Addressing the Scientific Gaps Between Life Cycle Thinking and Multi-Criteria Decision Analysis for the Sustainability Assessment of Electric Vehicles’ Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Alternatives
2.2. Selection of Criteria
2.2.1. Technical Criteria
2.2.2. Environmental Criteria
2.2.3. Economic Criteria
2.2.4. Material Criticality
2.3. Determination of the Weights of Criteria
2.4. Ranking of the Alternatives
2.4.1. AHP Methodology
2.4.2. RPOMETHEE Methodology
3. Results
3.1. LCA Results
3.2. Performance of the Alternatives and Criteria Weights
3.3. Final Ranking of the Alternatives
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
CAPEX | Capital expenditure |
CI | Consistency index |
CR | Consistency rate |
DCB | Dichlorobenzene |
ELECTRE | ÉLimination Et Choix Traduisant la RÉalité |
EoL | End–of–Life |
EV | Electric vehicle |
GWP | Global Warming Potential |
HWFET | Highway Fuel Economy Test |
LCA | Life Cycle Assessment |
LCO | Lithium cobalt oxide |
LFP | Lithium iron phosphate |
LIB | Lithium-ion battery |
LMO | Lithium manganese oxide |
MCDA | Multi-criteria decision analysis |
NCA | Lithium nickel cobalt aluminum oxide |
NCM | Lithium nickel cobalt manganese oxide |
OPEX | Operational expenditure |
PROMETHEE | Preference ranking organization method for enrichment evaluation |
RI | Random consistency index |
UDDS | Urban Dynamometer Driving Schedule |
Appendix A
Dimension | RI |
---|---|
1 | 0 |
2 | 0 |
3 | 0.5799 |
4 | 0.8921 |
5 | 1.1159 |
6 | 1.2358 |
7 | 1.3322 |
8 | 1.3952 |
9 | 1.4537 |
10 | 1.4882 |
References
- Kouridis, C.; Vlachokostas, C. Towards Decarbonizing Road Transport: Environmental and Social Benefit of Vehicle Fleet Electrification in Urban Areas of Greece. Renew. Sustain. Energy Rev. 2022, 153, 111775. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The Environmental Impact of Li-Ion Batteries and the Role of Key Parameters—A Review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Jannesar Niri, A.; Poelzer, G.A.; Zhang, S.E.; Rosenkranz, J.; Pettersson, M.; Ghorbani, Y. Sustainability Challenges throughout the Electric Vehicle Battery Value Chain. Renew. Sustain. Energy Rev. 2024, 191, 114176. [Google Scholar] [CrossRef]
- Ballinger, B.; Stringer, M.; Schmeda-Lopez, D.R.; Kefford, B.; Parkinson, B.; Greig, C.; Smart, S. The Vulnerability of Electric Vehicle Deployment to Critical Mineral Supply. Appl. Energy 2019, 255, 113844. [Google Scholar] [CrossRef]
- Pasha, J.; Li, B.; Elmi, Z.; Fathollahi-Fard, A.M.; Lau, Y.; Roshani, A.; Kawasaki, T.; Dulebenets, M.A. Electric Vehicle Scheduling: State of the Art, Critical Challenges, and Future Research Opportunities. J. Ind. Inf. Integr. 2024, 38, 100561. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P. A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A Comprehensive Literature Review on Methodologies and Applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Brans, J.-P. PROMETHEE Methods. Int. Ser. Oper. Res. Manag. Sci. 2005, 78, 163–195. [Google Scholar] [CrossRef]
- Niu, X.; Song, Y.; Zhu, H. Data-Driven Decision Aids for Purchasing Battery Electric Vehicles Based on PROMETHEE-II Methodology. IEEE Access 2024, 12, 27931–27946. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International Book Company: New York, NY, USA, 1980. [Google Scholar]
- Manjong, N.B.; Bach, V.; Usai, L.; Marinova, S.; Burheim, O.S.; Finkbeiner, M.; Strømman, A.H. A Comparative Assessment of Value Chain Criticality of Lithium-Ion Battery Cells. Sustain. Mater. Technol. 2023, 36, e00614. [Google Scholar] [CrossRef]
- Tajik, M.; Makui, A.; Tosarkani, B.M. Sustainable Cathode Material Selection in Lithium-Ion Batteries Using a Novel Hybrid Multi-Criteria Decision-Making. J. Energy Storage 2023, 66, 107089. [Google Scholar] [CrossRef]
- Loganathan, M.K.; Mishra, B.; Tan, C.M.; Kongsvik, T.; Rai, R.N. Multi-Criteria Decision Making (MCDM) for the Selection of Li-Ion Batteries Used in Electric Vehicles (EVs). Mater. Today Proc. 2021, 41, 1073–1077. [Google Scholar] [CrossRef]
- Ecer, F. A Consolidated MCDM Framework for Performance Assessment of Battery Electric Vehicles Based on Ranking Strategies. Renew. Sustain. Energy Rev. 2021, 143, 110916. [Google Scholar] [CrossRef]
- Liaqat, M.; Ghadi, Y.Y.; Adnan, M.; Fazal, M.R. Multicriteria Evaluation of Portable Energy Storage Technologies for Electric Vehicles. IEEE Access 2022, 10, 64890–64903. [Google Scholar] [CrossRef]
- Baars, J.; Cerdas, F.; Heidrich, O. An Integrated Model to Conduct Multi-Criteria Technology Assessments: The Case of Electric Vehicle Batteries. Environ. Sci. Technol. 2023, 57, 5056–5067. [Google Scholar] [CrossRef] [PubMed]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Wentker, M.; Greenwood, M.; Asaba, M.C.; Leker, J. A Raw Material Criticality and Environmental Impact Assessment of State-of-the-Art and Post-Lithium-Ion Cathode Technologies. J. Energy Storage 2019, 26, 101022. [Google Scholar] [CrossRef]
- Liu, W.; Placke, T.; Chau, K.T. Overview of Batteries and Battery Management for Electric Vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Son, Y.; Cha, H.; Jo, C.; Groombridge, A.S.; Lee, T.; Boies, A.; Cho, J.; De Volder, M. Reliable Protocols for Calculating the Specific Energy and Energy Density of Li-Ion Batteries. Mater. Today Energy 2021, 21, 100838. [Google Scholar] [CrossRef]
- Nelson, P.A.; Ahmed, S.; Gallagher, K.G.; Dees, D.W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles, 3rd ed.; Argonne National Laboratory: Argonne, IL, USA, 2019. [Google Scholar]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Spitthoff, L.; Lamb, J.J.; Pollet, B.G.; Burheim, O.S. Lifetime Expectancy of Lithium-Ion Batteries. In Micro-Optics and Energy: Sensors for Energy Devices; Lamb Jacob, J., Pollet, B.G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 157–180. ISBN 978-3-030-43676-6. [Google Scholar]
- Notter, D.A.; Gauch, M.; Widmer, R.; Wäger, P.; Stamp, A.; Zah, R.; Althaus, H.-J. Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environ. Sci. Technol. 2010, 44, 6550–6556. [Google Scholar] [CrossRef] [PubMed]
- Ellingsen, L.A.-W.; Majeau-Bettez, G.; Singh, B.; Srivastava, A.K.; Valøen, L.O.; Strømman, A.H. Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. J. Ind. Ecol. 2014, 18, 113–124. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Huang, K.; Chen, B.; Deng, W.; Yao, Y. Quantifying the Environmental Impact of a Li-Rich High-Capacity Cathode Material in Electric Vehicles via Life Cycle Assessment. Environ. Sci. Pollut. Res. 2017, 24, 1251–1260. [Google Scholar] [CrossRef]
- National Institute for Public Health and the Environment. ReCiPe 2016 A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016.
- Ecoinvent Center. Ecoinvent; v3.9.1; Ecoinvent Center: Zurich, Switzerland, 2022. [Google Scholar]
- Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H. Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef]
- Philippot, M.; Alvarez, G.; Ayerbe, E.; Van Mierlo, J.; Messagie, M. Eco-Efficiency of a Lithium-Ion Battery for Electric Vehicles: Influence of Manufacturing Country and Commodity Prices on GHG Emissions and Costs. Batteries 2019, 5, 23. [Google Scholar] [CrossRef]
- Lastoskie, C.M.; Dai, Q. Comparative Life Cycle Assessment of Laminated and Vacuum Vapor-Deposited Thin Film Solid-State Batteries. J. Clean. Prod. 2015, 91, 158–169. [Google Scholar] [CrossRef]
- Šimaitis, J.; Allen, S.; Vagg, C. Are Future Recycling Benefits Misleading? Prospective Life Cycle Assessment of Lithium-Ion Batteries. J. Ind. Ecol. 2023, 27, 1291–1303. [Google Scholar] [CrossRef]
- Quan, J.; Zhao, S.; Song, D.; Wang, T.; He, W.; Li, G. Comparative Life Cycle Assessment of LFP and NCM Batteries Including the Secondary Use and Different Recycling Technologies. Sci. Total Environ. 2022, 819, 153105. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Hsieh, I.-Y.L. Techno-Economic Analysis of Lithium-Ion Battery Price Reduction Considering Carbon Footprint Based on Life Cycle Assessment. J. Clean. Prod. 2023, 425, 139045. [Google Scholar] [CrossRef]
- Richa, K.; Babbitt, C.; Gaustad, G. Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy: LIB Waste Hierarchy Inspired by Circular Economy. J. Ind. Ecol. 2017, 21, 715–730. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Vehicle and Fuel Emissions Testing. Available online: https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules (accessed on 16 September 2024).
- Deng, Y.; Li, J.; Li, T.; Gao, X.; Yuan, C. Life Cycle Assessment of Lithium Sulfur Battery for Electric Vehicles. J. Power Sources 2017, 343, 284–295. [Google Scholar] [CrossRef]
- Marin Montanari, P.; Hummes, D.; Hunt, J.; Hervé, B.; Schneider, P. A Comparative Study of Different Battery Geometries Used in Electric Vehicles. SSRN Electron. J. 2022, 1, 1. [Google Scholar] [CrossRef]
- Liu, Z.; Song, J.; Kubal, J.; Susarla, N.; Knehr, K.W.; Islam, E.; Nelson, P.; Ahmed, S. Comparing Total Cost of Ownership of Battery Electric Vehicles and Internal Combustion Engine Vehicles. Energy Policy 2021, 158, 112564. [Google Scholar] [CrossRef]
- Statista. Monthly Average Electricity Baseload Price in the Day-Ahead Market (DAM) in Greece from January 2020 to July 2024, Statista Research Department. 2024. Available online: https://www.statista.com/statistics/1215877/dam-electricity-baseload-price-greece/ (accessed on 15 September 2024).
- Lima, M.C.C.; Pontes, L.P.; Vasconcelos, A.S.M.; de Araujo Silva Junior, W.; Wu, K. Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles. Energies 2022, 15, 2203. [Google Scholar] [CrossRef]
- Taherdoost, H. Decision Making Using the Analytic Hierarchy Process (AHP): A Step by Step Approach. Int. J. Econ. Manag. Syst. 2017, 2, 244–246. [Google Scholar]
- SpiceLogic Inc. Analytic Hierarchy Process Software; Version 4.2.6; SpiceLogic Inc.: Thornhill, ON, Canada, 2024. [Google Scholar]
- Mareschal, B. Visual PROMETHEE-Academic Edition; Version 1.4.0.0; VPSolutions: Oegstgeest, The Netherlands, 2024. [Google Scholar]
Cathode | Gravimetric Capacity (mAh/g) | Nominal Voltage (V) |
---|---|---|
NCM | 175 | 3.8 |
LFP | 150 | 3.3 |
NCA | 160 | 3.6 |
LMO | 100 | 3.8 |
LCO | 165 | 3.8 |
Midpoint | Conversion Factor |
---|---|
Freshwater ecotoxicity | 6.95 × 10−10 species·yr/kg 1,4-DCB * eq |
Marine ecotoxicity | 1.05 × 10−10 species·yr/kg 1,4-DCBeq |
Terrestrial ecotoxicity | 5.39 × 10−8 species·yr/kg 1,4-DCBeq |
Alt. | Residual Value (€/kg) |
---|---|
NCM | 0 |
LFP | −2.09 |
NCA | 0 |
LMO | −0.95 |
LCO | 1.9 |
Specific Energy (Wh/kg) | Safety (°C) | Lifetime (Cycles) | GWP (CO2-eq) | Toxicity (Species·Year) | Total Cost (€/kWh) | Residual Value (€/kWh) | Material Criticality (1 to 9) | |
---|---|---|---|---|---|---|---|---|
Max | Max | Max | Min | Min | Min | Max | Min | |
Alt. | ||||||||
NCM | 274 | 210 | 1500 | 1.11 | 3.92 | 0.34 | 0 | 6 |
LFP | 204 | 270 | 2500 | 1.03 | 2.63 | 0.3 | −0.005 | 1 |
NCA | 237 | 150 | 1500 | 1.09 | 4.6 | 0.35 | 0 | 6 |
LMO | 156 | 250 | 750 | 2.08 | 25.65 | 1.11 | −0.076 | 3 |
LCO | 258 | 150 | 500 | 1.4 | 12.72 | 0.74 | 0.041 | 9 |
Alt. | |||
---|---|---|---|
LFP | 0.8717 | 0.0833 | 0.7883 |
NCM | 0.4973 | 0.3123 | 0.1849 |
NCA | 0.3705 | 0.4245 | −0.0541 |
LMO | 0.3182 | 0.6659 | −0.3477 |
LCO | 0.1937 | 0.7652 | −0.5715 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tournaviti, M.; Vlachokostas, C.; Michailidou, A.V.; Savva, C.; Achillas, C. Addressing the Scientific Gaps Between Life Cycle Thinking and Multi-Criteria Decision Analysis for the Sustainability Assessment of Electric Vehicles’ Lithium-Ion Batteries. World Electr. Veh. J. 2025, 16, 44. https://doi.org/10.3390/wevj16010044
Tournaviti M, Vlachokostas C, Michailidou AV, Savva C, Achillas C. Addressing the Scientific Gaps Between Life Cycle Thinking and Multi-Criteria Decision Analysis for the Sustainability Assessment of Electric Vehicles’ Lithium-Ion Batteries. World Electric Vehicle Journal. 2025; 16(1):44. https://doi.org/10.3390/wevj16010044
Chicago/Turabian StyleTournaviti, Maria, Christos Vlachokostas, Alexandra V. Michailidou, Christodoulos Savva, and Charisios Achillas. 2025. "Addressing the Scientific Gaps Between Life Cycle Thinking and Multi-Criteria Decision Analysis for the Sustainability Assessment of Electric Vehicles’ Lithium-Ion Batteries" World Electric Vehicle Journal 16, no. 1: 44. https://doi.org/10.3390/wevj16010044
APA StyleTournaviti, M., Vlachokostas, C., Michailidou, A. V., Savva, C., & Achillas, C. (2025). Addressing the Scientific Gaps Between Life Cycle Thinking and Multi-Criteria Decision Analysis for the Sustainability Assessment of Electric Vehicles’ Lithium-Ion Batteries. World Electric Vehicle Journal, 16(1), 44. https://doi.org/10.3390/wevj16010044