Characterizing the Impact of Compression Duration and Deformation-Related Loss of Closure Force on Clip-Induced Spinal Cord Injury in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Grouping
2.2. Induction of SCI
2.3. BBB Scoring
2.4. SSEP Measurement
2.5. LFB Staining
2.6. Cytokine Arrays
2.7. Measurement of the Closure Force of the Aneurysm Clips
2.8. Statistical Analyses
3. Results
3.1. Effects of Compression Duration on the Severity of Functional Deficits in a Clip Compression Rat Model of SCI
3.2. Effects of Compression Duration on the Severity of Electrophysiological Deficits in a Clip Compression Rat Model of SCI
3.3. Effects of Compression Duration on the Severity of Histological Deficits in a Clip Compression Rat Model of SCI
3.4. Effects of Compression Duration on the Expression Levels of Inflammation-Related Cytokines in a Clip Compression Rat Model of SCI
3.5. Effects of Repetitive Clip Application on the Closure Force of Clip
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ridlen, R.; McGrath, K.; Gorrie, C.A. Animal models of compression spinal cord injury. J. Neurosci. Res. 2022, 100, 2201–2212. [Google Scholar] [CrossRef]
- Sharif-Alhoseini, M.; Khormali, M.; Rezaei, M.; Safdarian, M.; Hajighadery, A.; Khalatbari, M.M.; Safdarian, M.; Meknatkhah, S.; Rezvan, M.; Chalangari, M.; et al. Animal models of spinal cord injury: A systematic review. Spinal Cord 2017, 55, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.I.; Ahmed, Z. Experimental Treatments for Spinal Cord Injury: A Systematic Review and Meta-Analysis. Cells 2022, 11, 3409. [Google Scholar] [CrossRef]
- Metz, G.A.; Curt, A.; van de Meent, H.; Klusman, I.; Schwab, M.E.; Dietz, V. Validation of the weight-drop contusion model in rats: A comparative study of human spinal cord injury. J. Neurotrauma 2000, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, D.; Annuar, A.A.; Mohamad, M.; Aziz, I.; Sanusi, J. Experimental spinal cord trauma: A review of mechanically induced spinal cord injury in rat models. Rev. Neurosci. 2017, 28, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, J.; Assinck, P.; Bhatnagar, T.; Streijger, F.; Zhu, Q.; Dvorak, M.F.; Kwon, B.K.; Tetzlaff, W.; Oxland, T.R. Differential Histopathological and Behavioral Outcomes Eight Weeks after Rat Spinal Cord Injury by Contusion, Dislocation, and Distraction Mechanisms. J. Neurotrauma 2016, 33, 1667–1684. [Google Scholar] [CrossRef]
- Marques, S.A.; Garcez, V.F.; Del Bel, E.A.; Martinez, A.M. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: Morphological and functional assessment. J. Neurosci. Methods 2009, 177, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, S.B.; Firouzi, M.; Abdollah Zadegan, S.; Saeedi, N.; Pirouz, E.; Nategh, M.; Jahanzad, I.; Mohebbi Ashtiani, A.; Rahimi-Movaghar, V. The effect of timing of decompression on neurologic recovery and histopathologic findings after spinal cord compression in a rat model. Acta Med. Iran. 2013, 51, 431–437. [Google Scholar] [PubMed]
- Kim, K.T.; Kim, H.J.; Cho, D.C.; Bae, J.S.; Park, S.W. Substance P stimulates proliferation of spinal neural stem cells in spinal cord injury via the mitogen-activated protein kinase signaling pathway. Spine J. 2015, 15, 2055–2065. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhou, X.; Wang, J.; Shen, H.; Wu, S.; Guo, W.; Yang, Y. MSC derived EV loaded with miRNA-22 inhibits the inflammatory response and nerve function recovery after spinal cord injury in rats. J. Cell. Mol. Med. 2021, 25, 10268–10278. [Google Scholar] [CrossRef]
- Pei, J.P.; Fan, L.H.; Nan, K.; Li, J.; Dang, X.Q.; Wang, K.Z. HSYA alleviates secondary neuronal death through attenuating oxidative stress, inflammatory response, and neural apoptosis in SD rat spinal cord compression injury. J. Neuroinflamm. 2017, 14, 97. [Google Scholar] [CrossRef]
- Poon, P.C.; Gupta, D.; Shoichet, M.S.; Tator, C.H. Clip compression model is useful for thoracic spinal cord injuries: Histologic and functional correlates. Spine 2007, 32, 2853–2859. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe-Mudiyanselage, P.D.E.; Kim, J.; Choi, Y.; Moon, C.; Shin, T.; Ahn, M. Ninjurin-1: A biomarker for reflecting the process of neuroinflammation after spinal cord injury. Neural Regen. Res. 2021, 16, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Younsi, A.; Zheng, G.; Riemann, L.; Scherer, M.; Zhang, H.; Tail, M.; Hatami, M.; Skutella, T.; Unterberg, A.; Zweckberger, K. Long-Term Effects of Neural Precursor Cell Transplantation on Secondary Injury Processes and Functional Recovery after Severe Cervical Contusion-Compression Spinal Cord Injury. Int. J. Mol. Sci. 2021, 22, 13106. [Google Scholar] [CrossRef]
- Chen, F.; Hu, M.; Shen, Y.; Zhu, W.; Cao, A.; Ni, B.; Qian, J.; Yang, J. Isorhamnetin promotes functional recovery in rats with spinal cord injury by abating oxidative stress and modulating M2 macrophages/microglia polarization. Eur. J. Pharmacol. 2021, 895, 173878. [Google Scholar] [CrossRef] [PubMed]
- Dugan, E.A.; Schachner, B.; Jergova, S.; Sagen, J. Intensive Locomotor Training Provides Sustained Alleviation of Chronic Spinal Cord Injury-Associated Neuropathic Pain: A Two-Year Pre-Clinical Study. J. Neurotrauma 2021, 38, 789–802. [Google Scholar] [CrossRef]
- Lin, M.W.; Fang, S.Y.; Hsu, J.C.; Huang, C.Y.; Lee, P.H.; Huang, C.C.; Chen, H.F.; Lam, C.F.; Lee, J.S. Mitochondrial Transplantation Attenuates Neural Damage and Improves Locomotor Function After Traumatic Spinal Cord Injury in Rats. Front. Neurosci. 2022, 16, 800883. [Google Scholar] [CrossRef]
- Lee, J.S.; Yang, C.C.; Kuo, Y.M.; Sze, C.I.; Hsu, J.Y.; Huang, Y.H.; Tzeng, S.F.; Tsai, C.L.; Chen, H.H.; Jou, I.M. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Spine 2012, 37, 10–17. [Google Scholar] [CrossRef]
- Basso, D.M.; Beattie, M.S.; Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol. 1996, 139, 244–256. [Google Scholar] [CrossRef]
- Von Euler, M.; Seiger, A.; Sundstrom, E. Clip compression injury in the spinal cord: A correlative study of neurological and morphological alterations. Exp. Neurol. 1997, 145, 502–510. [Google Scholar] [CrossRef]
- Sasidharan, G.M.; Sastri, S.B.; Pandey, P. Aneurysm clips: What every resident should know. Neurol. India 2015, 63, 96–100. [Google Scholar] [CrossRef]
- Dujovny, M.; Kossovsky, N.; Munoz, G.; Langhi, R.; Nelson, D.; Fein, J.M. Reduced vascular trauma after temporary occlusion with modified Biemer and Yasargil clips. J. Microsurg. 1981, 2, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Biglari, B.; Swing, T.; Child, C.; Buchler, A.; Westhauser, F.; Bruckner, T.; Ferbert, T.; Jurgen Gerner, H.; Moghaddam, A. A pilot study on temporal changes in IL-1beta and TNF-alpha serum levels after spinal cord injury: The serum level of TNF-alpha in acute SCI patients as a possible marker for neurological remission. Spinal Cord 2015, 53, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Beattie, M.S. Inflammation and apoptosis: Linked therapeutic targets in spinal cord injury. Trends Mol. Med. 2004, 10, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Baptiste, D.C. Current status of clinical trials for acute spinal cord injury. Injury 2005, 36 (Suppl. S2), B113–B122. [Google Scholar] [CrossRef]
- Keane, R.W.; Davis, A.R.; Dietrich, W.D. Inflammatory and apoptotic signaling after spinal cord injury. J. Neurotrauma 2006, 23, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Lye-Barthel, M.; Masland, R.H.; Jakobs, T.C. Structural remodeling of fibrous astrocytes after axonal injury. J. Neurosci. 2010, 30, 14008–14019. [Google Scholar] [CrossRef]
- Xu, K.; Malouf, A.T.; Messing, A.; Silver, J. Glial fibrillary acidic protein is necessary for mature astrocytes to react to beta-amyloid. Glia 1999, 25, 390–403. [Google Scholar] [CrossRef]
- Anderson, M.A.; Burda, J.E.; Ren, Y.; Ao, Y.; O’Shea, T.M.; Kawaguchi, R.; Coppola, G.; Khakh, B.S.; Deming, T.J.; Sofroniew, M.V. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016, 532, 195–200. [Google Scholar] [CrossRef]
- Hara, M.; Kobayakawa, K.; Ohkawa, Y.; Kumamaru, H.; Yokota, K.; Saito, T.; Kijima, K.; Yoshizaki, S.; Harimaya, K.; Nakashima, Y.; et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat. Med. 2017, 23, 818–828. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, J.; Zhang, X.; Zhang, Y.; Huang, N.; Ning, B. Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomed. Pharmacother. 2022, 153, 113500. [Google Scholar] [CrossRef] [PubMed]
- Hellenbrand, D.J.; Quinn, C.M.; Piper, Z.J.; Morehouse, C.N.; Fixel, J.A.; Hanna, A.S. Inflammation after spinal cord injury: A review of the critical timeline of signaling cues and cellular infiltration. J. Neuroinflamm. 2021, 18, 284. [Google Scholar] [CrossRef] [PubMed]
- Wegner, N.; Klein, M.; Scholz, R.; Kotzem, D.; Macias Barrientos, M.; Walther, F. Mechanical in vitro fatigue testing of implant materials and components using advanced characterization techniques. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, M.C.; Apok, V.; Mitchell, F.T.; Turner, D.P.; Gooding, A.; Norris, J. Endurance of aneurysm clips: Mechanical endurance of Yasargil and Spetzler titanium aneurysm clips. Neurosurgery 2004, 54, 966–970; discussion 970–962. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.-H.; Hsu, H.-J.; Tien, C.-H.; Huang, C.-C.; Huang, C.-Y.; Chen, H.-F.; Yeh, M.-L.; Lee, J.-S. Characterizing the Impact of Compression Duration and Deformation-Related Loss of Closure Force on Clip-Induced Spinal Cord Injury in Rats. Neurol. Int. 2023, 15, 1383-1392. https://doi.org/10.3390/neurolint15040088
Lee P-H, Hsu H-J, Tien C-H, Huang C-C, Huang C-Y, Chen H-F, Yeh M-L, Lee J-S. Characterizing the Impact of Compression Duration and Deformation-Related Loss of Closure Force on Clip-Induced Spinal Cord Injury in Rats. Neurology International. 2023; 15(4):1383-1392. https://doi.org/10.3390/neurolint15040088
Chicago/Turabian StyleLee, Po-Hsuan, Heng-Juei Hsu, Chih-Hao Tien, Chi-Chen Huang, Chih-Yuan Huang, Hui-Fang Chen, Ming-Long Yeh, and Jung-Shun Lee. 2023. "Characterizing the Impact of Compression Duration and Deformation-Related Loss of Closure Force on Clip-Induced Spinal Cord Injury in Rats" Neurology International 15, no. 4: 1383-1392. https://doi.org/10.3390/neurolint15040088
APA StyleLee, P. -H., Hsu, H. -J., Tien, C. -H., Huang, C. -C., Huang, C. -Y., Chen, H. -F., Yeh, M. -L., & Lee, J. -S. (2023). Characterizing the Impact of Compression Duration and Deformation-Related Loss of Closure Force on Clip-Induced Spinal Cord Injury in Rats. Neurology International, 15(4), 1383-1392. https://doi.org/10.3390/neurolint15040088