The Role of Neuropeptide Y in the Pathogenesis of Alzheimer’s Disease: Diagnostic Significance and Neuroprotective Functions
Abstract
:1. Introduction
2. NPY Receptors
3. Potential Role of NPY in AD
- Involvement in neurogenesis, including adult neurogenesis;
- Suppression of microglia activation and regulatory effects on the immune system;
- Inhibition of intracellular Ca2+ concentration and protection mitochondria from reactive oxygen species (ROS);
- Autophagy stimulation.
4. Materials and Methods
5. Results
5.1. NPY as Diagnostic Marker in CSF
5.2. NPY as Diagnostic Marker in Blood Plasma
5.3. Studies in Transgenic Animals
5.4. Neuroprotective Properties of NPY
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
APP | amyloid precursor protein |
Aβ | amyloid beta |
BDNF | brain-derived neurotrophic factor |
CNS | central nervous system |
CSF | cerebrospinal fluid |
FTD | frontotemporal dementia |
NGF | nerve growth factor |
NPY | neuropeptide Y |
References
- WHO. Available online: https://www.who.int/ru/news-room/fact-sheets/detail/dementia (accessed on 26 September 2024).
- WHO. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Atri, A. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. N. Am. 2019, 103, 263–293. [Google Scholar] [CrossRef] [PubMed]
- Porsteinsson, A.P.; Isaacson, R.S.; Knox, S.; Sabbagh, M.N.; Rubino, I. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. J. Prev. Alzheimers Dis. 2021, 8, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med. 2010, 362, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Barve, K.H.; Kumar, M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020, 18, 1106–1125. [Google Scholar] [CrossRef]
- Mattson, M.P.; Pedersen, W.A. Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer’s disease. Int. J. Dev. Neurosci. 1998, 16, 737–753. [Google Scholar] [CrossRef]
- Camandola, S.; Mattson, M.P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2015, 36, 1474–1492. [Google Scholar] [CrossRef]
- Heneka, M.T.; Golenbock, D.T.; Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol. 2015, 16, 229–236. [Google Scholar] [CrossRef]
- Linnerbauer, M.; Wheeler, M.A.; Quintana, F.J. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020, 108, 608–622. [Google Scholar] [CrossRef]
- Beal, M.F.; Mazurek, M.F.; Chattha, G.K.; Svendsen, C.N.; Bird, E.D.; Martin, J.B. Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s disease. Ann. Neurol. 1986, 20, 282–288. [Google Scholar] [CrossRef]
- Decressac, M.; Barker, R.A. Neuropeptide Y and its role in CNS disease and repair. Exp. Neurol. 2012, 238, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Gøtzsche, C.R.; Woldbye, D.P. The role of NPY in learning and memory. Neuropeptides 2016, 55, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Xapelli, S.; Santos, T.; Silva, A.P.; Cristóvão, A.; Cortes, L.; Malva, J.O. Neuropeptide Y Modulation of Interleukin-1β (IL-1β)-induced Nitric Oxide Production in Microglia. J. Biol. Chem. 2010, 285, 41921–41934. [Google Scholar] [CrossRef] [PubMed]
- Dyzma, M.; Boudjeltia, K.Z.; Faraut, B.; Kerkhofs, M. Neuropeptide Y and sleep. Sleep. Med. Rev. 2010, 14, 161–165. [Google Scholar] [CrossRef]
- Beck, B. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1159–1185. [Google Scholar] [CrossRef]
- Zheng, F.; Kim, Y.J.; Chao, P.T.; Bi, S. Overexpression of neuropeptide Y in the dorsomedial hypothalamus causes hyperphagia and obesity in rats. Obesity 2013, 21, 1086–1092. [Google Scholar] [CrossRef]
- Vona-Davis, L.C.; McFadden, D.W. NPY family of hormones: Clinical relevance and potential use in gastrointestinal disease. Curr. Top. Med. Chem. 2007, 7, 1710–1720. [Google Scholar] [CrossRef]
- Eaton, K.; Sallee, F.R.; Sah, R. Relevance of neuropeptide Y (NPY) in psychiatry. Curr. Top. Med. Chem. 2007, 7, 1645–1659. [Google Scholar] [CrossRef]
- Thorsell, A.; Slawecki, C.J.; El Khoury, A.; Mathe, A.A.; Ehlers, C.L. The effects of social isolation on neuropeptide Y levels, exploratory and anxiety-related behaviors in rats. Pharmacol. Biochem. Behav. 2006, 83, 28–34. [Google Scholar] [CrossRef]
- Overstreet, D.H.; Friedman, E.; Mathe, A.A.; Yadid, G. The Flinders Sensitive Line rat: A selectively bred putative animal model of depression. Neurosci. Biobehav. Rev. 2005, 29, 739–759. [Google Scholar] [CrossRef]
- Heilig, M. The NPY system in stress, anxiety and depression. Neuropeptides 2004, 38, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Diaz-delCastillo, M.; Woldbye, D.P.D.; Heegaard, A.M. Neuropeptide Y and its involvement in chronic pain. Neuroscience 2018, 387, 162–169. [Google Scholar] [CrossRef]
- Wheway, J.; Herzog, H.; Mackay, F. NPY and receptors in immune and inflammatory diseases. Curr. Top. Med. Chem. 2007, 7, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Farzi, A.; Reichmann, F.; Holzer, P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol. 2015, 213, 603–627. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.; Zakrzewicz, A.; Wilker, S.; Kuncová, J.; Hecker, A.; Grau, V.; Padberg, W.; Holler, J.P. Non-neuronal neuropeptide Y and its receptors during acute rejection of rat pulmonary allografts. Transpl. Immunol. 2017, 43–44, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, C.Y.; Chen, W.C.; Shi, Y.C.; Wang, C.M.; Lin, S.; He, H.F. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: A review. Cell Biosci. 2021, 11, 151. [Google Scholar] [CrossRef]
- Geloso, M.C.; Corvino, V.; Di Maria, V.; Marchese, E.; Michetti, F. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front. Cell Neurosci. 2015, 9, 85. [Google Scholar] [CrossRef]
- Zukowska-Grojec, Z.; Karwatowska-Prokopczuk, E.; Rose, W.; Rone, J.; Movafagh, S.; Ji, H.; Yeh, Y.; Chen, W.T.; Kleinman, H.K.; Grouzmann, E.; et al. Neuropeptide Y: A novel angiogenic factor from the sympathetic nerves and endothelium. Circ. Res. 1998, 83, 187–195. [Google Scholar] [CrossRef]
- Reichmann, F.; Holzer, P. Neuropeptide Y: A stressful review. Neuropeptides 2016, 55, 99–109. [Google Scholar] [CrossRef]
- Adrian, T.E.; Allen, J.M.; Bloom, S.R.; Ghatei, M.A.; Rossor, M.N.; Roberts, G.W.; Crow, T.J.; Tatemoto, K.; Polak, J.M. Neuropeptide Y distribution in human brain. Nature 1983, 306, 584–586. [Google Scholar] [CrossRef]
- Fetissov, S.O.; Kopp, J.; Hökfelt, T. Distribution of NPY receptors in the hypothalamus. Neuropeptides 2004, 38, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Yamada, S.; Watanabe, Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int. J. Mol. Sci. 2021, 22, 7287. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Sperk, G. Overexpression of NPY and Y2 receptors in epileptic brain tissue: An endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 2004, 38, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Neves, J.; Pereira de Almeida, L.; Cavadas, C. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol. Dis. 2016, 95, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Pain, S.; Brot, S.; Gaillard, A. Neuroprotective Effects of Neuropeptide Y against Neurodegenerative Disease. Curr. Neuropharmacol. 2022, 20, 1717–1725. [Google Scholar] [CrossRef]
- Decressac, M.; Pain, S.; Chabeauti, P.Y.; Frangeul, L.; Thiriet, N.; Herzog, H.; Vergote, J.; Chalon, S.; Jaber, M.; Gaillard, A. Neuroprotection by neuropeptide Y in cell and animal models of Parkinson’s disease. Neurobiol. Aging 2012, 33, 2125–2137. [Google Scholar] [CrossRef]
- Kim, T.A.; Syty, M.D.; Wu, K.; Ge, S. Adult hippocampal neurogenesis and its impairment in Alzheimer’s disease. Zool. Res. 2022, 43, 481–496. [Google Scholar] [CrossRef]
- Tobin, M.K.; Musaraca, K.; Disouky, A.; Shetti, A.; Bheri, A.; Honer, W.G.; Kim, N.; Dawe, R.J.; Bennett, D.A.; Arfanakis, K.; et al. Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. Cell Stem Cell 2019, 24, 974–982.e3. [Google Scholar] [CrossRef]
- Agasse, F.; Bernardino, L.; Kristiansen, H.; Christiansen, S.H.; Ferreira, R.; Silva, B.; Grade, S.; Woldbye, D.P.; Malva, J.O. Neuropeptide Y promotes neurogenesis in murine subventricular zone. Stem Cells 2008, 26, 1636–1645. [Google Scholar] [CrossRef]
- Croce, N.; Gelfo, F.; Ciotti, M.T.; Federici, G.; Caltagirone, C.; Bernardini, S.; Angelucci, F. NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: A possible role in neuroprotection? Mol. Cell Biochem. 2013, 376, 189–195. [Google Scholar] [CrossRef]
- Tayran, H.; Yilmaz, E.; Bhattarai, P.; Min, Y.; Wang, X.; Ma, Y.; Wang, N.; Jeong, I.; Nelson, N.; Kassara, N.; et al. ABCA7-dependent induction of neuropeptide Y is required for synaptic resilience in Alzheimer’s disease through BDNF/NGFR signaling. Cell Genom. 2024, 4, 100642. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Couz, M.; González-Pardo, H.; Arias, J.L.; Conejo, N.M. Hippocampal neuropeptide Y2 receptor blockade improves spatial memory retrieval and modulates limbic brain metabolism. Neurobiol. Learn. Mem. 2022, 187, 107561. [Google Scholar] [CrossRef]
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Liu, Y.B.; Liu, W.F.; Zhou, Y.Y.; He, H.F.; Lin, S. Neuropeptide Y Is an Immunomodulatory Factor: Direct and Indirect. Front. Immunol. 2020, 11, 580378. [Google Scholar] [CrossRef] [PubMed]
- Viles, J.H. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer’s Disease. Angew. Chem. Int. Ed. Engl. 2023, 62, e202215785. [Google Scholar] [CrossRef]
- Sultana, R.; Butterfield, D.A. Alterations of some membrane transport proteins in Alzheimer’s disease: Role of amyloid beta-peptide. Mol. Biosyst. 2008, 4, 36–41. [Google Scholar] [CrossRef]
- Santos-Carvalho, A.; Elvas, F.; Alvaro, A.R.; Ambrosio, A.F.; Cavadas, C. Neuropeptide Y receptors activation protects rat retinal neural cells against necrotic and apoptotic cell death induced by glutamate. Cell Death Dis. 2013, 4, e636. [Google Scholar] [CrossRef]
- Yarosh, H.L.; Angulo, J.A. Modulation of methamphetamine-induced nitric oxide production by neuropeptide Y in the murine striatum. Brain Res. 2012, 1483, 31–38. [Google Scholar] [CrossRef]
- Kir, H.M.; Sahin, D.; Oztaş, B.; Musul, M.; Kuskay, S. Effects of single-dose neuropeptide Y on levels of hippocampal BDNF, MDA, GSH, and NO in a rat model of pentylenetetrazole-induced epileptic seizure. Bosn. J. Basic. Med. Sci. 2013, 13, 242–247. [Google Scholar] [CrossRef]
- Arai, M.; Imamura, O.; Kondoh, N.; Dateki, M.; Takishima, K. Neuronal Ca2+ -dependent activator protein 1 (NCDAP1) induces neuronal cell death by activating p53 pathway following traumatic brain injury. J. Neurochem. 2019, 151, 795–809. [Google Scholar] [CrossRef]
- Qian, J.; Colmers, W.F.; Saggau, P. Inhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: Modulation of presynaptic Ca2+ entry. J. Neurosci. 1997, 17, 8169–8177. [Google Scholar] [CrossRef] [PubMed]
- Ochneva, A.; Zorkina, Y.; Abramova, O.; Pavlova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Pavlov, K.; Gurina, O.; Chekhonin, V. Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. Int. J. Mol. Sci. 2022, 23, 14498. [Google Scholar] [CrossRef] [PubMed]
- Aveleira, C.A.; Botelho, M.; Carmo-Silva, S.; Pascoal, J.F.; Ferreira-Marques, M.; Nóbrega, C.; Cortes, L.; Valero, J.; Sousa-Ferreira, L.; Álvaro, A.R.; et al. Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proc. Natl. Acad. Sci. USA 2015, 112, E1642–E1651. [Google Scholar] [CrossRef] [PubMed]
- Aveleira, C.A.; Botelho, M.; Cavadas, C. NPY/neuropeptide Y enhances autophagy in the hypothalamus: A mechanism to delay aging? Autophagy 2015, 11, 1431–1433. [Google Scholar] [CrossRef]
- Sherva, R.; Gross, A.; Mukherjee, S.; Koesterer, R.; Amouyel, P.; Bellenguez, C.; Dufouil, C.; Bennett, D.A.; Chibnik, L.; Cruchaga, C.; et al. Genome-wide association study of rate of cognitive decline in Alzheimer’s disease patients identifies novel genes and pathways. Alzheimers Dement. 2020, 16, 1134–1145. [Google Scholar] [CrossRef]
- Dumitrescu, L.; Mahoney, E.R.; Mukherjee, S.; Lee, M.L.; Bush, W.S.; Engelman, C.D.; Lu, Q.; Fardo, D.W.; Trittschuh, E.H.; Mez, J.; et al. Genetic variants and functional pathways associated with resilience to Alzheimer’s disease. Brain 2020, 143, 2561–2575. [Google Scholar] [CrossRef]
- Minthon, L.; Edvinsson, L.; Ekman, R.; Gustafson, L. Neuropeptide levels in Alzheimer’s disease and dementia with frontotemporal degeneration. J. Neural Transm. Suppl. 1990, 30, 57–67. [Google Scholar] [CrossRef]
- Alom, J.; Galard, R.; Catalan, R.; Castellanos, J.M.; Schwartz, S.; Tolosa, E. Cerebrospinal fluid neuropeptide Y in Alzheimer’s disease. Eur. Neurol. 1990, 30, 207–210. [Google Scholar] [CrossRef]
- Edvinsson, L.; Minthon, L.; Ekman, R.; Gustafson, L. Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia 1993, 4, 167–171. [Google Scholar] [CrossRef]
- Atack, J.R.; Beal, M.F.; May, C.; Kaye, J.A.; Mazurek, M.F.; Kay, A.D.; Rapoport, S.I. Cerebrospinal fluid somatostatin and neuropeptide Y. Concentrations in aging and in dementia of the Alzheimer type with and without extrapyramidal signs. Arch. Neurol. 1988, 45, 269–274. [Google Scholar] [CrossRef]
- Heilig, M.; Sjögren, M.; Blennow, K.; Ekman, R.; Wallin, A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol. Psychiatry 1995, 38, 210–216. [Google Scholar] [CrossRef]
- Gerashchenko, D.; Murillo-Rodriguez, E.; Lin, L.; Xu, M.; Hallett, L.; Nishino, S.; Mignot, E.; Shiromani, P.J. Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp. Neurol. 2003, 184, 1010–1016. [Google Scholar] [CrossRef]
- Koide, S.; Onishi, H.; Hashimoto, H.; Kai, T.; Yamagami, S. Plasma neuropeptide Y is reduced in patients with Alzheimer’s disease. Neurosci. Lett. 1995, 198, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Proto, C.; Romualdi, D.; Cento, R.M.; Spada, R.S.; Di Mento, G.; Ferri, R.; Lanzone, A. Plasma levels of neuropeptides in Alzheimer’s disease. Gynecol. Endocrinol. 2006, 22, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Mahar, I.; Albuquerque, M.S.; Mondragon-Rodriguez, S.; Cavanagh, C.; Davoli, M.A.; Chabot, J.G.; Williams, S.; Mechawar, N.; Quirion, R.; Krantic, S. Phenotypic Alterations in Hippocampal NPY- and PV-Expressing Interneurons in a Presymptomatic Transgenic Mouse Model of Alzheimer’s Disease. Front. Aging Neurosci. 2017, 8, 327. [Google Scholar] [CrossRef]
- Palop, J.J.; Chin, J.; Roberson, E.D.; Wang, J.; Thwin, M.T.; Bien-Ly, N.; Yoo, J.; Ho, K.O.; Yu, G.Q.; Kreitzer, A.; et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 2007, 55, 697–711. [Google Scholar] [CrossRef]
- Albuquerque, M.S.; Mahar, I.; Davoli, M.A.; Chabot, J.G.; Mechawar, N.; Quirion, R.; Krantic, S. Regional and sub-regional differences in hippocampal GABAergic neuronal vulnerability in the TgCRND8 mouse model of Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.; Baglietto-Vargas, D.; del Rio, J.C.; Moreno-Gonzalez, I.; Santa-Maria, C.; Jimenez, S.; Caballero, C.; Lopez-Tellez, J.F.; Khan, Z.U.; Ruano, D.; et al. Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1658–1672. [Google Scholar] [CrossRef] [PubMed]
- Krezymon, A.; Richetin, K.; Halley, H.; Roybon, L.; Lassalle, J.M.; Francès, B.; Verret, L.; Rampon, C. Modifications of hippocampal circuits and early disruption of adult neurogenesis in the tg2576 mouse model of Alzheimer’s disease. PLoS ONE 2013, 8, e76497. [Google Scholar] [CrossRef]
- Ishii, M.; Wang, G.; Racchumi, G.; Dyke, J.P.; Iadecola, C. Transgenic mice overexpressing amyloid precursor protein exhibit early metabolic deficits and a pathologically low leptin state associated with hypothalamic dysfunction in arcuate neuropeptide Y neurons. J. Neurosci. 2014, 34, 9096–9106. [Google Scholar] [CrossRef]
- Rose, J.B.; Crews, L.; Rockenstein, E.; Adame, A.; Mante, M.; Hersh, L.B.; Gage, F.H.; Spencer, B.; Potkar, R.; Marr, R.A.; et al. Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer’s disease. J. Neurosci. 2009, 29, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, V.V.; Santos, D.B.; Lach, G.; Rodrigues, A.L.; Farina, M.; De Lima, T.C.; Prediger, R.D. Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ(1-40)) administration in mice. Behav. Brain Res. 2013, 1, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Croce, N.; Dinallo, V.; Ricci, V.; Federici, G.; Caltagirone, C.; Bernardini, S.; Angelucci, F. Neuroprotective effect of neuropeptide Y against β-amyloid 25-35 toxicity in SH-SY5Y neuroblastoma cells is associated with increased neurotrophin production. Neurodegener. Dis. 2011, 8, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Croce, N.; Ciotti, M.T.; Gelfo, F.; Cortelli, S.; Federici, G.; Caltagirone, C.; Bernardini, S.; Angelucci, F. Neuropeptide Y protects rat cortical neurons against β-amyloid toxicity and re-establishes synthesis and release of nerve growth factor. ACS Chem. Neurosci. 2012, 3, 312–318. [Google Scholar] [CrossRef]
- Spencer, B.; Potkar, R.; Metcalf, J.; Thrin, I.; Adame, A.; Rockenstein, E.; Masliah, E. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease. J. Biol. Chem. 2016, 291, 1905–1920. [Google Scholar] [CrossRef]
- Zubkov, E.; Abramova, O.; Zorkina, Y.; Ochneva, A.; Ushakova, V.; Morozova, A.; Gurina, O.; Majouga, A.; Chekhonin, V. Intranasal neuropeptide Y is most effective in some aspects of acute stress compared to melatonin, oxytocin and orexin. Front. Pharmacol. 2022, 13, 1033186. [Google Scholar] [CrossRef]
Material | Sample | NPY Level | NPY Levels in AD | NPY Levels in Normal | Correlation of NPY Level with AD Stage | Reference |
---|---|---|---|---|---|---|
CSF | CTL—11; FTD—11; AD type dementia—17 | Decreased compared to CTL | 109 + 21 pmol/L | 139 ± 12 pmol/L | + | Minthon, 1990 [59] |
CSF | CTL—19; AD—20 | Decreased compared to CTL | 69.5 ± 36.7 pg/mL | 103 ± 21.8 pg/mL | + | Alom, 1990 [60] |
CSF | CTL—11; FTD—41; AD type dementia—39 | No difference | 120 ± 29 pmol/L | 139 ± 11 pmol/L | + | Edvinsson, 1993 [61] |
CSF | CTL—26; AD—27; AD with extrapyramidal symptoms—7 | No difference | 37.0 ± 12.3 pg/mL | 38.2 ± 12.8 pg/mL | − | Atack, 1988 [62] |
CSF | CTL—40; AD—36; VAD—26 | No difference | 144.5 ± 10.9 pmol/L | 138.3 ± 6.2 pmol/L | − | Heilig, 1995 [63] |
Plasma | CTL—25; AD—25 | Decreased compared to CTL | 143 ± 21 fmol/mL | 254 ± 29 fmol/mL | Not examined | Koide, 1995 [65] |
Plasma | CTL—14; AD—14 | No difference | 48.5 + 10.43 pmol/L | 41.5 + 13.26 pmol/L | Not examined | Proto, 2006 [66] |
Material | Model | NPY Administration | Effects of NPY Administration | Reference |
---|---|---|---|---|
Primary neurons treated with Aβ 1–42. | In vitro | 24 h pre-incubation with amidated C-terminal fragments of NPY 21–36 and 31–36 (dilutions ranging from 1 nm to 10 μm). | Protected human neuronal cultures from the neurotoxic effects of Aβ | Rose et al., 2009 [73] |
SH-SY5Y human neuroblastoma cells treated with Aβ 25–35 peptide | In vitro | 24 h pre-incubation with different NPY concentrations (0.5, 1 and 2 μM) | Prevented cell death.Restored levels of NGF (nerve growth factor) and BDNF protein and mRNA. | Croce et al., 2011 [75] |
Primary neurons treated with Aβ 1–42. | In vitro | 24 h pre-incubation with different NPY concentrations (0.5, 1, and 2 μM) | Increased cell viability. Increased NGF synthesis, normalized NGF release, and downregulated NGF mRNA expression. | Croce et al., 2012 [76] |
Primary rat cortical neurons treated with Aβ | In vitro | 24 h pre-incubation with NPY (1 μM) | Prevented cell death, increased level of mRNA BDNF | Croce et al., 2013 [77] |
B103 rat neuroblastoma cells or adult rat hippocampal neuronal progenitor cells treated with Aβ | In vitro | 24 h pre-incubation with a lentiviral vector expressing NPY with a blood–brain barrier transport tag (ApoB) | Increased neuronal survival | Spencer et al., 2016 [78] |
Transgenic mice expressing high levels of human neprilysin and APP | In vivo | i.c.v. administration of amidated C-terminal fragments of NPY 21–36 and 31–36 (for 28 days) | Decreased the area occupied by MAP2-immunoreactive dendrites in the neocortex. Ameliorated the neurodegenerative pathology | Rose et al., 2009 [73] |
Mice after intravenous injection of Aβ 1–40 | In vivo | Single i.c.v. administration of NPY (0.0234 mol/L) 15 min before i.c.v. infusion Aβ administration | Reduced oxidative stress in the prefrontal cortex and hippocampus. | dos Santos et al., 2013 [74] |
Mice expressing human APP751 (Line 41) under control of the mThy-1 promoter (APP-tg) | In vivo | A single intraperitoneal injection of Lentiviruses expressing the NPY-apoB (1 × 109 transducing units in a volume of 300 μL) with a blood–brain barrier transport tag | The NPY-apoB did not reduce Aβ accumulation, but increased neurogenesis and synaptic density, and resulted in behavioral improvements and widespread reduction in astrogliosis. | Spencer et al., 2016 [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapovalova, K.; Zorkina, Y.; Abramova, O.; Andryushchenko, A.; Chekhonin, V.; Kostyuk, G. The Role of Neuropeptide Y in the Pathogenesis of Alzheimer’s Disease: Diagnostic Significance and Neuroprotective Functions. Neurol. Int. 2024, 16, 1318-1331. https://doi.org/10.3390/neurolint16060100
Shapovalova K, Zorkina Y, Abramova O, Andryushchenko A, Chekhonin V, Kostyuk G. The Role of Neuropeptide Y in the Pathogenesis of Alzheimer’s Disease: Diagnostic Significance and Neuroprotective Functions. Neurology International. 2024; 16(6):1318-1331. https://doi.org/10.3390/neurolint16060100
Chicago/Turabian StyleShapovalova, Ksenia, Yana Zorkina, Olga Abramova, Alisa Andryushchenko, Vladimir Chekhonin, and Georgy Kostyuk. 2024. "The Role of Neuropeptide Y in the Pathogenesis of Alzheimer’s Disease: Diagnostic Significance and Neuroprotective Functions" Neurology International 16, no. 6: 1318-1331. https://doi.org/10.3390/neurolint16060100
APA StyleShapovalova, K., Zorkina, Y., Abramova, O., Andryushchenko, A., Chekhonin, V., & Kostyuk, G. (2024). The Role of Neuropeptide Y in the Pathogenesis of Alzheimer’s Disease: Diagnostic Significance and Neuroprotective Functions. Neurology International, 16(6), 1318-1331. https://doi.org/10.3390/neurolint16060100