Utilization of Single-Pulse Transcranial-Evoked Potentials in Neurological and Psychiatric Clinical Practice: A Narrative Review
Abstract
:1. Introduction
1.1. Single-Pulse TEP
1.2. Quantification of TEP
2. Methods
3. Review of Results
3.1. TEP Diagnostic Utility
3.2. Brain Aging and Neurodegeneration
Healthy Aging
3.3. Alzheimer’s Disease
3.4. Parkinson’s Disease (PD)
3.5. Brain Injury Diagnostic Prognostication
Disorders of Consciousness (DOCs)
3.6. Stroke Rehabilitation and Recovery
3.7. Neurological and Psychiatric Treatment Response and Monitoring
Major Depressive Disorder (MDD)
3.8. TEP in Prediction and Monitoring of Treatment Response
Reference | Frequency | Population | Treatment | n | Area of Stimulation | Stimulation Intensity | Main Finding |
---|---|---|---|---|---|---|---|
[72] | 0.2–0.3 | Healthy | Levetiracetam valproic acid lorazepam | 16 | M1L | 120% RMT | Levetiracetam, valproic acid, and lorazepam decreased cortical excitability. Levetiracetam increased TMS-evoked potential component N45 in a central cluster and decreased N100 in a contralateral cluster |
[67] | spTMS, not specified | Healthy | Dextromethorphan Perampanel | 16 | M1L | 100% | Dextromethorphan increased the amplitude of the N45 TEP, but it had no effect on TIOs (times of interest). Perampanel reduced P60 TEP amplitude in the non-stimulated hemisphere |
[73] | 0.4 ± 20% | Healthy | XEN1101 (a novel positive allosteric modulator of the potassium channel- phase I study). | 20 | M1L | 100% | The amplitudes of TEPs occurring at early (15–55 ms after TMS) and at late (150–250 ms after TMS) latencies were significantly suppressed from baseline by 20 mg of XEN1101; |
[68] | 0.167–0.25 | Healthy | BRV CBZ | 15 | M1 | 100% | Brivaracetam (BRV; 100 mg) decreased N100; Carbamazepine (CBZ; 600 mg) increased N45. |
[74] | 0.5 ± 25% | Healthy | DZP | 16 | M1 | 70 and 100% | Diazepam (DZP; 20 mg) decreased N100 and P180, and increased N45. |
[75] | spTMS, not specified | MDD | rTMS | 114 | l-LDPFC | 120% RMT | Higher baseline N100 predicted treatment success. |
[59] | spTMS, not specified | MDD | rTMS | 55 MDD 64 HCs | l-DLPFC | 100% RMT | P60/N100 and LMFP-AUC (164–215 ms) differentiated MDD from HCs; LMFP-AUC (150–185 ms) changed significantly following treatment compared to sham. |
[76] | spTMS, not specified | youth (aged 16–24 years old) | iTBS | 20 MDD undergoing (10 iTBS sessions) 30 MDD undergoing 20 iTBS session | l-DLPFC, r-DLPFC, l-IPL, r-IPL | Eliciting a 1 mV motor evoked potentials (MEPs). | Greater (i.e., more negative) N45 and smaller P60 baseline values were associated with greater treatment response to intermittent theta burst stimulation (iTBS). |
[70] | spTMS, not specified | MDD | rTMS | 30 | l-DLPFC | peak-to-peak MEP amplitude of 1 mV in 20 trials | N45 and N100 amplitudes (t = 2.177, p = 0.042) decreased after active rTMS. GMFP N100 amplitude decreased with improvement in depressive symptoms. ROC analysis demonstrated that baseline TEP amplitude at site of rTMS stimulation (left DLPFC) predicted resolution of suicidality with 87.5% sensitivity, 77.8% specificity, and 82.6% accuracy (AUC = 0.868, p = 0.003) |
[77] | spTMS, not specified | Adolescent MDD | rTMS | 36 | l-DLPFC and r-DLPFC | 120% RMT | N100 amplitude significantly decreased in response to intervention (emotional 1-back task and paired-pulse protocol applied at M1.) l-DLPFC N100 amplitude (but not r-DLPFC) was negatively correlated with depression severity. |
[71] | spTMS, not specified | AD | Rotigotine | 43 (Rotigotine) 43 (Placebo) | left DLPFC and left PPC | 80% RMT | DLPFC GMFP was increased in group treated with Rotigotine (dopamine agonist) compared with placebo. |
4. Discussion
5. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Julkunen, P.; Kimiskidis, V.K.; Belardinelli, P. Bridging the gap: TMS-EEG from lab to clinic. J. Neurosci. Methods 2022, 369, 109482. [Google Scholar] [CrossRef] [PubMed]
- Vucic, S.; Chen, K.-H.S.; Kiernan, M.C.; Hallett, M.; Benninger, D.; Di Lazzaro, V.; Rossini, P.M.; Benussi, A.; Berardelli, A.; Currà, A.; et al. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin. Neurophysiol. 2023, 150, 131–175. [Google Scholar] [CrossRef]
- Tremblay, S.; Rogasch, N.C.; Premoli, I.; Blumberger, D.M.; Casarotto, S.; Chen, R.; Di Lazzaro, V.; Farzan, F.; Ferrarelli, F.; Fitzgerald, P.B.; et al. Clinical utility and prospective of TMS–EEG. Clin. Neurophysiol. 2019, 130, 802–844. [Google Scholar] [CrossRef]
- Noda, Y. Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: A systematic review. Psychiatry Clin. Neurosci. 2020, 74, 12–34. [Google Scholar] [CrossRef]
- Lioumis, P.; Kičić, D.; Savolainen, P.; Mäkelä, J.P.; Kähkönen, S. Reproducibility of TMS—Evoked EEG responses. Hum. Brain Mapp. 2009, 30, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Casarotto, S.; Lauro, L.J.R.; Bellina, V.; Casali, A.G.; Rosanova, M.; Pigorini, A.; Defendi, S.; Mariotti, M.; Massimini, M. EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time. PLoS ONE 2010, 5, e10281. [Google Scholar] [CrossRef]
- Kerwin, L.J.; Keller, C.J.; Wu, W.; Narayan, M.; Etkin, A. Test-retest reliability of transcranial magnetic stimulation EEG evoked potentials. Brain Stimul. 2018, 11, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Gogulski, J.; Cline, C.C.; Ross, J.M.; Parmigiani, S.; Keller, C.J. Reliability of the TMS-evoked potential in dorsolateral prefrontal cortex. Cereb. Cortex 2024, 34, bhae130. [Google Scholar] [CrossRef] [PubMed]
- Miniussi, C.; Thut, G. Combining TMS and EEG offers new prospects in cognitive neuroscience. Brain Topogr. 2010, 22, 249–256. [Google Scholar] [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef]
- Farzan, F.; Bortoletto, M. Identification and verification of a ‘true’ TMS evoked potential in TMS-EEG. J. Neurosci. Methods 2022, 378, 109651. [Google Scholar] [CrossRef] [PubMed]
- Rogasch, N.C.; Thomson, R.H.; Farzan, F.; Fitzgibbon, B.M.; Bailey, N.W.; Hernandez-Pavon, J.C.; Daskalakis, Z.J.; Fitzgerald, P.B. Removing artefacts from TMS-EEG recordings using independent component analysis: Importance for assessing prefrontal and motor cortex network properties. NeuroImage 2014, 101, 425–439. [Google Scholar] [CrossRef]
- Farzan, F.; Vernet, M.; Shafi, M.M.D.; Rotenberg, A.; Daskalakis, Z.J.; Pascual-Leone, A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front. Neural Circuits 2016, 10, 73. [Google Scholar] [CrossRef]
- Guerra, A.; Ferreri, F.; Vecchio, F.; Vollero, L.; Petrichella, S.; Ponzo, D.; Määtta, S.; Mervaala, E.; Könönen, M.; Ursini, F.; et al. Sensorimotor cortex excitability and connectivity in Alzheimer’s disease: An EEG-TMS co-registration study. Hum. Brain Mapp. 2016, 37, 2083–2096. [Google Scholar] [CrossRef]
- Noda, Y.; Barr, M.S.; Zomorrodi, R.; Cash, R.F.H.; Lioumis, P.; Chen, R.; Daskalakis, Z.J.; Blumberger, D.M. Single-Pulse Transcranial Magnetic Stimulation-Evoked Potential Amplitudes and Latencies in the Motor and Dorsolateral Prefrontal Cortex among Young, Older Healthy Participants, and Schizophrenia Patients. J. Pers. Med. 2021, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto, M.; Veniero, D.; Thut, G.; Miniussi, C. The contribution of TMS–EEG coregistration in the exploration of the human cortical connectome. Neurosci. Biobehav. Rev. 2015, 49, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Cespón, J.; Pellicciari, M.C.; Casula, E.P.; Miniussi, C. Age-related Changes in Cortical Excitability Linked to Decreased Attentional and Inhibitory Control. Neuroscience 2022, 495, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, F.; Guerra, A.; Vollero, L.; Ponzo, D.; Maatta, S.; Mervaala, E.; Iannello, G.; Di Lazzaro, V. Age-related changes of cortical excitability and connectivity in healthy humans: Non-invasive evaluation of sensorimotor network by means of TMS-EEG. Neuroscience 2017, 357, 255–263. [Google Scholar] [CrossRef]
- Opie, G.M.; Sidhu, S.K.; Rogasch, N.C.; Ridding, M.C.; Semmler, J.G. Cortical inhibition assessed using paired-pulse TMS-EEG is increased in older adults. Brain Stimul. 2018, 11, 545–557. [Google Scholar] [CrossRef]
- Bai, Z.; Zhu, F.; Lou, X.; Zhang, J.J.; Jin, M.; Qin, W.; Tang, C.; Li, J.; Lu, J.; Lin, J.; et al. Considerable effects of lateralization and aging in intracortical excitation and inhibition. Front. Neurosci. 2023, 17, 1269474. [Google Scholar] [CrossRef]
- Ferreri, F.; Vecchio, F.; Guerra, A.; Miraglia, F.; Ponzo, D.; Vollero, L.; Iannello, G.; Maatta, S.; Mervaala, E.; Rossini, P.M.; et al. Age related differences in functional synchronization of EEG activity as evaluated by means of TMS-EEG coregistrations. Neurosci. Lett. 2017, 647, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Zifman, N.; Levy-Lamdan, O.; Suzin, G.; Efrati, S.; Tanne, D.; Fogel, H.; Dolev, I. Introducing a Novel Approach for Evaluation and Monitoring of Brain Health Across Life Span Using Direct Non-invasive Brain Network Electrophysiology. Front. Aging Neurosci. 2019, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Knezevic, D.; Zomorrodi, R.; Blumberger, D.M.; Daskalakis, Z.J.; Mulsant, B.H.; Pollock, B.G.; Voineskos, A.; Wang, W.; Rajji, T.K.; et al. Dorsolateral prefrontal cortex excitability abnormalities in Alzheimer’s Dementia: Findings from transcranial magnetic stimulation and electroencephalography study. Int. J. Psychophysiol. 2021, 169, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Tăuţan, A.M.; Casula, E.; Borghi, I.; Maiella, M.; Bonni, S.; Minei, M.; Assogna, M.; Ionescu, B.; Koch, G.; Santarnecchi, E. Preliminary study on the impact of EEG density on TMS-EEG classification in Alzheimer’s disease. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022, 2022, 394–397. [Google Scholar] [PubMed]
- Casula, E.P.; Borghi, I.; Maiella, M.; Pellicciari, M.C.; Bonnì, S.; Mencarelli, L.; Assogna, M.; D’Acunto, A.; Di Lorenzo, F.; Spampinato, D.A.; et al. Regional Precuneus Cortical Hyperexcitability in Alzheimer’s Disease Patients. Ann. Neurol. 2023, 93, 371–383. [Google Scholar] [CrossRef]
- Julkunen, P.; Jauhiainen, A.M.; Könönen, M.; Pääkkönen, A.; Karhu, J.; Soininen, H. Combining transcranial magnetic stimulation and electroencephalography may contribute to assess the severity of Alzheimer′s disease. Int. J. Alzheimer’s Dis. 2011, 2011, 654794. [Google Scholar] [CrossRef]
- Casarotto, S.; Määttä, S.; Herukka, S.-K.; Pigorini, A.; Napolitani, M.; Gosseries, O.; Niskanen, E.; Könönen, M.; Mervaala, E.; Rosanova, M.; et al. Transcranial magnetic stimulation-evoked EEG/cortical potentials in physiological and pathological aging. NeuroReport 2011, 22, 592–597. [Google Scholar] [CrossRef]
- Ferreri, F.; Guerra, A.; Vollero, L.; Ponzo, D.; Määtta, S.; Könönen, M.; Vecchio, F.; Pasqualetti, P.; Miraglia, F.; Simonelli, I.; et al. TMS-EEG Biomarkers of Amnestic Mild Cognitive Impairment Due to Alzheimer’s Disease: A Proof-of-Concept Six Years Prospective Study. Front. Aging Neurosci. 2021, 13, 737281. [Google Scholar] [CrossRef]
- Fogel, H.; Levy-Lamdan, O.; Zifman, N.; Hiller, T.; Efrati, S.; Suzin, G.; Hack, D.C.; Dolev, I.; Tanne, D. Brain Network Integrity Changes in Subjective Cognitive Decline: A Possible Physiological Biomarker of Dementia. Front. Neurol. 2021, 12, 699014. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Zhu, L.; Ren, H.; Dang, G.; Su, X.; Lan, X.; Jiang, X.; Zhang, X.; Feng, J.; et al. Classification of Cognitive Impairment and Healthy Controls Based on Transcranial Magnetic Stimulation Evoked Potentials. Front. Aging Neurosci. 2021, 13, 804384. [Google Scholar] [CrossRef]
- Tăuƫan, A.-M.; Casula, E.P.; Pellicciari, M.C.; Borghi, I.; Maiella, M.; Bonni, S.; Minei, M.; Assogna, M.; Palmisano, A.; Smeralda, C.; et al. TMS-EEG perturbation biomarkers for Alzheimer’s disease patients classification. Sci. Rep. 2023, 13, 7667. [Google Scholar] [CrossRef] [PubMed]
- Huntley, J.; Bor, D.; Deng, F.; Mancuso, M.; Mediano, P.A.M.; Naci, L.; Owen, A.M.; Rocchi, L.; Sternin, A.; Howard, R. Assessing awareness in severe Alzheimer’s disease. Front. Hum. Neurosci. 2022, 16, 1035195. [Google Scholar] [CrossRef]
- Bagattini, C.; Mutanen, T.P.; Fracassi, C.; Manenti, R.; Cotelli, M.; Ilmoniemi, R.J.; Miniussi, C.; Bortoletto, M. Predicting Alzheimer’s disease severity by means of TMS-EEG coregistration. Neurobiol. Aging 2019, 80, 38–45. [Google Scholar] [CrossRef]
- Maidan, I.; Zifman, N.; Hausdorff, J.M.; Giladi, N.; Levy-Lamdan, O.; Mirelman, A. A multimodal approach using TMS and EEG reveals neurophysiological changes in Parkinson’s disease. Park. Relat. Disord. 2021, 89, 28–33. [Google Scholar] [CrossRef]
- Leodori, G.; De Bartolo, M.I.; Guerra, A.; Fabbrini, A.; Rocchi, L.; Latorre, A.; Paparella, G.; Belvisi, D.; Conte, A.; Bhatia, K.P.; et al. Motor Cortical Network Excitability in Parkinson’s Disease. Mov Disord. 2022, 37, 734–744. [Google Scholar] [CrossRef]
- Leodori, G.; De Bartolo, M.I.; Piervincenzi, C.; Mancuso, M.; Ojha, A.; Costanzo, M.; Aiello, F.; Vivacqua, G.; Fabbrini, G.; Conte, A.; et al. Mapping Motor Cortical Network Excitability and Connectivity Changes in De Novo Parkinson’s Disease. Mov. Disord. 2024, 39, 1523–1532. [Google Scholar] [CrossRef]
- Pei, G.; Liu, X.; Huang, Q.; Shi, Z.; Wang, L.; Suo, D.; Funahashi, S.; Wu, J.; Zhang, J.; Fang, B. Characterizing cortical responses to short-term multidisciplinary intensive rehabilitation treatment in patients with Parkinson’s disease: A transcranial magnetic stimulation and electroencephalography study. Front. Aging Neurosci. 2022, 14, 1045073. [Google Scholar] [CrossRef] [PubMed]
- Casula, E.P.; Bassi, M.S.; Pellicciari, M.C.; Ponzo, V.; Veniero, D.; Peppe, A.; Brusa, L.; Stanzione, P.; Caltagirone, C.; Stefani, A.; et al. Subthalamic stimulation and levodopa modulate cortical reactivity in Parkinson’s patients. Park. Relat. Disord. 2017, 34, 31–37. [Google Scholar] [CrossRef]
- Passera, B.; Harquel, S.; Chauvin, A.; Gérard, P.; Lai, L.; Moro, E.; Meoni, S.; Fraix, V.; David, O.; Raffin, E. Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson’s disease and deep brain stimulation. Front. Neurosci. 2023, 17, 1004763. [Google Scholar] [CrossRef]
- Leodori, G.; Fabbrini, A.; Suppa, A.; Mancuso, M.; Tikoo, S.; Belvisi, D.; Conte, A.; Fabbrini, G.; Berardelli, A. Effective connectivity abnormalities in Lewy body disease with visual hallucinations. Clin. Neurophysiol. 2023, 156, 156–165. [Google Scholar] [CrossRef]
- Rosanova, M.; Gosseries, O.; Casarotto, S.; Boly, M.; Casali, A.G.; Bruno, M.-A.; Mariotti, M.; Boveroux, P.; Tononi, G.; Laureys, S.; et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 2012, 135, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Ragazzoni, A.; Pirulli, C.; Veniero, D.; Feurra, M.; Cincotta, M.; Giovannelli, F.; Chiaramonti, R.; Lino, M.; Rossi, S.; Miniussi, C. Vegetative versus minimally conscious states: A study using TMS-EEG, sensory and event-related potentials. PLoS ONE 2013, 8, e57069. [Google Scholar] [CrossRef] [PubMed]
- Casali, A.G.; Gosseries, O.; Rosanova, M.; Boly, M.; Sarasso, S.; Casali, K.R.; Casarotto, S.; Bruno, M.-A.; Laureys, S.; Tononi, G.; et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 2013, 5, 198ra105. [Google Scholar] [CrossRef]
- Sarasso, S.; Boly, M.; Napolitani, M.; Gosseries, O.; Charland-Verville, V.; Casarotto, S.; Rosanova, M.; Casali, A.G.; Brichant, J.-F.; Boveroux, P.; et al. Consciousness and Complexity during Unresponsiveness Induced by Propofol, Xenon, and Ketamine. Curr. Biol. 2015, 25, 3099–3105. [Google Scholar] [CrossRef]
- Casarotto, S.; Comanducci, A.; Rosanova, M.; Sarasso, S.; Fecchio, M.; Napolitani, M.; Pigorini, A.; Casali, A.G.; Trimarchi, P.D.; Boly, M.; et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann. Neurol. 2016, 80, 718–729. [Google Scholar] [CrossRef]
- Sinitsyn, D.O.; Poydasheva, A.G.; Bakulin, I.S.; Legostaeva, L.A.; Iazeva, E.G.; Sergeev, D.V.; Sergeeva, A.N.; Kremneva, E.I.; Morozova, S.N.; Lagoda, D.Y.; et al. Detecting the Potential for Consciousness in Unresponsive Patients Using the Perturbational Complexity Index. Brain Sci. 2020, 10, 917. [Google Scholar] [CrossRef]
- Comolatti, R.; Pigorini, A.; Casarotto, S.; Fecchio, M.; Faria, G.; Sarasso, S.; Rosanova, M.; Gosseries, O.; Boly, M.; Bodart, O.; et al. A fast and general method to empirically estimate the complexity of brain responses to transcranial and intracranial stimulations. Brain Stimul. 2019, 12, 1280–1289. [Google Scholar] [CrossRef]
- Arai, N.; Nakanishi, T.; Nakajima, S.; Li, X.; Wada, M.; Daskalakis, Z.J.; Goodman, M.S.; Blumberger, D.M.; Mimura, M.; Noda, Y. Insights of neurophysiology on unconscious state using combined transcranial magnetic stimulation and electroencephalography: A systematic review. Neurosci. Biobehav. Rev. 2021, 131, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Gong, A.; Wang, Q.; Guo, Y.; Zhang, Y.; Feng, Z. Breakdown of oscillatory effective networks in disorders of consciousness. CNS Neurosci. Ther. 2023, 30, e14469. [Google Scholar] [CrossRef]
- Bodart, O.; Amico, E.; Gómez, F.; Casali, A.G.; Wannez, S.; Heine, L.; Thibaut, A.; Annen, J.; Boly, M.; Casarotto, S.; et al. Global structural integrity and effective connectivity in patients with disorders of consciousness. Brain Stimul. 2018, 11, 358–365. [Google Scholar] [CrossRef]
- Bodart, O.; Gosseries, O.; Wannez, S.; Thibaut, A.; Annen, J.; Boly, M.; Rosanova, M.; Casali, A.G.; Casarotto, S.; Tononi, G.; et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. NeuroImage Clin. 2017, 14, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Sarasso, S.; D’ambrosio, S.; Fecchio, M.; Casarotto, S.; Viganò, A.; Landi, C.; Mattavelli, G.; Gosseries, O.; Quarenghi, M.; Laureys, S.; et al. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain 2020, 143, 3672–3684. [Google Scholar] [CrossRef] [PubMed]
- Tscherpel, C.; Dern, S.; Hensel, L.; Ziemann, U.; Fink, G.R.; Grefkes, C. Brain responsivity provides an individual readout for motor recovery after stroke. Brain 2020, 143, 1873–1888. [Google Scholar] [CrossRef]
- Tecchio, F.; Giambattistelli, F.; Porcaro, C.; Cottone, C.; Mutanen, T.P.; Pizzella, V.; Marzetti, L.; Ilmoniemi, R.J.; Vernieri, F.; Rossini, P.M. Effective Intracerebral Connectivity in Acute Stroke: A TMS–EEG Study. Brain Sci. 2023, 13, 233. [Google Scholar] [CrossRef]
- Manganotti, P.; Acler, M.; Masiero, S.; Del Felice, A. TMS-evoked N100 responses as a prognostic factor in acute stroke. Funct. Neurol. 2015, 30, 125–130. [Google Scholar]
- Bai, Z.; Zhang, J.J.; Fong, K.N.K. Intracortical and intercortical networks in patients after stroke: A concurrent TMS-EEG study. J. Neuroeng. Rehabil. 2023, 20, 100. [Google Scholar] [CrossRef]
- Pellicciari, M.C.; Bonnì, S.; Ponzo, V.; Cinnera, A.M.; Mancini, M.; Casula, E.P.; Sallustio, F.; Paolucci, S.; Caltagirone, C.; Koch, G. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. NeuroImage 2018, 175, 365–378. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, J.J.; Fong, K.N.K. Immediate Effects of Intermittent Theta Burst Stimulation on Primary Motor Cortex in Stroke Patients: A Concurrent TMS-EEG Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2758–2766. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, X.-X.; Wei, S.; Zhao, D.; Ding, J.; Xu, Y.; Yu, C.; Chen, Z.; Zhou, D.-S.; Yuan, T.-F. Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: A randomized double-blind trial and TMS-EEG study. Cell Rep. Med. 2023, 4, 101060. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; Liu, Q.; Zheng, C.; Yu, C.; Hou, G.; Chen, Z.; Chen, Y.; Chen, Y.; Zhu, G.; et al. TMS-evoked potential in the dorsolateral prefrontal cortex to assess the severity of depression disease: A TMS-EEG study. Front. Pharmacol. 2023, 14, 1207020. [Google Scholar] [CrossRef]
- Ferreri, F.; Pasqualetti, P.; Määttä, S.; Ponzo, D.; Ferrarelli, F.; Tononi, G.; Mervaala, E.; Miniussi, C.; Rossini, P.M. Human brain connectivity during single and paired pulse transcranial magnetic stimulation. NeuroImage 2011, 54, 90–102. [Google Scholar] [CrossRef]
- Ferreri, F.; Vecchio, F.; Ponzo, D.; Pasqualetti, P.; Rossini, P.M. Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: An EEG-TMS study. Hum. Brain Mapp. 2014, 35, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- Nikulin, V.V.; Kičić, D.; Kähkönen, S.; Ilmoniemi, R.J. Modulation of electroencephalographic responses to transcranial magnetic stimulation: Evidence for changes in cortical excitability related to movement. Eur. J. Neurosci. 2003, 18, 1206–1212. [Google Scholar] [CrossRef]
- Premoli, I.; Rivolta, D.; Espenhahn, S.; Castellanos, N.; Belardinelli, P.; Ziemann, U.; Müller-Dahlhaus, F. Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG. NeuroImage 2014, 103, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Premoli, I.; Castellanos, N.; Rivolta, D.; Belardinelli, P.; Bajo, R.; Zipser, C.; Espenhahn, S.; Heidegger, T.; Müller-Dahlhaus, F.; Ziemann, U. TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J. Neurosci. 2014, 34, 5603–5612. [Google Scholar] [CrossRef] [PubMed]
- Premoli, I.; Biondi, A.; Carlesso, S.; Rivolta, D.; Richardson, M.P. Lamotrigine and levetiracetam exert a similar modulation of TMS-evoked EEG potentials. Epilepsia 2017, 58, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, P.; König, F.; Liang, C.; Premoli, I.; Desideri, D.; Müller-Dahlhaus, F.; Gordon, P.C.; Zipser, C.; Zrenner, C.; Ziemann, U. TMS-EEG signatures of glutamatergic neurotransmission in human cortex. Sci. Rep. 2021, 11, 8159. [Google Scholar] [CrossRef]
- Darmani, G.; Bergmann, T.O.; Zipser, C.; Baur, D.; Müller-Dahlhaus, F.; Ziemann, U. Effects of antiepileptic drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study. Hum. Brain Mapp. 2019, 40, 1276–1289. [Google Scholar] [CrossRef]
- Strafella, R.; Momi, D.; Zomorrodi, R.; Lissemore, J.; Noda, Y.; Chen, R.; Rajji, T.K.; Griffiths, J.D.; Vila-Rodriguez, F.; Downar, J.; et al. Identifying Neurophysiological Markers of Intermittent Theta Burst Stimulation in Treatment-Resistant Depression Using Transcranial Magnetic Stimulation–Electroencephalography. Biol. Psychiatry 2023, 94, 454–465. [Google Scholar] [CrossRef]
- Voineskos, D.; Blumberger, D.M.; Rogasch, N.C.; Zomorrodi, R.; Farzan, F.; Foussias, G.; Rajji, T.K.; Daskalakis, Z.J. Neurophysiological effects of repetitive transcranial magnetic stimulation (rTMS) in treatment resistant depression. Clin. Neurophysiol. 2021, 132, 2306–2316. [Google Scholar] [CrossRef]
- Koch, G.; Motta, C.; Bonni, S.; Martorana, A.; Di Lorenzo, F. fect of Rotigotine vs Placebo on Cognitive Functions Among Patients with Mild to Moderate Alzheimer Disease: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2010372. [Google Scholar] [CrossRef] [PubMed]
- Ruijs, T.Q.; Heuberger, J.A.A.C.; de Goede, A.A.; Ziagkos, D.; Otto, M.E.; Doll, R.J.; van Putten, M.J.A.M.; Groeneveld, G.J. Transcranial magnetic stimulation as biomarker of excitability in drug development: A randomized, double-blind, placebo-controlled, cross-over study. Br. J. Clin. Pharmacol. 2022, 88, 2926–2937. [Google Scholar] [CrossRef] [PubMed]
- Premoli, I.; Rossini, P.G.; Goldberg, P.Y.; Posadas, K.; Green, L.; Yogo, N.; Pimstone, S.; Abela, E.; Beatch, G.N.; Richardson, M.P. TMS as a pharmacodynamic indicator of cortical activity of a novel anti-epileptic drug, XEN1101. Ann. Clin. Transl. Neurol. 2019, 6, 2164–2174. [Google Scholar] [CrossRef]
- Premoli, I.; Király, J.; Müller-Dahlhaus, F.; Zipser, C.M.; Rossini, P.; Zrenner, C.; Ziemann, U.; Belardinelli, P. Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials. Brain Stimul. 2018, 11, 818–827. [Google Scholar] [CrossRef]
- Strafella, R.; Chen, R.; Rajji, T.K.; Blumberger, D.M.; Voineskos, D. Resting and TMS-EEG markers of treatment response in major depressive disorder: A systematic review. Front. Hum. Neurosci. 2022, 16, 940759. [Google Scholar] [CrossRef] [PubMed]
- Dhami, P.; Moreno, S.; Croarkin, P.E.; Blumberger, D.M.; Daskalakis, Z.J.; Farzan, F. Baseline markers of cortical excitation and inhibition predict response to theta burst stimulation treatment for youth depression. Sci. Rep. 2023, 13, 19115. [Google Scholar] [CrossRef]
- Biermann, L.; Wunram, H.L.; Pokorny, L.; Breitinger, E.; Großheinrich, N.; Jarczok, T.A.; Bender, S. Changes in the TMS-evoked potential N100 in the dorsolateral prefrontal cortex as a function of depression severity in adolescents. J. Neural Transm. 2022, 129, 1339–1352. [Google Scholar] [CrossRef]
- Mimura, Y.; Nishida, H.; Nakajima, S.; Tsugawa, S.; Morita, S.; Yoshida, K.; Tarumi, R.; Ogyu, K.; Wada, M.; Kurose, S.; et al. Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 121, 47–59. [Google Scholar] [CrossRef]
- Fischer, D.; Edlow, B.L. Coma Prognostication After Acute Brain Injury: A Review. JAMA Neurol. 2024, 81, 405. [Google Scholar] [CrossRef]
- Cantello, R.; Civardi, C.; Cavalli, A.; Varrasi, C.; Tarletti, R.; Monaco, F.; Migliaretti, G. Cortical excitability in cryptogenic localization-related epilepsy: Interictal transcranial magnetic stimulation studies. Epilepsia 2000, 41, 694–704. [Google Scholar] [CrossRef]
- Brodtmann, A.; Macdonell, R.L.; Gilligan, A.; Curatolo, J.; Berkovic, S. Cortical excitability and recovery curve analysis in generalized epilepsy. Neurology 1999, 53, 1347. [Google Scholar] [CrossRef] [PubMed]
- Gefferie, S.R.; Jiménez-Jiménez, D.; Visser, G.H.; Helling, R.M.; Sander, J.W.; Balestrini, S.; Thijs, R.D. Transcranial magnetic stimulation-evoked electroencephalography responses as biomarkers for epilepsy: A review of study design and outcomes. Hum. Brain Mapp. 2023, 44, 3446–3460. [Google Scholar] [CrossRef] [PubMed]
Study | Frequency (Hz) | Younger (Mean Age ± std) | Older (Mean Age ± std) | Area of Stimulation | Stimulation Intensity | Main Finding |
---|---|---|---|---|---|---|
[20] | 0.2–0.25 | 21 (28.1 ± 3.2) | 21 (62.8 ± 4.2) | M1L | 110% RMT | N100 amplitudes were significantly reduced in older participants. N100 and P180 latencies were significantly delayed in older participants. Results did not indicate a link between the interhemispheric differences in TEP and age. |
[17] | 0.25–0.5 | 21 (22.6 ± 2.6) | 20 (67 ± 3.11) | Angular gyrus/supramarginal gyrus | 80% RMT | Decreased GMFP amplitude within 100–200 ms in older compared to young adults. Older adults showed smaller N45 amplitude and delayed P180 latency. |
[15] | Single (not specified) | 12 (39 ± 12) | 12 (72 ± 9) | M1L, DLPFC | 1 mV p2p | M1L: Reduced amplitudes of N45 and P180 and delayed latency of P60 in older adults. Left DLPFC stimulation revealed: Decreased N45 amplitude and delayed latency in N45-P60 over the right central region in older adults. |
[22] | 0.1, 1 | 30 (35 ± 6.6) | 30 (61 ± 5.9), 17 (75.4 ± 5.6) | M1L | 25–60% DI | P60-N100 slope, N100-P180 slope decreased with age. General and late latency STP (relative amplitude of response to 1 Hz stimulation versus spTMS) was increased. |
[19] | 0.2 | 17 (24.2 ± 1) | 17 (71.4 ± 1) | M1L | 120% RMT | N45 amplitude was increased in older adults, and both N100 and P180 showed altered spatial distributions. Earlier P30 and later P180 were observed in the elderly group. |
[18] | 0.167–0.25 | 12 (24.5) | 12 (67.6) | M1L | 120% RMT | GMFP decreased with age. P30 was globally increased in the older participants. N45 was decreased ipsilateral to stimulation. N100 was decreased (frontally) and increased (at Cz) and P180 was globally decreased in older subjects. |
Reference | Frequency | AD | HCs | Area of Stimulation | Stimulation Intensity | Main Finding |
---|---|---|---|---|---|---|
[31] | 0.25–0.5 | 38 | 17 | l-DLPFC | 90% MT | Classification with random forest analysis. Increased 45–80 ms amplitude in AD. |
[25] | 0.25–0.5 | 65 | 21 | l-DLPFC, PC, l-PPC | 90% MT | Hyperexcitability of AD compared to controls in the precuneus (PC) (P30, P65, P120) and DLPFC (increased P30 amplitude). PC was correlated to MMSE score and CSF aϐ, while PCC P30 was correlated with Tau and p-Tau levels. |
[24] | 0.25–0.5 | 17 | 17 | l-DLPFC | 90% MT | Increase in 25–40, 45–80, 85–150, 160–250 amplitudes and GMFP. |
[32] | Not specified. | 3 AD | 8 | Vertex | 120% MT | People with severe AD demonstrated a PCIST near or below the threshold for consciousness. |
[23] | 0.1 | 24 | 11 | DLPFC | SI-1mv | Increased amplitude in 25–80 ms (no difference in P30, N45, P60). |
[29] | 0.1 | 17 Subjective cognitive decline (SCD) 12 amnestic mild cognitive impairment (aMCI) 11 Dementia | 15 | M1L | 80% MT | Lower amplitude (AUC) of entire TEP and a change in TEP stereotypical waveform structure of subjective cognitive decline, MCI, and mild dementia groups compared to cognitively normal controls. STP (relative amplitude of response to 1 Hz stimulation versus spTMS) was different only in aMCI and dementia but not in SCD. |
[30] | 0.3 | 21 (Cognitive Impairment (CI) | 22 | l-DLPFC | 120% RMT | M100 (LMFP), N100 average value (AVG), N100 latency and amplitude contributed most in classification of AD |
[28] | 0.125–0.167 | 17 aMCI (7 pMCI turn over to AD in the course of 6 years FU, 6 npMCI- no turn over to AD). | 15 | M1L | 120% RMT | Stability of dipolar activity (sDA)-STD of GMFP across time was reduced in pMCI compared with npAD-MCI. |
[33] | 0.25–0.5 | 34 | l-DLPFC | 110% MT | P30 amplitude increased as MMSE decreased (significant negative correlation of P30 and cognitive score in MMSE) | |
[22] | 0.1, 1 | 20 (75.2) | 17 | M1L | 25–60% of Device Intensity | P60-N100 slope, N100-P180 slope, general and late latencies were shorter and STP (relative amplitude of response to 1 Hz stimulation versus spTMS) was decreased in mild dementia compared to age-matched controls. |
[14] | 0.125–0.167 | 12 | 12 | M1L | 120% MT | Higher GMFP 24–90 ms, higher P30 and P60 amplitudes, and delayed latency of N100 in AD compared to controls. |
[26] | 0.3–0.5 | 5 AD 5 MCI | 4 | M1L, M1R | 110% MT | Decreased P30 amplitude in MCI and AD compared to controls, with successful discrimination of HCs from MCI and AD and an inverse correlation with global CDR and CDR-SOB. |
[27] | 0.5–0.6 | 9 AD | 9 elder healthy 9 young healthy | left superior frontal cortex (Brodmann’s areas BA6/8) | 110 V/m | Amplitude of early TEP latencies (10–45 ms) was reduced in AD compared to controls. |
Reference | Frequency | PD | HCs | Area of Stimulation | Stimulation Intensity | Main Finding |
---|---|---|---|---|---|---|
[36] | spMT (not specified) | 28 early, drug-naive PD | 28 | M1 or pre-SMA | 110% RMT | Reduced M1 TEP P30 amplitude in de novo PD patients compared to HCs and similar pre-SMA TEP N40 amplitude between groups. |
[40] | 0.2 Hz | 12 PD 8 PDD 6 DLB (11 had VHs and 15 did not have VHs) | - | Right V1, right V2, intraparietal sulcus, and the right frontal eye fields | 160% RMT | Patients with VHs showed decreased TMS-evoked cortical activation within the DAN relative to patients without VHs following intraparietal sulcus and frontal eye field stimulation. No difference was found between patients with and without cognitive impairment. |
[39] | 0.2–0.33 Hz | 6 (PD with motor fluctuations) | - | M1 Pre-supplementary motor area (pre-SMA) Inferior frontal gyrus (IFG) | 120% RMT | No significant treatment effects observed. Tendency of LMFP measured in response to IFG stimulation to show the strongest difference between the ON and OFF DBS conditions, with higher LMFP at OFF state in 60–100 ms. M1 LMFP differences between ON/OFF were in 10 to 30 ms TEP latencies. |
[37] | 0.25–0.5 Hz | 48 | - | M1L | 90% RMT | Primary motor cortex stimulation reduced GMFP amplitudes in responders but not significantly in non-responders (multidisciplinary intensive rehabilitation treatment (MIRT)). |
[36] | 0.6 Hz | 20 (PD with motor fluctuations) | 19 | M1 and pre-SMA | 110% RMT | Compared to HCs, PD (OFF) patients had smaller P30 responses from the M1s contralateral (M1+) and ipsilateral (M1−) to the most bradykinetic side and increased pre-SMA N40. Dopaminergic therapy normalized the amplitude of M1+ and M1− P30 as well as pre-SMA N40. Positive correlation between M1+ P30 amplitude and bradykinesia in PD (OFF) patients. |
[34] | 0.1 Hz | 32 | 21 | M1L, M1R, l-DLPFC, r-DLPFC | 80% RMT | PD TEP stereotypical waveform structure changes, lower intertrial adherence, decreased left–right interhemispheric connectivity, and lower P60-N100 amplitude. |
[38] | 0.16–0.25 Hz | 6 (advanced akinetic–rigid PD) | 8 | M1L | 90% RMT | A significant increase in GMFP amplitude in DBS (OFF/ON) only vs. no intervention (OFF/OFF) from 63–80 ms after the TMS pulse. Both levodopa and DBS (ON/ON) compared to no intervention (OFF/OFF) revealed a significant increase in GMFP from 70–80 ms after TMS and from 108–128 ms after TMS. Both levodopa and DBS (ON/ON) compared to only DBS condition (OFF/ON) showed a significant increase in GMFP from 107–147 ms after TMS. Only the ON/ON state was not reduced relative to HCs. |
Reference | Freq | DOCs | HCs | Area of Stimulation | Stimulation Intensity | Main Finding |
---|---|---|---|---|---|---|
[49] | 0.4 Hz | 48 (28 MCS, 20 UWS) | 25 | Frontal, senso-motor, parietal | 90% MT | Reduced spatial and temporal propagation. PSD, oscillations. |
[46] | 0.43–0.5 Hz | 12 MCS 11 UWS | - | Superior frontal and/or parietal cortex | 120 V/m | Successfully replicated the performance of PCI in discriminating between UWS and MCS patients of Casarotto et al. [45] |
[47] | Single, not specified | 49 MCS 43 UWS 5 LIS 11 EMCS | 108 | Middle-caudal portion of the superior frontal gyrus; and superior parietal lobule | 120 V/m −160 V/m | Introduced PCIST, a faster method for estimating perturbational complexity and demonstrated same accuracy as the original PCI. |
[50] | Single, not specified | 15 MCS 3 UWS 3 EMCS | 14 | Left or right superior parietal lobule and superior frontal lobule | 100–150 V/m | Global FA predicted 74% of PCI variance in the whole sample and 56% in the patient group. No other predictors (age, gender, time since onset, behavioral score) improved the models. FA and PCI were correlated in the whole population (r = 0.86, p < 0.0001), as well as in the patient and healthy subgroups. |
[51] | 0.43–0.5 Hz | 11 MCS 9 UWS 2 EMCS 2 LIS | - | Left and right medial part of the superior frontal and parietal gyri | 120 V/m | FDG-PET and PCI showed congruent results in 22 patients, regardless of their behavioral diagnosis. Notably, FDG-PET and PCI revealed preserved metabolic rates and high complexity levels in four patients who were behaviorally unresponsive. |
[45] | Single, not specified | 43 MCS 38 VS | 150 healthy different states (sleep and anesthesia) and conscious injured patient (benchmark population) | Middle-caudal portion of the superior frontal gyrus; and superior parietal lobule | 120 V/m −160 V/m | Established PCI threshold (0.31) in a benchmark population. In a validation cohort of MCS and VS max PCI classified MCS with high sensitivity. VS patients demonstrated 3 levels of complexity. Concerning the outcome at 6 months, 6 of 9 (1 unknown) high-complexity VS patients transitioned to a behavioral MCS, whereas such a transition was observed in 5 of 21 (2 unknown) low-complexity patients. None of the no-response subgroup showed improvement. |
[44] | 0.5 Hz | - | 18 HCs (randomly assigned to propofol, xenon, and ketamine) | Superior parietal gyrus (BA07), the rostral portion of the premotor cortex (BA06) | 110 V/m | Complexity of EEG responses was high during wakefulness, low when subjects reported no conscious experiences upon emergence from anesthesia (propofol and xenon), and high when they reported intense dreams (ketamine). |
[42] | 0.25–0.5 Hz | 5 MCS 8 VS | 5 | M1L or M1R | 75% DI | VS patients exhibited no or only ipsilateral TEPs with reduced amplitudes. |
[43] | not specified | 6 VS/UWS 2 LIS 6 MCS 6 EMCS | 32 HCs | Superior occipital gyrus (BA19), the middle superior frontal gyrus (BA08), the superior parietal gyrus (BA07), the rostral portion of the premotor cortex (BA06), and the midline sensorimotor cortex (BA04) | 90–160 V/m | Data collected from previous experiments were analyzed and introduced in support of the reliability and validity of the PCI index for measurements of consciousness. Awake healthy subject PCI values ranged from 0.44 to 0.67 and decreased to 0.18–0.28 during NREM sleep. PCI also decreased with use of anesthetics with midazolam deep sedation (0.23 to 0.31), propofol (0.13–0.30), and xenon (0.12–0.31). In DOC patients, minimally conscious state showed intermediate values (0.32–0.49), vegetative state being unconscious with lowest values(0.19–0.31) and those with locked-in syndrome clearly aware showing highest values (0.51–0.62). Conscious state was reflected in the PCI of a VS patient that recovered a minimal level of consciousness. |
[41] | 0.4–0.5 Hz | 5 MCS 5 V 2 LIS | - | the left and right medial third of the superior parietal gyrus and the left and right medial third of the superior frontal gyrus. | 140 V/m −160 V/m | GMFPs of VS remained localized involving a small number of sources around the stimulated area. |
Study | Freq | Stroke | HCs | Area of Stimulation | Stimulation Intensity | Main Finding |
---|---|---|---|---|---|---|
[54] | 0.16–0.25 | 17 | 9 | M1L, M1R | 120% RMT | Lesioned hemisphere hyperexcitable compared to healthy controls and the contralesional side. |
[58] | spTMS, Not specified | 20 | - | Ipsilesional M1 | 120% RMT | GMFP P30 (ipsilesional M1) increased following active rTMS treatment but not following sham. |
[56] | 0.2–0.25 | 23 | 21 | Ipsilesional M1 | 120% RMT | Reduction in N100 amplitude around the stimulated M1, which also correlated with MEP amplitude and RMT. |
[53] | 0.125–0.16 | 28 | - | Ipsilesional M1 | 80% RMT | Simplified TEPs with fewer components/peaks ipsilateral to the lesion compared to contralateral hemisphere. |
[52] | 0.5 Hz | 30 | - | Ipsilesional M1 | electric field of ~120 V/m | Perilesional stimulation resulted in simpler TEPs. |
[57] | 0.25–0.5 | 13 | 10 | Ipsilesional M1 | 90% RMT | M1 GMFP decreased compared to controls. Increased GMFP (50–100 ms) interhemispheric amplitude differences with longer time from cerebrovascular event. |
[55] | 0.2–0.25 | 9 | - | Ipsilesional M1 | 110% RMT | Reduced M1 N100 amplitude predicted positive rehabilitation outcome. |
Reference | Frequency | MDD | HCs | Area of Stimulation | Stimulation Intensity | Main Finding |
---|---|---|---|---|---|---|
[59] | spTMS, not specified | 74 | 64 | l-DLPFC (F3) | 100% RMT | LMFP (164–215 ms) was reduced in MDD and P60/N100 ratio lower compared to controls. |
[60] | 0.2 Hz | 42 | 41 | l-DLPFC(F3) | 100% RMT | P60 smaller for MDD and associated with increase in depressive symptoms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogel, H.; Zifman, N.; Hallett, M. Utilization of Single-Pulse Transcranial-Evoked Potentials in Neurological and Psychiatric Clinical Practice: A Narrative Review. Neurol. Int. 2024, 16, 1421-1437. https://doi.org/10.3390/neurolint16060106
Fogel H, Zifman N, Hallett M. Utilization of Single-Pulse Transcranial-Evoked Potentials in Neurological and Psychiatric Clinical Practice: A Narrative Review. Neurology International. 2024; 16(6):1421-1437. https://doi.org/10.3390/neurolint16060106
Chicago/Turabian StyleFogel, Hilla, Noa Zifman, and Mark Hallett. 2024. "Utilization of Single-Pulse Transcranial-Evoked Potentials in Neurological and Psychiatric Clinical Practice: A Narrative Review" Neurology International 16, no. 6: 1421-1437. https://doi.org/10.3390/neurolint16060106
APA StyleFogel, H., Zifman, N., & Hallett, M. (2024). Utilization of Single-Pulse Transcranial-Evoked Potentials in Neurological and Psychiatric Clinical Practice: A Narrative Review. Neurology International, 16(6), 1421-1437. https://doi.org/10.3390/neurolint16060106