Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Polysaccharides and Lipids
2.1.2. Viruses
2.1.3. Cytotoxicity Assay
2.2. Methods
2.2.1. Liposome Preparation
2.2.2. Determination of the Amount of Encapsulated Remdesivir
2.2.3. Determination of the Electrokinetic Charge and the Size of the Composite Liposomes
2.2.4. Drug Release
2.2.5. Host Cell Culture
2.2.6. Antiviral Activity Assay
2.2.7. Virucidal Assay
2.2.8. Effect on the Viral Adsorption
2.2.9. Statistical Analysis
2.2.10. Transmission Electron Microscopy (TEM)
2.2.11. Ferric Reducing Antioxidant Power (FRAP)
2.2.12. Cupric-Reducing Antioxidant Capacity
2.2.13. Iron-Chelating Power
2.2.14. DPPH Assay
3. Results
3.1. Characterization of the Drug-Loaded Liposomes
3.2. Loaded Amount of Remdesivir
3.3. Release of Remdesivir from the Produced Liposomal Structures
3.4. Cytotoxicity Assay
3.5. Influence on the Replication Cycle of Human Coronavirus Strain OC43
3.6. Effect on Extracellular Virions of Human Coronavirus Strain OC43
3.7. Effect on Viral Adsorption
3.8. Redox-Modulating Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Guillen, J.; Kinnunen, P.K.J.; Villalain, J. Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein. Biochim. Et Biophys. Acta 2008, 1778, 2765–2774. [Google Scholar] [CrossRef] [PubMed]
- de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent Insights into Emerging Coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523–534. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, X.; Chen, Z.; Duan, J.; Hashimoto, K.; Yang, L.; Liu, C.; Yang, C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020, 87, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef] [PubMed]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, C.; Xu, X.-F.; Xu, W.; Liu, S.-W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Asandei, A.; Mereuta, L.; Schiopu, I.; Park, J.; Seo, C.H.; Park, Y.; Luchian, T. Non-Receptor-Mediated Lipid Membrane Permeabilization by the SARS-CoV-2 Spike Protein S1 Subunit. ACS Appl. Mater. Interfaces 2020, 12, 55649–55658. [Google Scholar] [CrossRef] [PubMed]
- Luchini, A.; Micciulla, S.; Corucci, G.; Batchu, K.C.; Santamaria, A.; Laux, V.; Darwish, T.; Russell, R.A.; Thepaut, M.; Bally, I.; et al. Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by neutron reflectometry. Sci. Rep. 2021, 11, 14867. [Google Scholar] [CrossRef]
- Correa, Y.; Waldie, S.; Thépaut, M.; Micciulla, S.; Moulin, M.; Fieschi, F.; Pichler, H.; Forsyth, V.T.; Haertlein, M.; Cárdenas, M. SARS-CoV-2 spike protein removes lipids from model membranes and interferes with the capacity of high density lipoprotein to exchange lipids. J. Colloid. Interface Sci. 2021, 602, 732–739. [Google Scholar] [CrossRef]
- Pawłowski, P.H. Charged amino acids may promote coronavirus SARS-CoV-2 fusion with the host cell. AIMS Biophys. 2021, 8, 111–120. [Google Scholar] [CrossRef]
- Pawłowski, P.H. Additional Positive Electric Residues in the Crucial Spike Glycoprotein S Regions of the New SARS-CoV-2 Variants. Infect. Drug Resist. 2021, 14, 5099–5105. [Google Scholar] [CrossRef]
- Pawłowski, P.H. SARS-CoV-2 variant Omicron (B.1.1.529) is in a rising trend of mutations increasing the positive electric charge in crucial regions of the spike protein S. Acta Biochim. Pol. 2022, 69, 263–264. [Google Scholar] [CrossRef]
- Devi, A.; Chaitanya, N.S.N. Designing of peptide aptamer targeting the receptor-binding domain of spike protein of SARS-CoV-2: An in silico study. Mol. Divers. 2022, 26, 157–169. [Google Scholar] [CrossRef]
- Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein. Anal. Chem. 2020, 92, 9895–9900. [Google Scholar] [CrossRef]
- Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; et al. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl. Mater. Interfaces 2021, 13, 9500–9519. [Google Scholar] [CrossRef]
- Adachi, T.; Nakamura, Y. Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019, 24, 4229. [Google Scholar] [CrossRef]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Sheikholeslami, S.M.; Jahanbani, A.; Shao, Z. On the molecular structure of Remdesivir for the treatment of COVID-19. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 995–1002. [Google Scholar] [CrossRef]
- Lin, E.Y.; Chen, Y.S.; Li, Y.S.; Chen, S.R.; Lee, C.H.; Huang, M.H.; Chuang, H.M.; Harn, H.J.; Yang, H.H.; Lin, S.Z.; et al. Liposome Consolidated with Cyclodextrin Provides Prolonged Drug Retention Resulting in Increased Drug Bioavailability in Brain. Int. J. Mol. Sci. 2020, 21, 4408. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Yan, V.C.; Muller, F.L. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment. ACS Med. Chem. Lett. 2020, 11, 1361–1366. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Wu, D.; Ren, L.; Chu, X.; Qin, C.; Han, X.; Hang, T.; Xu, Y.; Yang, L.; et al. Liposomal remdesivir inhalation solution for targeted lung delivery as a novel therapeutic approach for COVID-19. Asian J. Pharm. Sci. 2021, 16, 772–783. [Google Scholar] [CrossRef]
- Praphawatveta, T.; Petersb, J.I.; Williams, R.O., III. Inhaled nanoparticles—An updated review. Int. J. Pharm. 2020, 587, 119671. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, G.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021, 601, 120571. [Google Scholar] [CrossRef] [PubMed]
- Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, Characterization and Applications of Liposomes: State of the Art. J. Colloid. Sci. Biotechnol. 2012, 1, 147–168. [Google Scholar] [CrossRef]
- Fattal, E.; Grabowski, N.; Mura, S.; Vergnaud, J.; Tsapis, N.; Hillaireau, H. Lung toxicity of biodegradable nanoparticles. J. Biomed. Nanotechnol. 2014, 10, 2852–2864. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release. 2015, 200, 138–157. [Google Scholar] [CrossRef]
- Riaz, M.K.; Riaz, M.A.; Zhang, X.; Lin, C.; Wong, K.H.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci. 2018, 19, 195. [Google Scholar] [CrossRef]
- Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014, 32, 32–45. [Google Scholar] [CrossRef]
- Gaul, R.; Ramsey, J.M.; Heise, A.; Cryan, S.A.; Greene, C.M. Chapter 6—Nanotechnology Approaches to Pulmonary Drug Delivery: Targeted Delivery of Small Molecule and Gene-Based Therapeutics to the Lung. In Design of Nanostructures for Versatile Therapeutic Applications; Grumezescu, A.M., Ed.; William Andrew: Norwich, NY, USA, 2018; pp. 221–253. [Google Scholar]
- De Leo, V.; Milano, F.; Agostiano, A.; Catucci, L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers 2021, 13, 1027. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Goycoolea, F.M.; El Gueddari, N.E.; Remuñán-López, C.; Coggiola, A.; Lollo, G.; Domard, A.; Alonso, M.J. Effect of molecular weight and degree of acetylation on the physicochemical characteristics of chitosan nanoparticles. Mater. Sci. 2007, 542–547. [Google Scholar]
- Shoueir, K.R.; El-Desouky, N.; Rashad, M.M.; Ahmed, M.K.; Janowska, I.; El-Kemary, M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting, Int. J. Biol. Macromol. 2021, 167, 1176–1197. [Google Scholar] [CrossRef]
- Rao, N.V.; Rho, J.G.; Um, W.; Kumar, P.; Nguyen, E.K.V.Q.; Oh, B.H.; Kim, W.; Park, J.H. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020, 12, 931. [Google Scholar] [CrossRef]
- Peer, D.; Margalit, R. Loading mitomycin c inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer 2004, 108, 780–789. [Google Scholar] [CrossRef]
- Ouasti, S.; Kingham, P.J.; Terenghi, G.; Tirelli, N. The cd44/integrins interplay and the significance of receptor binding and re-presentation in the uptake of RGD-functionalized hyaluronic acid. Biomaterials 2012, 33, 1120–1134. [Google Scholar] [CrossRef]
- Pérez, L.A.; Hernández, R.; Alonso, J.M.; Pérez-González, R.; Sáez-Martínez, V. Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines 2021, 9, 1113. [Google Scholar] [CrossRef]
- Tuvshinjargal, N.; Lee, W.; Park, B.; Han, K. PRIdictor: Protein–RNA Interaction predictor. BioSystems 2016, 139, 17–22. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Celik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Mandrone, M.; Lorenzi, B.; Venditti, A.; Guarcini, L.; Bianco, A.; Sanna, C. Antioxidant and anti-collagenase activity of Hypericum hircinum L. Ind. Crops Prod. 2015, 76, 402–408. [Google Scholar] [CrossRef]
- Wendy, B.-W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar]
- Mengoni, T.; Adrian, M.; Pereira, S.; Santos-Carballal, B.; Kaizer, M.; Goycoolea, F.M. A chitosan-based liposome formulation enhances the in vitro wound healing efficacy of substance P Neuropeptide. Pharmaceutics 2017, 9, 56. [Google Scholar] [CrossRef]
- Mohammed, L.; Nourddine, H.; Saad, E.F.; Abdelatu, D.; Hamid, R. Chitosan-covered liposomes as a promising drug transporter: Nanoscale investigations. RSC Adv. 2021, 11, 1503–1516. [Google Scholar] [CrossRef]
- Laye, C.; McClements, D.J.; Weiss, J. Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J. Food Sci. 2008, 73, N7. [Google Scholar] [CrossRef]
- Mady, M.M.; Darwish, M.M.; Khalil, S.; Khalil, W.M. Biophysical studies of chitosan-coated liposomes. Eur Biophys J. 2009, 38, 1127–1133. [Google Scholar] [CrossRef]
- Mady, M.M.; Darwish, M.M. Effect of chitosan coating on the characteristics of DPPC liposomes. J. Adv. Res. 2010, 1, 187–191. [Google Scholar] [CrossRef]
- Quemeneur, F.; Rinaudo, M.; Pepin-Donat, B. Influence of molecular weight and pH on adsorption of chitosan at surface of large and giant vesicles. Biomacromolecules 2008, 9, 396–402. [Google Scholar] [CrossRef]
- Chodanowski, P.; Stoll, S. Polyelectrolyte adsorption on charged particles: Ionic concentration and particle size effects-a Monte Carlo approach. J. Chem. Phys. 2001, 115, 4951–4960. [Google Scholar] [CrossRef]
- Chodanowski, P.; Stoll, S. Polyelectrolyte adsorption on charged particles in Debye-Hückel approximation. A Monte Carlo approach. Macromolecules 2001, 34, 2320–2328. [Google Scholar] [CrossRef]
- Reule, A.G. Errors in Spectrophotometry and Calibration Procedures to Avoid Them. J. Res. Natl. Bur. Stand A Phys. Chem. 1976, 80A, 609–624. [Google Scholar] [CrossRef]
- Vartak, R.; Patil, S.M.; Saraswat, A.; Patki, M.; Kunda, N.K.; Patel, K. Aerosolized nanoliposomal carrier of remdesivir: An effective alternative for COVID-19 treatment in vitro. Nanomedicine 2021, 16, 1187–1202. [Google Scholar] [CrossRef]
- Jeon, W.-J.; Lee, H.-K.; Na, Y.-G.; Jung, M.; Han, S.-C.; Hwang, J.H.; Jung, E.; Hwang, D.; Shin, J.S.; Cho, C.-W. Antiviral Lipid Nanocarrier Loaded with Remdesivir Effective Against SARS-CoV-2 in vitro Model. Int. J. Nanomed. 2023, 18, 1561–1575. [Google Scholar] [CrossRef]
- Halevas, E.; Mavroidi, B.; Kokotidou, C.; Moschona, A.; Sagnou, M.; Mitraki, A.; Litsardakis, G.; Pelecanou, M. Remdesivir-loaded bis-MPA hyperbranched dendritic nanocarriers for pulmonary delivery. J. Drug Deliv. Sci. Technol. 2022, 75, 103625. [Google Scholar] [CrossRef]
- Qudsiani, K.S.; Rahmasari, R. Polyamidoamine-Remdesivir Conjugate: Physical Stability and Cellular Uptake Enhancement. Biomed. Pharmacol. J. 2021, 14, 2073–2084. [Google Scholar] [CrossRef]
- Milkova, V.; Kamburova, K.; Martinov, P.; Vilhelmova-Ilieva, N.; Rashev, V. Chitosan-based nanocarriers for delivery of remdesivir. Sci. Pharm. 2023, 91, 37. [Google Scholar] [CrossRef]
- Jaber, N.; Al-Remawi, M.; Al-Akayleh, F.; Al-Muhtaseb, N.; Al-Adham, I.S.I.; Collier, P.J. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J. Appl. Microbiol. 2022, 132, 41–58. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef]
- Song, P.; Zhang, R.; Wang, X.; He, P.; Tan, L.; Ma, X. Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats. J. Agric. Food Chem. 2011, 59, 6227–6232. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Gutteridge, J.M.; Halliwell, B. Mini-review: Oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun. 2018, 502, 183–186. [Google Scholar] [CrossRef]
Polysaccharide | Mw, kDa (PDI *) | Degree Acetylation, % | Average Polymer Contour Length, nm |
---|---|---|---|
COS | 5 (0.70) | <10 | 17 |
CS-L | 50–190 (0.53) | 15–25 | 453 |
CS-H | 190–310 (0.84) | 15–25 | 944 |
HA-L | 8–15 (0.52) | - | 9 |
HA-H | 150–300 (0.60) | - | 305 |
Chitosan Sample | Encapsulation Efficiency * EE, % | Loaded Amount, µg/mL | Loading Capacity ** LC, % |
---|---|---|---|
COS | 99.4 | 299.4 | 61 |
CS-L | 97.9 | 294.8 | 60 |
CS-H | 97.8 | 294.7 | 60 |
Type of Carriers | Size nm | ζ-Potential mV | Encapsulation Efficiency EE, % | Loaded Amount µg/ml | References |
---|---|---|---|---|---|
Aerosolized nanoliposomal carrier | 71.46 ± 1.35 | −32.00 ± 2.00 | 99.79 | 2.5 | [55] |
Lipid nanocarriers | 43.00 ± 0.60 | −6.84 ± 0.59 | 99.94 | 499.8 | [56] |
Liposomes in aerosol | 120 | −7.00 | 62.41–83.93 depends on the drug/lipid ratio | N/xn | [22] |
hyperbranched dendritic nanocarriers | 185.0 ± 30.5 | −7.00 | 14.10 | [57] | |
Dendrimer-drug conjugates | 1704–7172 | 1.14–23.70 | 37.97–48.43 depends on the conditions | 339.0 | [58] |
Sample | Cytotoxicity | Antiviral Activity | ||
---|---|---|---|---|
CC50 * Mean ± SD ** [µg/mL] | MTC *** [µg/mL] | IC50 * Mean ± SD ** [µg/mL] | SI ## | |
COS | 812.6 ± 10.3 | 320.0 | 15.6 | 52.9 |
HA-L | ˃1000.0 | 1000.0 | 110.0 ± 6.3 | ˃9.0 |
Liposomes-COS-A # | 149.7 ± 11.08 | 29.9 | - | - |
Liposomes-COS-HA-A # | 155.7 ± 10.18 | 29.9 | - | - |
Sample | Δlg | ||||
---|---|---|---|---|---|
15 min | 30 min | 60 min | 90 min | 120 min | |
COS | 1.33 | 2.00 | 2.33 | 2.66 | 2.66 |
HA-L | 2.00 | 2.00 | 2.50 | 2.75 | 3.00 |
Liposomes-COS-A | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Liposomes-COS-HA-A | 0.25 | 0.25 | 0.25 | 0.33 | 0.33 |
Sample | Δlg | ||||
---|---|---|---|---|---|
15 min | 30 min | 60 min | 90 min | 120 min | |
COS | 1.75 | 1.75 | 2.0 | 2.5 | 3.25 |
HA-L | 1.50 | 1.50 | 1.75 | 2.00 | 2.50 |
Liposomes-COS-A | 0.25 | 0.33 | 0.33 | 0.50 | 0.50 |
Liposomes-COS-HA-A | 0.33 | 0.33 | 0.33 | 0.50 | 0.50 |
Substance | Parameter | |||
---|---|---|---|---|
FRAP µM TEq/g | CUPRAC µM TEq/g | Fe II Chelation, % | DPPH Scavenging Effect, % | |
COS | 0.0140 ± 0.002 | 6.52 ± 0.027 | 48.100 ± 11.400 | 16.400 ± 1.210 |
SBECD–REM (Vaklury®) | 0.0016 ± 0.001 | 13.69 ± 1.020 | - | - |
Liposomes-COS-HA-A-drug | - | 3.690 ± 0.820 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milkova, V.; Vilhelmova-Ilieva, N.; Gyurova, A.; Kamburova, K.; Dimitrov, I.; Tsvetanova, E.; Georgieva, A.; Mileva, M. Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection. Neurol. Int. 2023, 15, 1320-1338. https://doi.org/10.3390/neurolint15040083
Milkova V, Vilhelmova-Ilieva N, Gyurova A, Kamburova K, Dimitrov I, Tsvetanova E, Georgieva A, Mileva M. Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection. Neurology International. 2023; 15(4):1320-1338. https://doi.org/10.3390/neurolint15040083
Chicago/Turabian StyleMilkova, Viktoria, Neli Vilhelmova-Ilieva, Anna Gyurova, Kamelia Kamburova, Ivaylo Dimitrov, Elina Tsvetanova, Almira Georgieva, and Milka Mileva. 2023. "Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection" Neurology International 15, no. 4: 1320-1338. https://doi.org/10.3390/neurolint15040083
APA StyleMilkova, V., Vilhelmova-Ilieva, N., Gyurova, A., Kamburova, K., Dimitrov, I., Tsvetanova, E., Georgieva, A., & Mileva, M. (2023). Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection. Neurology International, 15(4), 1320-1338. https://doi.org/10.3390/neurolint15040083