Contingent Negative Variation in the Evaluation of Neurocognitive Disorders Due to Possible Alzheimer’s Disease
Abstract
:1. Introduction
2. Methods
2.1. Place of Study and Participants
2.2. Neuropsychological, Neurological and Clinical Assessment
2.3. Electrophysiological Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Neuropsychological Profile
4.2. Utility of CNV Potential in Neurocognitive Disorders Due to Possible Alzheimer’s Disease
4.3. CNV Potential and Underlying Neural Processes
4.4. Electrophysiological Patterns Recorded in CNV Potential
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Deursen, J.A.; Vuurman, E.F.P.M.; Verhey, F.R.J.; van Kranen-Mastenbroek, V.H.J.M.; Riedel, W.J. Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. J. Neural Transm. 2008, 115, 1301–1311. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2525849/ (accessed on 1 December 2023). [CrossRef]
- Kamarajan, C.; Porjesz, B. Advances in Electrophysiological Research. Alcohol Res. Curr. Rev. 2015, 37, 53–87. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476604/ (accessed on 1 December 2023).
- Schomer, D.L.; Lopes da Silva, F. Niedermeyer’s Electroencephalography. Basic Principles, Clinical Applications, and Related Fields, 7th ed.; Oxford University Press: Oxford, UK, 2022. [Google Scholar] [CrossRef]
- Beauchaine, T.P. The Role of Biomarkers and Endophenotypes in Prevention and Treatment of Psychopathological Disorders. Biomark. Med. 2009, 3, 1–3. Available online: https://www.futuremedicine.com/doi/full/10.2217/17520363.3.1.1 (accessed on 1 December 2023). [CrossRef]
- Gonzalez-Rosa, J.J.; Vazquez-Marrufo, M.; Vaquero, E.; Duque, P.; Borges, M.; Gomez-Gonzalez, C.M.; Izquierdo, G. Cluster analysis of behavioural and event-related potentials during a contingent negative variation paradigm in remitting-relapsing and benign forms of multiple sclerosis. BMC Neurol. 2011, 11, 64. Available online: http://www.biomedcentral.com/1471-2377/11/64 (accessed on 1 December 2023). [CrossRef]
- McMackin, R.; Bede, P.; Pender, N.; Hardiman, O.; Nasseroleslami, B. Neurophysiological markers of network dysfunction in neurodegenerative diseases. NeuroImage Clin. 2019, 22, 101706. [Google Scholar] [CrossRef] [PubMed]
- Van Deursen, J.A.; Vuurman, E.F.P.M.; Smits, L.L.; Verhey, F.R.J.; Riedel, W.J. Response speed, contingent negative variation and P300 in Alzheimer’s disease and MCI. Brain Cogn. 2009, 69, 592–599. [Google Scholar] [CrossRef]
- Zappoli, R.; Versari, A.; Paganini, M.; Arnetoli, G.; Muscas, G.C.; Gangemi, P.F.; Arneodo, M.G.; Poggiolini, D.; Zappoli, F.; Battaglia, A. Brain electrical activity (quantitative EEG and bit-mapping neurocognitive CNV components), psychometrics and clinical findings in presenile subjects with initial mild cognitive decline or probable Alzheimer-type dementia. Ital. J. Neurol. Sci. 1995, 16, 341–376. Available online: https://link.springer.com/article/10.1007/BF02229172 (accessed on 1 December 2023). [CrossRef]
- Zappoli, R.; Versari, A.; Arnetoli, G.; Paganini, M.; Muscas, G.C.; Arneodo, M.G.; Gangemi, P.F.; Bartelli, M. Topographic CNV activity mapping, presenile mild primary cognitive decline and Alzheimer-type dementia. Neurophysiol. Clin. 1991, 21, 473–483. [Google Scholar] [CrossRef]
- Oishi, M.; Mochizuki, Y. Correlation between Contingent Negative Variation and Regional Cerebral Blood Flow. Clin. Electroencephalogr. 1998, 29, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.M.; Nowlis, G.H.; McCrary, J.W.; Chapman, J.A.; Sandoval, T.C.; Guillily, M.D.; Gardner, M.N.; Reilly, L.A. Brain Event-Related Potentials: Diagnosing Early-Stage Alzheimer’s Disease. Neurobiol. Aging 2007, 28, 194–201. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631360/ (accessed on 1 December 2023). [CrossRef]
- Chapman, R.M.; McCrary, J.W.; Gardner, M.N.; Sandoval, T.C.; Guillily, M.D.; Reilly, L.A.; DeGrush, E. Brain ERP components predict which individuals progress to Alzheimer’s disease and which do not. Neurobiol. Aging 2011, 32, 1742–1755. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902777/ (accessed on 1 December 2023). [CrossRef]
- Correa-Jaraba, K.S.; Lindín, M.; Díaz, F. Increased Amplitude of the P3a ERP Component as a Neurocognitive Marker for Differentiating Amnestic Subtypes of Mild Cognitive Impairment. Front. Aging Neurosci. 2018, 10, 19. Available online: https://www.frontiersin.org/articles/10.3389/fnagi.2018.00019 (accessed on 1 December 2023). [CrossRef]
- Cespon, J.; Galdo-Alvarez, S.; Pereiro, A.X.; Diaz, F. Differences between mild cognitive impairment subtypes as indicated by event-related potential correlates of cognitive and motor processes in a Simon task. J. Alzheimer’s Dis. 2015, 43, 631–647. [Google Scholar] [CrossRef]
- Ning, N.; Peng, D.; Liu, X.; Yang, S. Speech Timing Deficit of Stuttering: Evidence from Contingent Negative Variations. PLoS ONE 2017, 12, e0168836. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168836 (accessed on 1 December 2023). [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Update version August 2015; American Psychiatric Association: Arlington, VA, USA, 2015; Available online: https://psychiatryonline.org/pb-assets/dsm/update/DSM5Update_October2017.pdf (accessed on 1 December 2023).
- Peacock, J.L.; Peacock, P.J. Oxford Handbook of Medical Statistics, 1st ed.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Stroop, J. Studies of interference in serial verbal reaction. J. Exp. Psychol. 1935, 18, 643–662. Available online: https://psycnet.apa.org/record/1936-01863-001 (accessed on 1 December 2023). [CrossRef]
- Margulis, L.E.; Squillace Louhau, M.R.; Ferreres, A.R. Baremo del Trail Making Test para Capital Federal y Gran Buenos Aires. Rev. Argent. Cienc. Comport. 2018, 10, 54–63. Available online: http://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S1852-42062018000300054&lng=es&nrm=iso&tlng=es (accessed on 1 December 2023).
- Gigena, V.M.; Mangone, C.A.; Baumann, D.; DePascale, A.M.; Sanguinetti, R.; Bozzola, F. El test del reloj: Una evaluación cognitiva rápida y sensible al deterioro incipiente. Rev. Neurol. Argent. 1993, 35–42. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/lil-125854 (accessed on 1 December 2023).
- Taussing, I.M. Los tests de fluidez verbal como predictores de la demencia de tipo Alzheimer: Una comparación entre sujetos angloparlantes e hispanohablantes. Rev. Psicol. 1995, 6, 283–296. Available online: https://journals.copmadrid.org/clysa/art/26337353b7962f533d78c762373b3318 (accessed on 1 December 2023).
- Fernández, A.L.; Marino, J.C.; Alderete, A.M. Valores normativos en la prueba de Fluidez Verbal-Animales sobre una muestra de 251 adultos argentinos. Rev. Argent. Neuropsicol. 2004, 4, 12–22. Available online: https://www.researchgate.net/profile/Alberto-Fernandez-8/publication/292752777_Valores_normativos_y_validez_conceptual_del_Test_de_Aprendizaje_Verbal_Animal_en_una_muestra_de_adultos_argentinos/links/5f3bb9c1458515b7292a6300/Valores-normativos-y-validez-conceptual-del-Test-de-Aprendizaje-Verbal-Animal-en-una-muestra-de-adultos-argentinos.pdf (accessed on 1 December 2023).
- Guisande Couñago, M.A.; Páramo Fernández, M.F.; Tinajero Vacas, C.; Almeida, L.S. Field dependence-independence (FDI) cognitive style: An analysis of attentional functioning. Psicothema 2007, 19, 572–577. Available online: https://minerva.usc.es/xmlui/handle/10347/22607 (accessed on 1 December 2023).
- Robles Arana, Y. Formación de conceptos y el Wisconsin Card Sorting Test. Salud Ment. 1990, 121–132. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/lil-666420 (accessed on 1 December 2023).
- Oviedo, P.O.; Yáñez, A.S. Adaptación y validación del Test de Dislexia Bangor. Rev. Investig. Educ. 2010, 28, 445–457. Available online: https://revistas.um.es/rie/article/view/98091 (accessed on 1 December 2023).
- Peña Casanova, J. Programa integrado de exploración neuropsicológica—Test Barcelona: Bases teóricas, objetivos y contenidos. Rev. Logop. Foniatría Audiol. 1991, 11, 66–79. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5329267 (accessed on 1 December 2023). [CrossRef]
- Weintraub, S.; Salmon, D.; Mercaldo, N.; Ferris, S.; Graff-Radford, N.R.; Chui, H.; Cummings, J.; DeCarli, C.; Foster, N.L.; Galasko, D.; et al. The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): The Neuropsychological Test Battery. Alzheimer Dis. Assoc. Disord. 2009, 23, 91–101. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743984/ (accessed on 1 December 2023). [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. Available online: http://n.neurology.org/content/90/3/126 (accessed on 1 December 2023). [CrossRef]
- Chapman, R.M.; Gardner, M.N.; Klorman, R.; Mapstone, M.; Porsteinsson, A.P.; Antonsdottir, I.M.; Kamalyan, L. Temporospatial components of brain ERPs as biomarkers for Alzheimer’s disease. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2018, 10, 604–614. Available online: https://www.sciencedirect.com/science/article/pii/S2352872918300526 (accessed on 1 December 2023). [CrossRef] [PubMed]
- Chapman, R.M.; Porsteinsson, A.P.; Gardner, M.N.; Mapstone, M.; McCrary, J.W.; Sandoval, T.C.; Guillily, M.D.; DeGrush, E.; Reilly, L.A. C145 as a short-latency electrophysiological index of cognitive compensation in Alzheimer’s disease. J. Alzheimers Dis. JAD 2013, 33, 55–68. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576817/ (accessed on 1 December 2023). [CrossRef]
- Zurrón, M.; Lindín, M.; Cespón, J.; Cid-Fernández, S.; Galdo-Álvarez, S.; Ramos-Goicoa, M.; Díaz, F. Effects of Mild Cognitive Impairment on the Event-Related Brain Potential Components Elicited in Executive Control Tasks. Front. Psychol. 2018, 9, 842. Available online: https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00842 (accessed on 1 December 2023). [CrossRef]
- Mesulam, M.M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Comp. Neurol 2013, 521, 4124–4144. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.23415 (accessed on 1 December 2023). [CrossRef] [PubMed]
- Chapman, R.M.; Gardner, M.N.; Mapstone, M.; Klorman, R.; Porsteinsson, A.P.; Dupree, H.M.; Antonsdottir, I.M.; Kamalyan, L. ERP C250 Shows the Elderly (Cognitively Normal, Alzheimer’s Disease) Store More Stimuli in Short-Term Memory than Young Adults Do. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2016, 127, 2423–2435. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959798/ (accessed on 1 December 2023). [CrossRef]
- Dirnberger, G.; Lang, W.; Lindinger, G. Differential effects of age and executive functions on the resolution of the contingent negative variation: A reexamination of the frontal aging theory. Age 2010, 32, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Crasson, M.; Lembreghts, M.; el Ahmadi, A.; Legros, J.J.; Timsit-Berthier, M. Interindividual variability of contingent negative variation. Neurophysiol. Clin. Clin. Neurophysiol. 2001, 31, 300–320. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.N.; Zhu, X.; Li, J. The Age Effects on the Cognitive Processes of Intention-Based and Stimulus-Based Actions: An ERP Study. Front. Psychol. 2017, 8, 803. Available online: https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00803 (accessed on 1 December 2023). [CrossRef] [PubMed]
- Kiehl, K.A. A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Res. 2006, 142, 107–128. Available online: https://www.sciencedirect.com/science/article/pii/S0165178105002908 (accessed on 1 December 2023). [CrossRef]
- Mannarelli, D.; Pauletti, C.; Grippo, A.; Amantini, A.; Augugliaro, V.; Currà, A.; Missori, P.; Locuratolo, N.; De Lucia, M.C.; Rinalduzzi, S.; et al. The Role of the Right Dorsolateral Prefrontal Cortex in Phasic Alertness: Evidence from a Contingent Negative Variation and Repetitive Transcranial Magnetic Stimulation Study. Neural Plast. 2015, 2015, e410785. Available online: https://www.hindawi.com/journals/np/2015/410785/ (accessed on 1 December 2023). [CrossRef]
Cognitive Level | Complex Attention | Executive Functions | Learning and Memory | Language | Motor Functions and Perception | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | ||
Mild NCD | Normal | 9 | 60 | 1 | 6.66 | 14 | 93.33 | 11 | 73.33 | 14 | 93.33 |
Decreased | 6 | 40 | 14 | 93.33 | 1 | 6.66 | 4 | 26.66 | 1 | 6.66 | |
Total | 15 | 100 | 15 | 100 | 15 | 100 | 15 | 100 | 15 | 100 | |
Major NCD | Normal | 1 | 4.16 | - | - | - | - | 3 | 12.5 | 14 | 58.33 |
Decreased | 7 | 29.16 | 1 | 4.16 | 11 | 45.83 | 8 | 33.33 | 8 | 33.33 | |
Deficits | 16 | 66.66 | 23 | 95.83 | 13 | 54.16 | 13 | 54.16 | 2 | 8.33 | |
Total | 24 | 100 | 24 | 100 | 24 | 100 | 24 | 100 | 24 | 100 | |
p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | p = 0.067 |
Amplitude | Cognitive Level | n | Mean (µv) | SD | IL | SL | ANOVA Sig. |
---|---|---|---|---|---|---|---|
Total tCNV | Normal | 50 | 23.79 | 6.52 | 21.94 | 25.64 | p = 0.000 |
Mild | 10 | 10.63 | 4.88 | 7.13 | 14.13 | ||
Major | 20 | 17.93 | 9.45 | 13.50 | 22.36 | ||
Early eCNV Segment | Normal | 50 | 22.42 | 5.77 | 20.34 | 24.93 | p = 0.000 |
Mild | 10 | 9.50 | 5.64 | 5.45 | 13.54 | ||
Major | 20 | 13.36 | 8.27 | 9.48 | 17.23 | ||
Central cCNV Segment | Normal | 50 | 24.57 | 7.23 | 22.05 | 26.17 | p = 0.000 |
Mild | 10 | 8.13 | 4.22 | 5.11 | 11.15 | ||
Major | 20 | 15.01 | 10.41 | 10.13 | 19.88 | ||
Late laCNV Segment | Normal | 50 | 23.98 | 6.69 | 22.15 | 25.74 | p = 0.000 |
Mild | 10 | 8.68 | 5.67 | 4.62 | 12.73 | ||
Major | 20 | 15.44 | 8.72 | 11.35 | 19.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya-Pedrón, A.; Ocaña Montoya, C.M.; Santos Toural, J.E.; Acosta Lee, T.; Sánchez-Hechavarría, M.E.; López-Galán, E.; Muñoz-Bustos, G.A. Contingent Negative Variation in the Evaluation of Neurocognitive Disorders Due to Possible Alzheimer’s Disease. Neurol. Int. 2024, 16, 126-138. https://doi.org/10.3390/neurolint16010008
Montoya-Pedrón A, Ocaña Montoya CM, Santos Toural JE, Acosta Lee T, Sánchez-Hechavarría ME, López-Galán E, Muñoz-Bustos GA. Contingent Negative Variation in the Evaluation of Neurocognitive Disorders Due to Possible Alzheimer’s Disease. Neurology International. 2024; 16(1):126-138. https://doi.org/10.3390/neurolint16010008
Chicago/Turabian StyleMontoya-Pedrón, Arquímedes, Carmen María Ocaña Montoya, Jorge Esteban Santos Toural, Tania Acosta Lee, Miguel Enrique Sánchez-Hechavarría, Erislandis López-Galán, and Gustavo Alejandro Muñoz-Bustos. 2024. "Contingent Negative Variation in the Evaluation of Neurocognitive Disorders Due to Possible Alzheimer’s Disease" Neurology International 16, no. 1: 126-138. https://doi.org/10.3390/neurolint16010008
APA StyleMontoya-Pedrón, A., Ocaña Montoya, C. M., Santos Toural, J. E., Acosta Lee, T., Sánchez-Hechavarría, M. E., López-Galán, E., & Muñoz-Bustos, G. A. (2024). Contingent Negative Variation in the Evaluation of Neurocognitive Disorders Due to Possible Alzheimer’s Disease. Neurology International, 16(1), 126-138. https://doi.org/10.3390/neurolint16010008