A Method for Land Vehicle Gravity Anomaly Measurement Combining an Inertial Navigation System, Odometer, and Geo-Information System
Abstract
:1. Introduction
2. Strapdown Land Vehicle Gravity Anomaly Measurement Principle
2.1. Mathematical Model
2.2. Error Model
3. SINS/OD/GIS Gravity Anomaly Measurement Method
- (1)
- SINS performs an inertial navigation solution, and the velocity of OD is observed for integrated navigation. The carrier’s specific force, attitude, velocity, and position information are calculated using SINS/OD integrated navigation.
- (2)
- The commercial geographic information software ArcGIS 10.8 was used to extract the elevation information of the survey line. See Figure 2 for the specific process.
- (3)
- The original gravity anomaly is calculated by Equation (4).
- (4)
- The external coincidence accuracy evaluation is carried out.
4. Experiments
5. Results and Discussion
5.1. Data Processing
5.2. Test Results
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pistorio, A.; Greco, F.; Currenti, G.; Napoli, R.; Sicali, A.; Del Negro, C.; Fortuna, L. High-Precision Gravity Measurements Using Absolute and Relative Gravimeters at Mount Etna (Sicily, Italy). Ann. Geophys. 2011, 54, 5348. [Google Scholar] [CrossRef]
- Wang, H.; Wang, K.; Xu, Y.; Tang, Y.; Wu, B.; Cheng, B.; Wu, L.; Zhou, Y.; Weng, K.; Zhu, D.; et al. A Truck-Borne System Based on Cold Atom Gravimeter for Measuring the Absolute Gravity in the Field. Sensors 2022, 22, 6172. [Google Scholar] [CrossRef]
- Wu, B.; Li, D.; Zhou, Y.; Zhu, D.; Zhao, Y.; Qiao, Z.; Cheng, B.; Niu, J.; Guo, X.; Wang, X.; et al. Construction of a Test Field for Relative Gravimeters in a Cave With a Cold Atom Gravimeter. IEEE Sens. J. 2024, 24, 9536–9544. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Li, Q.; Zhu, L.; Yang, J. Mobile gravity surveys in the field based on vehicle-mounted atom interferometer. Chin. J. Sci. Instrum. 2023, 44, 96–103. [Google Scholar] [CrossRef]
- Bidel, Y.; Zahzam, N.; Blanchard, C.; Bonnin, A.; Cadoret, M.; Bresson, A.; Rouxel, D.; Lequentrec-Lalancette, M.F. Absolute Marine Gravimetry with Matter-Wave Interferometry. Nat. Commun. 2018, 9, 627. [Google Scholar] [CrossRef]
- Bidel, Y.; Zahzam, N.; Bresson, A.; Blanchard, C.; Cadoret, M.; Olesen, A.V.; Forsberg, R. Absolute Airborne Gravimetry with a Cold Atom Sensor. J. Geod. 2020, 94, 20. [Google Scholar] [CrossRef]
- Ning, J.S.; Huang, M.T.; Ouyang, Y.Z.; Deng, K.L. Development of Marine and Airborne Gravity Measurement Technologies. Hydrogr. Surv. Charting 2014, 34, 67–72+76. [Google Scholar]
- Hu, P.H.; Zhao, M.; Huang, H.; Liu, D.B.; Tang, J.H.; Wei, C. Review on the Development of Airborne/Mairne Gravimetry Instruments. Navig. Position. Timing 2017, 4, 10–19. [Google Scholar] [CrossRef]
- Xiu, R.; Guo, G.; Xue, Z.B.; Li, D.M.; Li, H.B. Technical Current Situation and New Application of Marine/aviation Gravimeter. Navig. Control. 2019, 18, 35–43. [Google Scholar]
- Jekeli, C. Balloon Gravimetry Using GPS and INS. IEEE Aerosp. Electron. Syst. Mag. 1992, 7, 9–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhang, K.; Yu, R. Experimental Study on Underwater Moving Gravity Measurement by Using Strapdown Gravimeter Based on AUV Platform. Mar. Geod. 2021, 44, 108–135. [Google Scholar] [CrossRef]
- Luo, K.; Cao, J.; Wang, C.; Cai, S.; Yu, R.; Wu, M.; Yang, B.; Xiang, W. First Unmanned Aerial Vehicle Airborne Gravimetry Based on the CH-4 UAV in China. J. Appl. Geophys. 2022, 206, 104835. [Google Scholar] [CrossRef]
- Lu, B.; Xu, C.; Li, J.; Zhong, B.; van der Meijde, M. Marine Gravimetry and Its Improvements to Seafloor Topography Estimation in the Southwestern Coastal Area of the Baltic Sea. Remote Sens. 2022, 14, 3921. [Google Scholar] [CrossRef]
- Hu, Q.; Xu, X.Y.; Zhao, Y.Q.; Ding, Z.F. Downward Continuation of Airborne Gravity Anomaly based on Lagrange Mean-Value Theorem. J. Geod. Geodyn. 2021, 41, 95–100. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Sun, P.; Chen, K.; Li, J. Rapid detection of urban underground cavity based on vehicle gravity measurement platform. J. Jilin Univ. (Earth Sci. Ed.) 2019, 49, 838–845. [Google Scholar] [CrossRef]
- Chiang, K.; Lin, C.; Kuo, C. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan. Sensors 2015, 15, 25039–25054. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jekeli, C. Ground-Vehicle INS/GPS Vector Gravimetry. Geophysics 2008, 73, I1–I10. [Google Scholar] [CrossRef]
- Yu, R.; Cai, S.; Wu, M.; Cao, J.; Zhang, K. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02. Sensors 2015, 15, 23477–23495. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zeng, X.; Ma, J.; Wang, W.; Zhang, H. An Airborne Gravimeter Based on the Rate Azimuth Platform INS. Navig. Control. 2014, 13, 7–10. [Google Scholar]
- Li, D.; Guo, G.; Xue, Z.; Wang, W. Ground Test Results of a Strap-down Gravimeter Used on the Movable Platform. Navig. Position. Timing 2015, 2, 59–62. [Google Scholar] [CrossRef]
- Yu, R.; Qiu, X.; Cao, J.; Cai, S.; Lu, S.; Xu, X.; Wang, L. Improving Land Vehicle Gravimetry Using a New SINS/GNSS/VEL Method. IOP Conf. Ser. Earth Environ. Sci. 2020, 513, 012054. [Google Scholar] [CrossRef]
- Yu, R.; Wang, L.; Cao, J.; Cai, S.; Wu, M.; Xu, X. An Improved Method Using SINS/PPP Method for Land Vehicle Gravimetry. J. Phys. Conf. Ser. 2020, 1550, 042052. [Google Scholar] [CrossRef]
- Xiao, Y.; Xia, Z.R. Determination of Moving-Base Acceleration in Airborne Gravimetry. Chin. J. Geophys. 2003, 46, 62–67. [Google Scholar]
- Hwang, Y.; Jeong, Y.; Kweon, I. Online Misalignment Estimation of Strapdown Navigation for Land Vehicle under Dynamic Condition. Int. J. Automot. Technol. 2021, 22, 1723–1733. [Google Scholar] [CrossRef]
- Zhang, K. Research on Methods of Airborne Gravimetry Based on SINS/DGPS. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2007. [Google Scholar]
- Yu, R.; Wu, M.; Cao, J.; Zhang, K.; Cai, S. A New Method of GNSS Fault Data Detection for Strapdown Land Vehicle Gravimetry. In Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018; pp. 299–302. [Google Scholar]
- Yu, R.; Wu, M.; Zhang, K.; Cai, S.; Cao, J.; Wang, M.; Wang, L. A New Method for Land Vehicle Gravimetry Using SINS/VEL. Sensors 2017, 17, 766. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Yang, Z.; Gao, C.; Zhou, J.; Yu, X.; Luo, H.; Deng, B.; Zhou, W.; Cheng, J. Strapdown vehicle autonomous gravimetry method based on two-dimensional laser doppler velocimeter. Infrared Laser Eng. 2023, 52, 339–346. [Google Scholar]
- Zhang, Z.; Zhou, Z.; Chen, H. Vehicle Autonomous Combination Positioning and Orientation Technology; National Defense Industry Press: Beijing, China, 2021; ISBN 978-7-118-12233-6. [Google Scholar]
- Tie, J.; Cao, J.; Chang, L.; Cai, S.; Wu, M.; Lian, J. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation. Sensors 2018, 18, 883. [Google Scholar] [CrossRef]
- Yu, R. Research on Key Technologies for Strapdown Ground Vehicle Gravimetry. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2020. [Google Scholar]
- Li, X.; Zhang, Z.; Zhou, Z.; Chang, Z.; Zhao, Z. Vehicle gravity anomaly measurement methods based on SINS/OD/altimeter. J. Beijing Univ. Aeronaut. Astronaut. 2023, 1–15. [Google Scholar] [CrossRef]
Items | Parameter | Performance Index |
---|---|---|
Inertial measurement unit | Sampling frequency | 200 Hz |
Gyroscope zero bias | 0.003 (°)/h | |
Accelerometer zero bias | 10 μg | |
Odometer | Calibration coefficient | 0.9986 m/pulse |
GPS parameter | Sampling frequency | 1 Hz |
Positioning accuracy | 5 m |
Items | Max | Min | Mean | RMS | Accuracy |
---|---|---|---|---|---|
SINS/GNSS | 2.56 | −2.23 | 1.36 | 1.49 | 1.49 |
SINS/OD | 3.12 | −5.74 | 2.09 | 2.35 | 2.35 |
SINS/OD/GIS | 2.86 | −3.57 | 1.32 | 1.65 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhao, J.; Zhang, Z. A Method for Land Vehicle Gravity Anomaly Measurement Combining an Inertial Navigation System, Odometer, and Geo-Information System. World Electr. Veh. J. 2024, 15, 368. https://doi.org/10.3390/wevj15080368
Zhang K, Zhao J, Zhang Z. A Method for Land Vehicle Gravity Anomaly Measurement Combining an Inertial Navigation System, Odometer, and Geo-Information System. World Electric Vehicle Journal. 2024; 15(8):368. https://doi.org/10.3390/wevj15080368
Chicago/Turabian StyleZhang, Kefan, Junyang Zhao, and Zhili Zhang. 2024. "A Method for Land Vehicle Gravity Anomaly Measurement Combining an Inertial Navigation System, Odometer, and Geo-Information System" World Electric Vehicle Journal 15, no. 8: 368. https://doi.org/10.3390/wevj15080368
APA StyleZhang, K., Zhao, J., & Zhang, Z. (2024). A Method for Land Vehicle Gravity Anomaly Measurement Combining an Inertial Navigation System, Odometer, and Geo-Information System. World Electric Vehicle Journal, 15(8), 368. https://doi.org/10.3390/wevj15080368