gao, Z. Failure Analysis of Novel BOSS Structures for Type IV Hydrogen Storage Vessels. Energies 2023, 16, 4005. [Google Scholar] [CrossRef]
- Motaharinejad, V.; Delnaud, L.; Fouque, M.; Lucas, A.; Shirinbayan, M.; Fitoussi, J.; Tcharkhtchi, A. Enhancement of adhesion between the polymeric liner and the metallic connector of high-pressure hydrogen storage tank. Int. J. Mater. Form. 2021, 14, 249–260. [Google Scholar] [CrossRef]
- Ahmadifar, M.; Benfriha, K.; Shirinbayan, M.; Aoussat, A.; Fitoussi, J. Exploring fatigue characteristics of metallic boss-polymer liner adhesion in hydrogen storage tanks: Experimental insights post surface treatment. J. Energy Storage 2024, 75, 109771. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Zhao, B.; Wang, D.; Guo, S.; Song, J.; Li, X. Research on Temperature Rise of Type IV Composite Hydrogen Storage Cylinders in Hydrogen Fast-Filling Process. Energies 2023, 16, 2918. [Google Scholar] [CrossRef]
- Wang, Z.; Almeida, J.H.S., Jr.; Ashok, A.; Wang, Z.; Castro, S.G.P. Lightweight design of variable-angle filament-wound cylinders combining Kriging-based metamodels with particle swarm optimization. Struct. Multidiscip. Optim. 2022, 65, 140. [Google Scholar] [CrossRef]
- Salavatian, M.; Smith, L.V. Matrix damage in composite pressure vessels with a bias fiber orientation. J. Compos. Mater. 2012, 46, 2793–2802. [Google Scholar] [CrossRef]
- Lin, D.T.W.; Hsieh, J.C.; Chindakham, N.; Hai, P.D. Optimal design of a composite laminate hydrogen storage vessel. Int. J. Energy Res. 2013, 37, 761–768. [Google Scholar] [CrossRef]
- Ellul, B.; Camilleri, D. The applicability and implementation of the discrete Big Bang-Big Crunch optimisation technique for discontinuous objective function in multi-material laminated composite pressure vessels. Int. J. Press. Vessel. Pip. 2018, 168, 39–48. [Google Scholar] [CrossRef]
- Nebe, M.; Asijee, T.J.; Braun, C.; van Campen, J.; Walther, F. Experimental and analytical analysis on the stacking sequence of composite pressure vessels. Compos. Struct. 2020, 247, 112429. [Google Scholar] [CrossRef]
- Madhavi, M.; Venkat, R. Predicting structural behavior of filament wound composite pressure vessel using three dimensional shell analysis. J. Inst. Eng. (India) Ser. C 2014, 95, 41–50. [Google Scholar] [CrossRef]
- Paknahad, A.; Fathi, A.; Goudarzi, A.M.; Nourani, R. Optimum head design of filament wound composite pressure vessels using a hybrid model of FE analysis and inertia weight PSO algorithm. Int. J. Mater. Form. 2016, 9, 49–57. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, M.; Pan, B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. Int. J. Hydrogen Energy 2021, 46, 23779–23794. [Google Scholar] [CrossRef]
- Zu, L.; Xu, H.; Wang, H.; Zhang, B.; Zi, B. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding. Compos. Struct. 2019, 207, 41–52. [Google Scholar] [CrossRef]
- Filippov, S.P.; Yaroslavtsev, A.B. Hydrogen energy: Development prospects and materials. Russ. Chem. Rev. 2021, 90, 627. [Google Scholar] [CrossRef]
- Hassan, I.A.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, J.; Wang, Y.; Ke, Y.; Wang, Z. Study on a New Static Sealing Method and Sealing Performance Evaluation Model for PEMFC. World Electr. Veh. J. 2021, 12, 237. [Google Scholar] [CrossRef]
- Song, Z.; Li, S.; Chen, X.; Liu, Z.; Zhao, T.; Huang, B. Study on the Service Performance of a Two-Stage Floating-Ring Isolation Seal for a High-Speed Turbopump with a Cryogenic Medium. Machines 2023, 11, 373. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, X. A novel structure of rubber ring for hydraulic buffer seal based on numerical simulation. Appl. Sci. 2021, 11, 2036. [Google Scholar] [CrossRef]
- Wang, S.; Liu, P.; Li, D.; Dong, Z.; Li, G. Simulation and Experimental Study on Sealing Characteristics of Hydro-Pneumatic Spring GS Seal Rings. Appl. Sci. 2023, 13, 11703. [Google Scholar] [CrossRef]
- Yang, H.U.; Zhang, J.; Chen, L.M. Design and seal performance analysis of bionic sealing ring for dynamic seal. Mechanics 2020, 26, 338–345. [Google Scholar]
- Zhang, F.; Cheng, L.; Wu, M.; Xu, X.; Wang, P.; Liu, Z. Performance analysis of two-stage thermoelectric generator model based on Latin hypercube sampling. Energy Convers. Manag. 2020, 221, 113159. [Google Scholar] [CrossRef]
- Bouhala, L.; Koutsawa, Y.; Karatrantos, A.; Bayreuther, C. Design of Type-IV Composite Pressure Vessel Based on Comparative Analysis of Numerical Methods for Modeling Type-III Vessels. J. Compos. Sci. 2024, 8, 40. [Google Scholar] [CrossRef]
- Kumkam, N.; Sleesongsom, S. Reliability-Based Topology Optimization with a Proportional Topology for Reliability. Aerospace 2024, 11, 435. [Google Scholar] [CrossRef]
- Hasan, A.; Lu, C.; Liu, W. Lightweight Design and Analysis of Steering Knuckle of Formula Student Car Using Topology Optimization Method. World Electr. Veh. J. 2023, 14, 233. [Google Scholar] [CrossRef]
- Wang, Q.; Han, H.; Wang, C.; Liu, Z. Topological control for 2D minimum compliance topology optimization using SIMP method. Struct. Multidiscip. Optim. 2022, 65, 38. [Google Scholar] [CrossRef]
- Yan, J.; Lin, H. Adaptive Slicing of Implicit Porous Structure with Topology Guarantee. Comput.-Aided Des. 2023, 162, 103557. [Google Scholar] [CrossRef]
Name of Parts | Parameter | Value | Units |
---|---|---|---|
Sealing ring | Inner diameter (d1) | 32.5 | mm |
Diameter (d) | 2.62 | mm | |
Gasket | Thickness (t) | 1.25 | mm |
Sealing groove | Depth (h) | 1.97 ~ 2.35 | mm |
Length (l) | 7.25 | mm |
Parameter | Value | Units |
---|---|---|
Specific Gravity | 1.18 | g/cm3 |
Hardness (shore A) | 94 | Point |
Elongation at Break | 181 | % |
Tensile Strength | 22.26 | MPa |
C10 | 1.4 | \ |
C01 | 0.35 | \ |
Materials | Density (g/cm3) | Young’s Modulus (GPa) | Poisson’s Ratio | Yield Stress (MPa) |
---|---|---|---|---|
AL_6061 | 2.7 | 69 | 0.33 | 55.6 |
HDPE | 0.95 | 0.93 | 0.38 | 25.48 |
T800s | 1.62 | 179 | 0.3 | 2860 |
Experiment | Leakage Point | Bubble Diameter (mm) | Bubble Rate (n/min) |
---|---|---|---|
1 | 2 | 3.6 | 22 |
2 | 2 | 3.2 | 24 |
3 | 1 | 4.4 | 13 |
mean value | 2 | 3.7 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, W.; Wang, J.; Hu, D.; Lu, D.; Xu, Y. Lightweight Type-IV Hydrogen Storage Vessel Boss Based on Optimal Sealing Structure. World Electr. Veh. J. 2024, 15, 261. https://doi.org/10.3390/wevj15060261
Shao W, Wang J, Hu D, Lu D, Xu Y. Lightweight Type-IV Hydrogen Storage Vessel Boss Based on Optimal Sealing Structure. World Electric Vehicle Journal. 2024; 15(6):261. https://doi.org/10.3390/wevj15060261
Chicago/Turabian StyleShao, Weidong, Jing Wang, Donghai Hu, Dagang Lu, and Yinjie Xu. 2024. "Lightweight Type-IV Hydrogen Storage Vessel Boss Based on Optimal Sealing Structure" World Electric Vehicle Journal 15, no. 6: 261. https://doi.org/10.3390/wevj15060261
APA StyleShao, W., Wang, J., Hu, D., Lu, D., & Xu, Y. (2024). Lightweight Type-IV Hydrogen Storage Vessel Boss Based on Optimal Sealing Structure. World Electric Vehicle Journal, 15(6), 261. https://doi.org/10.3390/wevj15060261