Ketamine Evolving Clinical Roles and Potential Effects with Cognitive, Motor and Driving Ability
Abstract
:1. Introduction
1.1. Mechanism of Action in Brief
1.2. Ketamine Clinical Uses
2. Ketamine and Driving, Cognitive, and Motor Ability
3. Methods and Materials
4. Clinical Studies on Ketamine-Impaired Driving
4.1. Ketamine’s Effect on General Motor Abilities and Information Processing
4.2. Ketamine and Driving Abilities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Penning, R.; Veldstra, J.L.; Daamen, A.P.; Olivier, B.; Verster, J.C. Drugs of abuse, driving and traffic safety. Curr. Drug Abuse Rev. 2010, 3, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinner, B.; Graf, B.M. Ketamine. Handb. Exp. Pharmacol. 2008, 182, 313–333. [Google Scholar]
- Mohammad Shehata, I.; Masood, W.; Nemr, N.; Anderson, A.; Bhusal, K.; Edinoff, A.N.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. The Possible Application of Ketamine in the Treatment of Depression in Alzheimer’s Disease. Neurol. Int. 2022, 14, 310–321. [Google Scholar] [CrossRef]
- Northoff, G.; Richter, A.; Bermpohl, F.; Grimm, S.; Martin, E.; Marcar, V.L.; Wahl, C.; Hell, D.; Boeker, H. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: An exploratory ketamine administration study in fMRI. Schizophr. Res. 2005, 72, 235–248. [Google Scholar] [CrossRef]
- Dakwar, E.; Hart, C.L.; Levin, F.R.; Nunes, E.V.; Foltin, R.W. Cocaine self-administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: A randomized, crossover trial. Mol. Psychiatry 2017, 22, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasetti, C.; Montemitro, C.; Fiengo, A.L.C.; Santone, C.; Orsolini, L.; Valchera, A.; Carano, A.; Pompili, M.; Serafini, G.; Perna, G.; et al. Novel Pathways in the Treatment of Major Depression: Focus on the Glutamatergic System. Curr. Pharm. Des. 2019, 25, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lei, H. Ketamine-an update on its clinical uses and abuses. CNS Neurosci. Ther. 2014, 20, 1015–1020. [Google Scholar] [CrossRef]
- Radvansky, B.M.; Puri, S.; Sifonios, A.N.; Eloy, J.D.; Le, V. Ketamine-A Narrative Review of Its Uses in Medicine. Am. J. Ther. 2016, 23, e1414–e1426. [Google Scholar] [CrossRef]
- Krystal, J.H.; Sanacora, G.; Duman, R.S. Rapid-acting glutamatergic antidepressants: The path to ketamine and beyond. Biol. Psychiatry 2013, 73, 1133–1141. [Google Scholar] [CrossRef] [Green Version]
- Le, T.T.; Di Vincenzo, J.D.; Teopiz, K.M.; Lee, Y.; Cha, D.S.; Lui, L.M.W.; Rodrigues, N.B.; Ho, R.C.; Cao, B.; Lin, K.; et al. Ketamine for psychotic depression: An overview of the glutamatergic system and ketamine’s mechanisms associated with antidepressant and psychotomimetic effects. Psychiatry Res. 2021, 306, 114231. [Google Scholar] [CrossRef]
- Rosenbaum, S.B.; Gupta, V.; Palacios, J.L. Ketamine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470357/ (accessed on 10 October 2022).
- Lin, C.C.; Huang, T.L. Brain-derived neurotrophic factor and mental disorders. Biomed. J. 2020, 43, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol. Neurobiol. 2019, 56, 3295–3312. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, E.; Goldner, E.M. Approaches to Understanding and Addressing Treatment-Resistant Depression: A Scoping Review. Depress. Res. Treat. 2012, 2012, 469680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murrough, J.W.; Perez, A.M.; Pillemer, S.; Stern, J.; Parides, M.K.; aan het Rot, M.; Collins, K.A.; Mathew, S.J.; Charney, D.S.; Iosifescu, D.V. Rapid and Longer-Term Antidepressant Effects of Repeated Ketamine Infusions in Treatment-Resistant Major Depression. Biol. Psychiatry 2013, 74, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical Predictors of Ketamine Response in Treatment-Resistant Major Depression|Psychiatrist.com. Available online: https://www.psychiatrist.com/jcp/depression/clinical-predictors-ketamine-response-treatment-resistant/ (accessed on 10 October 2022).
- Dorandeu, F.; Dhote, F.; Barbier, L.; Baccus, B.; Testylier, G. Treatment of status epilepticus with ketamine, are we there yet? CNS Neurosci. Ther. 2013, 19, 411–427. [Google Scholar] [CrossRef]
- Lara, D.R.; Bisol, L.W.; Munari, L.R. Antidepressant, mood stabilizing and procognitive effects of very low dose sublingual ketamine in refractory unipolar and bipolar depression. Int. J. Neuropsychopharmacol. 2013, 16, 2111–2117. [Google Scholar] [CrossRef] [Green Version]
- Canal, C.E.; Murnane, K.S. The serotonin 5-HT2C receptor and the non-addictive nature of classic hallucinogens. J. Psychopharmacol. Oxf. Engl. 2017, 31, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Murnane, K.S. Serotonin 2A receptors are a stress response system: Implications for post-traumatic stress disorder. Behav. Pharmacol. 2019, 30, 151–162. [Google Scholar] [CrossRef]
- Fantegrossi, W.E.; Murnane, K.S.; Reissig, C.J. The behavioral pharmacology of hallucinogens. Biochem. Pharmacol. 2008, 75, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Ballard, E.D.; Ionescu, D.F.; Vande Voort, J.L.; Niciu, M.J.; Richards, E.M.; Luckenbaugh, D.A.; Brutsché, N.E.; Ameli, R.; Furey, M.L.; Zarate, C.A. Improvement in suicidal ideation after ketamine infusion: Relationship to reductions in depression and anxiety. J. Psychiatr. Res. 2014, 58, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Price, R.B.; Nock, M.K.; Charney, D.S.; Mathew, S.J. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol. Psychiatry 2009, 66, 522–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbar, M.; Demattei, C.; El-Hage, W.; Llorca, P.M.; Samalin, L.; Demaricourt, P.; Gaillard, R.; Courtet, P.; Vaiva, G.; Gorwood, P.; et al. Ketamine for the acute treatment of severe suicidal ideation: Double blind, randomised placebo controlled trial. BMJ 2022, 376, e067194. [Google Scholar] [CrossRef] [PubMed]
- Strube, P.J.; Hallam, P.L. Ketamine by continuous infusion in status asthmaticus. Anaesthesia 1986, 41, 1017–1019. [Google Scholar] [CrossRef] [PubMed]
- Denmark, T.K.; Crane, H.A.; Brown, L. Ketamine to avoid mechanical ventilation in severe pediatric asthma. J. Emerg. Med. 2006, 30, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Adam, F.; Chauvin, M.; Du Manoir, B.; Langlois, M.; Sessler, D.I.; Fletcher, D. Small-dose ketamine infusion improves postoperative analgesia and rehabilitation after total knee arthroplasty. Anesth. Analg. 2005, 100, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Edinoff, A.N.; Fitz-Gerald, J.S.; Holland, K.A.A.; Reed, J.G.; Murnane, S.E.; Minter, S.G.; Kaye, A.J.; Cornett, E.M.; Imani, F.; Khademi, S.-H.; et al. Adjuvant Drugs for Peripheral Nerve Blocks: The Role of NMDA Antagonists, Neostigmine, Epinephrine, and Sodium Bicarbonate. Anesthesiol. Pain Med. 2021, 11, e117146. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Fort, J.M.; Singh, C.; Wagner, S.E.; Rodriguez, J.R.; Johnson, C.A.; Cornett, E.M.; Murnane, K.S.; Kaye, A.M.; Kaye, A.D. Alternative Options for Complex, Recurrent Pain States Using Cannabinoids, Psilocybin, and Ketamine: A Narrative Review of Clinical Evidence. Neurol. Int. 2022, 14, 423–436. [Google Scholar] [CrossRef]
- Wang, X.; Lin, C.; Lan, L.; Liu, J. Perioperative intravenous S-ketamine for acute postoperative pain in adults: A systematic review and meta-analysis. J. Clin. Anesth. 2021, 68, 110071. [Google Scholar] [CrossRef]
- Meyer-Frießem, C.H.; Lipke, E.; Weibel, S.; Kranke, P.; Reichl, S.; Pogatzki-Zahn, E.M.; Zahn, P.K.; Schnabel, A. Perioperative ketamine for postoperative pain management in patients with preoperative opioid intake: A systematic review and meta-analysis. J. Clin. Anesth. 2022, 78, 110652. [Google Scholar] [CrossRef]
- Bokor, G.; Anderson, P.D. Ketamine: An update on its abuse. J. Pharm. Pract. 2014, 27, 582–586. [Google Scholar] [CrossRef]
- Poon, T.L.; Wong, K.F.; Chan, M.Y.; Fung, K.W.; Chu, S.K.; Man, C.W.; Yiu, M.K.; Leung, S.K. Upper gastrointestinal problems in inhalational ketamine abusers. J. Dig. Dis. 2010, 11, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.Y.K.; Lee, J.H.S.; Chan, S.S.C.; Liu, D.W.T.; Choy, K.W. A pilot study of urine cytokines in ketamine-associated lower urinary tract symptoms. Int. Urogynecol. J. 2014, 25, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Powers, A.R.; Gancsos, M.G.; Finn, E.S.; Morgan, P.T.; Corlett, P.R. Ketamine-Induced Hallucinations. Psychopathology 2015, 48, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Giorgetti, R.; Marcotulli, D.; Tagliabracci, A.; Schifano, F. Effects of ketamine on psychomotor, sensory and cognitive functions relevant for driving ability. Forensic Sci. Int. 2015, 252, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Su, D.; Jiang, X.; Zhu, L.; Ye, H. The similarities and differences in impulsivity and cognitive ability among ketamine, methadone, and non-drug users. Psychiatry Res. 2016, 243, 109–114. [Google Scholar] [CrossRef]
- Roussy, M.; Luna, R.; Duong, L.; Corrigan, B.; Gulli, R.A.; Nogueira, R.; Moreno-Bote, R.; Sachs, A.J.; Palaniyappan, L.; Martinez-Trujillo, J.C. Ketamine disrupts naturalistic coding of working memory in primate lateral prefrontal cortex networks. Mol. Psychiatry 2021, 26, 6688–6703. [Google Scholar] [CrossRef]
- Taffe, M.A.; Davis, S.A.; Gutierrez, T.; Gold, L.H. Ketamine impairs multiple cognitive domains in rhesus monkeys. Drug Alcohol Depend. 2002, 68, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Yang, G. Repeated exposure to ketamine-xylazine during early development impairs motor learning-dependent dendritic spine plasticity in adulthood. Anesthesiology 2015, 122, 821–831. [Google Scholar] [CrossRef] [Green Version]
- Bates, M.L.S.; Trujillo, K.A. Long-lasting effects of repeated ketamine administration in adult and adolescent rats. Behav. Brain Res. 2019, 369, 111928. [Google Scholar] [CrossRef]
- Guillermain, Y.; Micallef, J.; Possamaï, C.; Blin, O.; Hasbroucq, T. N-methyl-D-aspartate receptors and information processing: Human choice reaction time under a subanaesthetic dose of ketamine. Neurosci. Lett. 2001, 303, 29–32. [Google Scholar] [CrossRef]
- Micallef, J.; Guillermain, Y.; Tardieu, S.; Hasbroucq, T.; Possamaï, C.; Jouve, E.; Blin, O. Effects of subanesthetic doses of ketamine on sensorimotor information processing in healthy subjects. Clin. Neuropharmacol. 2002, 25, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.C.; Dao, K.L. The Emergence of Deschloro-N-ethyl-ketamine, a Ketamine Analog, in Drug Seizures and Drug Driving Cases in Hong Kong. J. Anal. Toxicol. 2020, 44, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Kay, G.; Hochadel, T.; Rojo, J.; Christopher Stein, J.; Boinpally, R.; Periclou, A. A randomized, multicenter trial assessing the effects of rapastinel compared to ketamine, alprazolam, and placebo on simulated driving performance. Clin. Transl. Sci. 2022, 15, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Hayley, A.C.; Downey, L.A.; Green, M.; Shiferaw, B.; Kenneally, M.; Keane, M.; Adams, M.; Shehabi, Y. Driving Simulator Performance After Administration of Analgesic Doses of Ketamine With Dexmedetomidine or Fentanyl. J. Clin. Psychopharmacol. 2019, 39, 446–454. [Google Scholar] [CrossRef]
Study | Methods | Findings |
---|---|---|
Guillermain et al. [42] | Randomization of 8 subjects to receive intravenous ketamine or placebo. Subjects then performed a two-choice visual reaction time task. | Ketamine altered the subject’s performance in a specific way that affected the sage of motor adjustment. |
Micallef et al. [43] | Double-blind, crossover, placebo-controlled study with 8 subjects looking at reaction time. Ketamine was infused in the same dose as the previously mentioned study of 0.5 mg/kg over 60 min. | Subjects showed a significantly longer reaction time under ketamine than placebo (327 ms vs. 301 ms, p < 0.001). No difference in drowsiness experienced by subjects |
Rapastinel 900 mg (n = 101) | Rapastinel 1800 mg (n = 102) | Ketamine 0.5 mg/kg (n = 103) | Alprazolam 0.75 mg (n = 100) | Placebo (n = 101) | |
---|---|---|---|---|---|
Age (years) | |||||
Mean (SD) | 38.1 (10.52) | 38.3 (10.35) | 38.1 (10.41) | 38.1 (10.44) | 37.9 (10.57) |
Median | 36.0 | 36.5 | 36.0 | 36.0 | 36.0 |
Range | 21–59 | 21–50 | 21–50 | 22–59 | 21–59 |
Gender, n (%) | |||||
Male | 60 (59.4) | 61 (59.8) | 61 (59.2) | 59 (59.0) | 60 (59.4) |
Female | 41 (40.6) | 41 (40.2) | 42 (40.8) | 41 (41.0) | 41 (40.6) |
Race, n (%) | |||||
White | 81 (80.2) | 82 (80.4) | 81 (78.6) | 80 (80.0) | 80 (79.2) |
Black or African American | 14 (13.9) | 14 (13.7) | 16 (15.5) | 14 (14.0) | 15 (14.9) |
Native Hawaiian or Other Pacific Islander | 2 (2.0) | 2 (2.0) | 2 (1.9) | 2 (2.0) | 2 (2.0) |
Asian | 1 (1.0) | 1 (1.0) | 1 (1.0) | 1 (1.0) | 1 (1.0) |
Other | 3 (3.0) | 3 (2.9) | 3 (2.9) | 3 (3.0) | 3 (3.0) |
Ethnicity, n (%) | |||||
Hispanic or Latino | 17 (16.8) | 17 (16.7) | 17 (16.5) | 16 (16.0) | 17 (16.8) |
Not Hispanic or Latino | 84 (83.2) | 85 (83.3) | 86 (83.5) | 84 (84.0) | 84 (83.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edinoff, A.N.; Sall, S.; Koontz, C.B.; Williams, A.K.; Drumgo, D.; Mouhaffel, A.; Cornett, E.M.; Murnane, K.S.; Kaye, A.D. Ketamine Evolving Clinical Roles and Potential Effects with Cognitive, Motor and Driving Ability. Neurol. Int. 2023, 15, 352-361. https://doi.org/10.3390/neurolint15010023
Edinoff AN, Sall S, Koontz CB, Williams AK, Drumgo D, Mouhaffel A, Cornett EM, Murnane KS, Kaye AD. Ketamine Evolving Clinical Roles and Potential Effects with Cognitive, Motor and Driving Ability. Neurology International. 2023; 15(1):352-361. https://doi.org/10.3390/neurolint15010023
Chicago/Turabian StyleEdinoff, Amber N., Saveen Sall, Colby B. Koontz, Ajah K. Williams, DeMarcus Drumgo, Aya Mouhaffel, Elyse M. Cornett, Kevin S. Murnane, and Alan D. Kaye. 2023. "Ketamine Evolving Clinical Roles and Potential Effects with Cognitive, Motor and Driving Ability" Neurology International 15, no. 1: 352-361. https://doi.org/10.3390/neurolint15010023
APA StyleEdinoff, A. N., Sall, S., Koontz, C. B., Williams, A. K., Drumgo, D., Mouhaffel, A., Cornett, E. M., Murnane, K. S., & Kaye, A. D. (2023). Ketamine Evolving Clinical Roles and Potential Effects with Cognitive, Motor and Driving Ability. Neurology International, 15(1), 352-361. https://doi.org/10.3390/neurolint15010023