The Technology Innovation of Hybrid Electric Vehicles: A Patent-Based Study
Abstract
:1. Introduction
2. Literature Review
2.1. HEV Technology Development Trends
2.2. Patent Dataset Analysis
2.3. Patent Growing Model
2.4. Technology Diffusion
3. Research Design
3.1. Methodology
3.2. Data Analysis
3.3. Growing Model
4. Results and Discussion
4.1. Overall Results
4.2. HEV Sub-Technologies
4.2.1. Patent Family Publications by Year
4.2.2. Priority Countries
4.2.3. Top Assignees
4.2.4. Technology Diffusion of Sub-Technologies
4.2.5. Growth Mode of Sub-Technologies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sub-Technology | Patent Number | Number of Citations |
---|---|---|
Electric vehicles | JP2010098844A | 1272 |
US6116363A | 347 | |
US5892346A | 327 | |
Engine clutch | US6371878B1 | 322 |
US7246672B2 | 252 | |
US5755303A | 241 | |
Driving mode | US5841201A | 263 |
US5697466A | 206 | |
US6364807B1 | 164 | |
Cooling circuit | US20080312782A1 | 224 |
US5881559A | 209 | |
US5251588A | 151 | |
Engine torque | US6441506B2 | 135 |
US6203468B1 | 119 | |
US6301529B1 | 115 | |
Propulsion system | US5327987A | 302 |
US5713425A | 290 | |
US6083138A | 230 | |
Electric generator | US5786640A | 325 |
US6205379B1 | 180 | |
US5495906A | 155 | |
Energy management | US5291960A | 555 |
US20050228553A1 | 435 | |
US20080027639A1 | 223 | |
High-voltage battery | US6476571B1 | 155 |
JP2001327001A | 88 | |
JP2001320807A | 70 | |
Maximum power | US5345154A | 207 |
US6662096B2 | 63 | |
JP2011125184A | 62 |
References
- Kopelias, P.; Demiridi, E.; Vogiatzis, K.; Skabardonis, A.; Zafiropoulou, V. Connected & Autonomous Vehicles—Environmental Impacts—A review. Sci. Total Environ. 2019, 712, 135237. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xi, X.; Na, Q.; Wang, S.; Kadry, S.N.; Kumar, P.M. The technological innovation of hybrid and plug-in electric vehicles for environment carbon pollution control. Environ. Impact Assess. Rev. 2021, 86, 106506. [Google Scholar] [CrossRef]
- Lyu, P.; Wang, P.; Liu, Y.; Wang, Y. Review of the studies on emission evaluation approaches for operating vehicles. J. Traffic Transp. Eng. 2021, 8, 493–509. [Google Scholar] [CrossRef]
- Markard, J.; Raven, R.; Truffer, B. Sustainability transitions: An emerging field of research and its prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Rasool, Y.; Zaidi, S.A.H.; Zafar, M.W. Determinants of carbon emissions in Pakistan’s transport sector. Environ. Sci. Pollut. Res. 2019, 26, 22907–22921. [Google Scholar] [CrossRef] [PubMed]
- Solaymani, S. CO2 Emissions and The Transport Sector in Malaysia. Front. Environ. Sci. 2022, 9, 774164. [Google Scholar] [CrossRef]
- Xin, L.; Ahmad, M.; Khattak, S.I. Impact of innovation in hybrid electric vehicles-related technologies on carbon dioxide emissions in the 15 most innovative countries. Technol. Forecast. Soc. Chang. 2023, 196, 122859. [Google Scholar] [CrossRef]
- Xin, D. Research on Financial Market Development. In Cross-Border Capital Flows and National Financial Security; China Social Sciences Press: Beijing, China, 2023. [Google Scholar]
- Huang, Y.; Surawski, N.C.; Organ, B.; Zhou, J.L.; Tang, O.H.H.; Chan, E.F.C. Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. Sci. Total Environ. 2019, 659, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Kong, Y.; Chu, L.; Ju, H.; Yang, Z.; Xu, Z.; Xu, Z. Towards a Smarter Energy Management System for Hybrid Vehicles: A Comprehensive Review of Control Strategies. Appl. Sci. 2019, 9, 2026. [Google Scholar] [CrossRef]
- Yuan, X.; Cai, Y. Forecasting the development trend of low emission vehicle technologies: Based on patent data. Technol. Forecast. Soc. Chang. 2021, 166, 120651. [Google Scholar] [CrossRef]
- Balkan, D.; Akyüz, G.A. Technological maturity of the OECD countries: A multi-criteria decision-making approach using PROMETHEE. Cogent Eng. 2023, 10, 1. [Google Scholar] [CrossRef]
- Bucher, R.; Jeffrey, H.; Bryden, I.G.; Harrison, G.P. Creation of investor confidence: The top-level drivers for reaching maturity in marine energy. Renew. Energy 2016, 88, 120–129. [Google Scholar] [CrossRef]
- Fletcher, C.; Clair, R.S.; Sharmina, M. A framework for assessing the circularity and technological maturity of plastic waste management strategies in hospitals. J. Clean. Prod. 2021, 306, 127169. [Google Scholar] [CrossRef]
- López, I.; Ibarra, E.; Matallana, A.; Andreu, J.; Kortabarria, I. Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges. Renew. Sustain. Energy Rev. 2019, 114, 109336. [Google Scholar] [CrossRef]
- Feng, S.; Magee, C.L. Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Appl. Energy 2020, 260, 114264. [Google Scholar] [CrossRef]
- Xu, X.; Gui, M. Applying data mining techniques for technology prediction in new energy vehicle: A case study in China. Environ. Sci. Pollut. Res. 2021, 28, 68300–68317. [Google Scholar] [CrossRef] [PubMed]
- Aaldering, L.J.; Leker, J.; Song, C.H. Competition or collaboration?—Analysis of technological knowledge ecosystem within the field of alternative powertrain systems: A patent-based approach. J. Clean. Prod. 2018, 212, 362–371. [Google Scholar] [CrossRef]
- Edquist, C.; Hommen, L. Systems of innovation: Theory and policy for the demand side. Technol. Soc. 1999, 21, 63–79. [Google Scholar] [CrossRef]
- Manutworakit, P.; Choocharukul, K. Factors influencing battery electric vehicle adoption in Thailand—Expanding the unified theory of acceptance and use of technology’s variables. Sustainability 2022, 14, 8482. [Google Scholar] [CrossRef]
- Pipitone, E.; Caltabellotta, S.; Occhipinti, L. A Life Cycle Environmental Impact Comparison between Traditional, Hybrid, and Electric Vehicles in the European Context. Sustainability 2021, 13, 10992. [Google Scholar] [CrossRef]
- Davis, C.; Nikolić, I.; Dijkema, G.P. Integration of life cycle assessment into agent-based modeling: Toward informed decisions on evolving infrastructure systems. J. Ind. Ecol. 2009, 13, 306–325. [Google Scholar] [CrossRef]
- Turk, T.; Trkman, P. Bass model estimates for broadband diffusion in European countries. Technol. Forecast. Soc. Chang. 2012, 79, 85–96. [Google Scholar] [CrossRef]
- Geroski, P.A. Models of technology diffusion. Res. Policy 2000, 29, 603–625. [Google Scholar] [CrossRef]
- Cheng, H.W.J. Factors affecting technological diffusion through social networks: A review of the empirical evidence. World Bank Res. Obs. 2022, 37, 137–170. [Google Scholar] [CrossRef]
- Palm, A. Innovation systems for technology diffusion: An analytical framework and two case studies. Technol. Forecast. Soc. Chang. 2022, 182, 121821. [Google Scholar] [CrossRef]
- Sweezy, P.M. Professor Schumpeter’s theory of innovation. Rev. Econ. Stat. 1943, 25, 93–96. [Google Scholar] [CrossRef]
- Rogers, E.M.; Singhal, A.; Quinlan, M.M. Diffusion of innovations. In An Integrated Approach to Communication Theory and Research; Routledge: London, UK, 2014; pp. 432–448. [Google Scholar] [CrossRef]
- Ho, J.C. Disruptive innovation from the perspective of innovation diffusion theory. Technol. Anal. Strateg. Manag. 2022, 34, 363–376. [Google Scholar] [CrossRef]
- Demand for Electric Cars Is Booming, with Sales Expected to Leap 35% This Year after a Record-Breaking 2022. Available online: https://www.iea.org/news/demand-for-electric-cars-is-booming-with-sales-expected-to-leap-35-this-year-after-a-record-breaking-2022 (accessed on 5 November 2023).
- Singh, K.V.; Bansal, H.O.; Singh, D. A comprehensive review on hybrid electric vehicles: Architectures and components. J. Mod. Transp. 2019, 27, 77–107. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L. Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transp. Res. Part D Transp. Environ. 2017, 51, 129–145. [Google Scholar] [CrossRef]
- Gabriel-Buenaventura, A.; Azzopardi, B. Energy recovery systems for retrofitting in internal combustion engine vehicles: A review of techniques. Renew. Sustain. Energy Rev. 2015, 41, 955–964. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Khajepour, A.; He, H.; Ji, J. Model predictive control power management strategies for HEVs: A review. J. Power Sources 2017, 341, 91–106. [Google Scholar] [CrossRef]
- Daramy-Williams, E.; Anable, J.; Grant-Muller, S. A systematic review of the evidence on plug-in electric vehicle user experience. Transp. Res. Part D Transp. Environ. 2019, 71, 22–36. [Google Scholar] [CrossRef]
- Al-Alawi, B.M.; Bradley, T.H. Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies. Renew. Sustain. Energy Rev. 2013, 21, 190–203. [Google Scholar] [CrossRef]
- Kim, M.-J.; Peng, H. Power management and design optimization of fuel cell/battery hybrid vehicles. J. Power Sources 2007, 165, 819–832. [Google Scholar] [CrossRef]
- Hu, X.; Murgovski, N.; Johannesson, L.; Egardt, B. Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes. Appl. Energy 2013, 111, 1001–1009. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, X.; Teng, T.; Zhang, J.; Feng, Z.; Lv, Q. A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles. Energies 2020, 13, 5355. [Google Scholar] [CrossRef]
- Carriero, A.; Locatelli, M.; Ramakrishnan, K.; Mastinu, G.; Gobbi, M. A Review of the State of the Art of Electric Traction Motors Cooling Techniques. SAE Tech. Pap. 2018, 1, 57. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, Y.-S. Patent keyword network analysis for improving technology development efficiency. Technol. Forecast. Soc. Chang. 2014, 83, 170–182. [Google Scholar] [CrossRef]
- Oltra, V.; Jean, M.S. Variety of technological trajectories in low emission vehicles (LEVs): A patent data analysis. J. Clean. Prod. 2009, 17, 201–213. [Google Scholar] [CrossRef]
- Liu, Z.; Xiang, X.; Feng, J. Tracing evolutionary trajectory of charging technologies in electric vehicles: Patent citation network analysis. Env. Dev. Sustain. 2023, 26, 12789–12813. [Google Scholar] [CrossRef]
- Sun, H.; Geng, Y.; Hu, L.; Shi, L.; Xu, T. Measuring China’s new energy vehicle patents: A social network analysis approach. Energy 2018, 153, 685–693. [Google Scholar] [CrossRef]
- Noh, H.; Jo, Y.; Lee, S. Keyword selection and processing strategy for applying text mining to patent analysis. Expert Syst. Appl. 2015, 42, 4348–4360. [Google Scholar] [CrossRef]
- Inigaglia, T.; Freitag, T.E.; Kreimeier, F.; Martins, M.E.S. Use of Patents as a Tool to Map the Technological Development Involving the Hydrogen Economy. World Pat. Inf. 2019, 56, 1–8. [Google Scholar] [CrossRef]
- Karvonen, M.; Klemola, K. Identifying Bioethanol Technology Generations from the Patent Data. World Pat. Inf. 2019, 57, 25–34. [Google Scholar] [CrossRef]
- Zaini, W.M.F.; Lai, D.T.C.; Lim, R.C. Identifying patent classification codes associated with specific search keywords using machine learning. World Pat. Inf. 2022, 71, 102153. [Google Scholar] [CrossRef]
- van Rijn, T.; Timmis, J.K. Patent landscape analysis—Contributing to the identification of technology trends and informing research and innovation funding policy. Microb. Biotechnol. 2023, 16, 683–696. [Google Scholar] [CrossRef]
- de Bresson, C.; Townsend, J. Multivariate models for innovation—Looking at the Abernathy-Utterback model with other data. Omega 1981, 9, 429–436. [Google Scholar] [CrossRef]
- Christensen, C.M. Exploring the limits of the technology S-curve. Part I: Component technologies. Prod. Oper. Manag. 1992, 1, 334–357. [Google Scholar] [CrossRef]
- Cao, H.; Folan, P. Product life cycle: The evolution of a paradigm and literature review from 1950–2009. Prod. Plan. Control 2012, 23, 641–662. [Google Scholar] [CrossRef]
- Dedehayir, O.; Steinert, M. The hype cycle model: A review and future directions. Technol. Forecast. Soc. Chang. 2016, 108, 28–41. [Google Scholar] [CrossRef]
- Martínez-Ardila, H.; Corredor-Clavijo, A.; del Pilar Rojas-Castellanos, V.; Contreras, O.; Lesmes, J.C. The technology life cycle of Persian lime. A patent based analysis. Heliyon 2022, 8, e11781. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tan, R.; Li, Z.; Cao, G.; Yu, F. A patent-based method for monitoring the development of technological innovations based on knowledge diffusion. J. Knowl. Manag. 2021, 25, 380–401. [Google Scholar] [CrossRef]
- Pezzoni, M.; Veugelers, R.; Visentin, F. How fast is this novel technology going to be a hit? antecedents predicting follow-on inventions. Res. Policy 2022, 51, 104454. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, C.; Xu, M.; Wang, X.; Deng, J. Catching Up of Latecomer Economies in ICT for Sustainable Development: An Analysis Based on Technology Life Cycle Using Patent Data. Sustainability 2023, 15, 9038. [Google Scholar] [CrossRef]
- Xu, Q.; Cheng, H.; Yu, Y. Analysis and forecast of textile industry technology innovation capability in China. Ind. Textila 2021, 72, 191–197. [Google Scholar] [CrossRef]
- Huang, L.; Hou, Z.; Fang, Y.; Liu, J.; Shi, T. Evolution of CCUS technologies using LDA topic model and derwent patent data. Energies 2023, 16, 2556. [Google Scholar] [CrossRef]
- Srivastava, S.; Agarwal, S.; Dubey, R.; Murarka, A.; Naik, T.; Nimbhorkar, A.; Kothari, D. Scope of Cloud Computing in Business: A Compendious and Methodical Analysis of Trends in Publications and Patents. Vision 2023, 27, 510–525. [Google Scholar] [CrossRef]
- Li, D.; Li, X. Which ship-integrated power system enterprises are more competitive from the perspective of patent? PLoS ONE 2021, 16, e0252020. [Google Scholar] [CrossRef]
- Jiang, L.; Zou, F.; Qiao, Y.; Huang, Y. Patent analysis for generating the technology landscape and competition situation of renewable energy. J. Clean. Prod. 2022, 378, 134264. [Google Scholar] [CrossRef]
- Kwon, K.; Jun, S.; Lee, Y.J.; Choi, S.; Lee, C. Logistics technology forecasting framework using patent analysis for technology roadmap. Sustainability 2022, 14, 5430. [Google Scholar] [CrossRef]
- Huang, Y.; Li, R.; Zou, F.; Jiang, L.; Porter, A.L.; Zhang, L. Technology life cycle analysis: From the dynamic perspective of patent citation networks. Technol. Forecast. Soc. Chang. 2022, 181, 121760. [Google Scholar] [CrossRef]
- Kuniyil, A.; Kshitij, A.; Mandal, K. Enhancing Artificial intelligence Policies with Fusion and Forecasting: Insights from Indian Patents Using Network Analysis. arXiv 2023, arXiv:2304.10596. [Google Scholar] [CrossRef]
- Choi, H.; Woo, J. Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model. Appl. Energy 2022, 313, 118898. [Google Scholar] [CrossRef]
- Tattershall, E.; Nenadic, G.; Stevens, R.D. Modelling trend life cycles in scientific research using the Logistic and Gompertz equations. Scientometrics 2021, 126, 9113–9132. [Google Scholar] [CrossRef]
- Li, M.; Xu, X. Tracing technological evolution and trajectory of biomass power generation: A patent-based analysis. Environ. Sci. Pollut. Res. 2023, 30, 32814–32826. [Google Scholar] [CrossRef] [PubMed]
- Urbina-Suarez, N.A.; Angel-Ospina, A.C.; Lopez-Barrera, G.L.; Barajas-Solano, A.F.; Machuca-Martínez, F. S-curve and landscape maps for the analysis of trends on industrial textile wastewater treatment. Environ. Adv. 2024, 15, 100491. [Google Scholar] [CrossRef]
- Adamuthe, A.C.; Thampi, G.T. Forecasting technology maturity curve of cloud computing with its enabler technologies. J. Sci. Res. 2020, 64, 239–246. [Google Scholar] [CrossRef]
- Oliveira, A.S.; dos Santos, R.O.; Silva, B.C.D.S.; Guarieiro, L.L.N.; Angerhausen, M.; Reisgen, U.; Sampaio, R.R.; Machado, B.A.S.; Droguett, E.L.; da Silva, P.H.F.; et al. A Detailed Forecast of the Technologies Based on Lifecycle Analysis of GMAW and CMT Welding Processes. Sustainability 2021, 13, 3766. [Google Scholar] [CrossRef]
- Colombo, B.; Gaiardelli, P.; Dotti, S.; Caretto, F.; Coletta, G. Recycling of Waste Fiber-Reinforced Plastic Composites: A Patent-Based Analysis. Recycling 2021, 6, 72. [Google Scholar] [CrossRef]
- Gladysz, B.; Corti, D.; Montini, E. Forecasting the development of RFID technology. Manag. Prod. Eng. Rev. 2021, 12, 38–47. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Y.; Ren, J.; Chen, H.; Lu, Y.; Wang, Y.; Ping, L.; Yang, C. Volatile organic compounds pollution control technologies: Past, current and future analysis based on patent text mining and technology life cycle analysis. J. Clean. Prod. 2022, 379, 134760. [Google Scholar] [CrossRef]
- Buera, F.J.; Oberfield, E. The Global Diffusion of Ideas. Econometrica 2020, 88, 83–114. [Google Scholar] [CrossRef]
- Kim, Y.J.; Verdolini, E. International knowledge spillovers in energy technologies. Energy Strategy Rev. 2023, 49, 101151. [Google Scholar] [CrossRef]
- Gao, X.; Rai, V. Knowledge acquisition and innovation quality: The moderating role of geographical characteristics of technology. Technovation 2023, 125, 102766. [Google Scholar] [CrossRef]
- Yoon, J.; Park, Y.; Kim, M.; Lee, J.; Lee, D. Tracing evolving trends in printed electronics using patent information. J. Nanopart. Res. 2014, 16, 2471. [Google Scholar] [CrossRef]
- Altuntas, S.; Dereli, T.; Kusiak, A. Forecasting technology success based on patent data. Technol. Forecast. Soc. Chang. 2015, 96, 202–214. [Google Scholar] [CrossRef]
- Borgstedt, P.; Neyer, B.; Schewe, G. Paving the road to electric vehicles—A patent analysis of the automotive supply industry. J. Clean. Prod. 2017, 167, 75–87. [Google Scholar] [CrossRef]
- Gay, C.; Le Bas, C.; Patel, P.; Touach, K. The determinants of patent citations: An empirical analysis of French British patents in the, U.S. Econ. Innov. New Technol. 2005, 14, 339–350. [Google Scholar] [CrossRef]
- Taylor, A.M.K.P. Science review of internal combustion engines. Energy Policy 2008, 36, 4657–4667. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, B.; Akehurst, S.; Copeland, C.; Lewis, A.; Yuan, H.; Kennedy, I.; Bernards, J.; Branney, C. A review of water injection applied on the internal combustion engine. Energy Convers. Manag. 2019, 184, 139–158. [Google Scholar] [CrossRef]
- Boye, M.; Döring, M.; Van der Staay, F.; Raposo, J.; Jucker, C.; Morales, M.; Hermens, S. Innovation trends in the field of internal combustion engines. SAE Int. J. Engines 2009, 2, 1786–1792. [Google Scholar] [CrossRef]
- Lezama-Nicolas, R.; Rodriguez-Salvador, M.; Rio-Belver, R.; Bildosola, I. A bibliometric method for assessing technological maturity: The case of additive manufacturing. Scientometrics 2018, 117, 1425–1452. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Wilson, C. Analysing future change in the EU’s energy innovation system. Energy Strateg. Rev. 2019, 24, 279–299. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Chen, C.-Y.; Lee, S.-C. Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. Int. J. Hydrogen Energy 2011, 36, 6957–6969. [Google Scholar] [CrossRef]
- Shin, J.; Lee, C.-Y.; Kim, H. Technology and demand forecasting for carbon capture and storage technology in South Korea. Energy Policy 2016, 98, 1–11. [Google Scholar] [CrossRef]
- Sun, J.; Gaidai, O.; Xing, Y.; Wang, F.; Liu, Z. On safe offshore energy exploration in the Gulf of Eilat. Qual. Reliab. Eng. Int. 2023, 39, 2957–2966. [Google Scholar] [CrossRef]
- Gaidai, O.; Xu, J.; Yakimov, V.; Wang, F. Liquid carbon storage tanker disaster resilience. Environ. Syst. Decis. 2023, 43, 746–757. [Google Scholar] [CrossRef]
- Sun, J.; Gaidai, O.; Wang, F.; Yakimov, V. Gaidai reliability method for fixed offshore structures. J. Braz. Soc. Mech. Sci. Eng. 2023, 46, 27. [Google Scholar] [CrossRef]
- Gaidai, O.; Wang, F.; Cao, Y.; Liu, Z. 4400 TEU cargo ship dynamic analysis by Gaidai reliability method. J. Shipp. Trade 2024, 9, 1. [Google Scholar] [CrossRef]
- Gaidai, O.; Wang, F.; Sun, J. Energy harvester reliability study by Gaidai reliability method. Clim. Resil. Sustain. 2024, 3, e64. [Google Scholar] [CrossRef]
- Yuan, X.; Li, X. Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems. Energy 2021, 222, 119897. [Google Scholar] [CrossRef]
- Song, C.H.; Aaldering, L.J. Strategic intentions to the diffusion of electric mobility paradigm: The case of internal combustion engine vehicle. J. Clean. Prod. 2019, 230, 898–909. [Google Scholar] [CrossRef]
- Arthur, W. Increasing Returns and Path Dependence in the Economy; University Michigan Press: Ann Arbor, MI, USA, 1994. [Google Scholar] [CrossRef]
- Wanner, B. Is Exponential Growth of Solar PV the Obvious Conclusion? IEA: International Energy Agency. France. Available online: https://policycommons.net/artifacts/1343595/is-exponential-growth-of-solar-pv-the-obvious-conclusion/1955749/ (accessed on 21 November 2023).
- Hegde, D.; Herkenhoff, K.; Zhu, C. Patent publication and innovation. J. Political Econ. 2023, 131, 1845–1903. [Google Scholar] [CrossRef]
- Umar, M.; Su, C.-W.; Rizvi, S.K.A.; Lobonţ, O.-R. Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices. Energy 2021, 231, 120873. [Google Scholar] [CrossRef]
- Petrauskienė, K.; Galinis, A.; Kliaugaitė, D.; Dvarionienė, J. Comparative Environmental Life Cycle and Cost Assessment of Electric, Hybrid, and Conventional Vehicles in Lithuania. Sustainability 2021, 13, 957. [Google Scholar] [CrossRef]
- Gallagher, K.S.; Muehlegger, E. Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. J. Environ. Econ. Manag. 2011, 61, 1–15. [Google Scholar] [CrossRef]
- Hamzah, M.I.; Tanwir, N.S.; Wahab, S.N.; Rashid, M.H.A. Consumer perceptions of hybrid electric vehicle adoption and the green automotive market: The Malaysian evidence. Environ. Dev. Sustain. 2022, 24, 1827–1851. [Google Scholar] [CrossRef]
- Ozaki, R.; Sevastyanova, K. Going hybrid: An analysis of consumer purchase motivations. Energy Policy 2011, 39, 2217–2227. [Google Scholar] [CrossRef]
- Pohl, H. Japanese automakers’ approach to electric and hybrid electric vehicles: From incremental to radical innovation. Int. J. Technol. Manag. 2012, 57, 266–288. [Google Scholar] [CrossRef]
- Meckling, J.; Nahm, J. The politics of technology bans: Industrial policy competition and green goals for the auto industry. Energy Policy 2019, 126, 470–479. [Google Scholar] [CrossRef]
- Nilsson, M.; Hillman, K.; Magnusson, T. How do we govern sustainable innovations? Mapping patterns of governance for biofuels and hybrid-electric vehicle technologies. Environ. Innov. Soc. Transit. 2012, 3, 50–66. [Google Scholar] [CrossRef]
- Berggren, C.; Magnusson, T.; Sushandoyo, D. Transition pathways revisited: Established firms as multi-level actors in the heavy vehicle industry. Res. Policy 2015, 44, 1017–1028. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, S.; Cai, W. Powertrain hybridization and parameter optimization design of a conventional fuel vehicle based on the multi-objective particle swarm optimization algorithm. SAE Int. J. Passeng. Veh. Syst. 2022, 15, 151–168. [Google Scholar] [CrossRef]
- Hybrid Electric Vehicles Grab a Quarter of the EU Passenger Car Market. Available online: https://www.fleeteurope.com/en/new-energies/europe/features/hybrid-electric-vehicles-grab-quarter-eu-passenger-car-market?t%5B0%5D=Electrification&curl=1 (accessed on 28 November 2023).
- Lee, H.; Song, C.; Kim, N.; Cha, S.W. Comparative Analysis of Energy Management Strategies for HEV: Dynamic Programming and Reinforcement Learning. IEEE Access 2020, 8, 67112–67123. [Google Scholar] [CrossRef]
- Menes, M. Two decades of hybrid electric vehicle market. J. Civ. Eng. Transp. 2021, 3, 29–37. [Google Scholar] [CrossRef]
Parameter 1 | Logistic | Gompertz | Richards |
---|---|---|---|
SSE | 15,086,356 | 3,785,489 | 4,092,495 |
RMS | 747 | 425 | 413 |
MAD | 698 | 272 | 377 |
MAPE | 0.232 | 0.0431 | 0.0937 |
SE | 777 | 459 | 452 |
ln(MLE) | −217 | −157 | −179 |
AIC | 439 | 321 | 367 |
R2 | 0.974 | 0.998 | 0.995 |
p | 2.33 × 10−21 | 6.76 × 10−28 | 6.09 × 10−27 |
IPC Code | Percentage | IPC Description |
---|---|---|
B60W 20/00 | 14% | Control systems specially adapted for hybrid vehicles |
B60W 10/08 | 12% | Joint control of power units for vehicle subsystems of different types or functions |
B60W 10/06 | 11% | Joint control of vehicle subsystems with different types or functions of internal combustion engine control |
B60L 50/16 | 10% | Electric traction of internal power sources in vehicles with mechanical direct-drive devices |
B60K 6/445 | 6% | The arrangement or installation of multiple different prime movers for shared or universal power devices with differential gear distribution types |
B60K 6/48 | 6% | The arrangement or installation of multiple different prime movers in parallel for shared or universal power devices |
B60W 10/26 | 5% | Joint control of vehicle subsystems for different types or functions of electrical energy |
Other | 35% | / |
Sub-Technology | Number of Patent Families | Number of Citations | Technology Diffusion |
---|---|---|---|
Electric vehicles | 7948 | 49,040 | 6.17 |
Engine clutch | 6100 | 29,356 | 4.81 |
Driving mode | 1530 | 9037 | 5.91 |
Cooling circuit | 1588 | 11,715 | 7.38 |
Engine torque | 1365 | 6783 | 4.97 |
Propulsion system | 1289 | 10,492 | 8.14 |
Electric generator | 1292 | 9377 | 7.26 |
Energy management | 760 | 6850 | 9.01 |
High-voltage battery | 542 | 3251 | 6.00 |
Maximum power | 136 | 961 | 7.07 |
Sub-Technology | TM | TR | TP |
---|---|---|---|
Electric vehicles | 44.45% | 48 | 14,635 |
Engine clutch | 44.45% | 50 | 10,326 |
Driving mode | 44.28% | 43 | 2741 |
Cooling circuit | 44.51% | 56 | 2611 |
Engine torque | 44.50% | 54 | 2326 |
Propulsion system | 44.46% | 63 | 2150 |
Electric generator | 44.49% | 53 | 2044 |
Energy management | 44.50% | 47 | 1578 |
High-voltage battery | 44.48% | 50 | 935 |
Maximum power | 44.66% | 58 | 233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wu, J.; Gaidai, O. The Technology Innovation of Hybrid Electric Vehicles: A Patent-Based Study. World Electr. Veh. J. 2024, 15, 329. https://doi.org/10.3390/wevj15080329
Zhu Y, Wu J, Gaidai O. The Technology Innovation of Hybrid Electric Vehicles: A Patent-Based Study. World Electric Vehicle Journal. 2024; 15(8):329. https://doi.org/10.3390/wevj15080329
Chicago/Turabian StyleZhu, Yan, Jie Wu, and Oleg Gaidai. 2024. "The Technology Innovation of Hybrid Electric Vehicles: A Patent-Based Study" World Electric Vehicle Journal 15, no. 8: 329. https://doi.org/10.3390/wevj15080329
APA StyleZhu, Y., Wu, J., & Gaidai, O. (2024). The Technology Innovation of Hybrid Electric Vehicles: A Patent-Based Study. World Electric Vehicle Journal, 15(8), 329. https://doi.org/10.3390/wevj15080329