Application of Muscle Synergies for Gait Rehabilitation After Stroke: Implications for Future Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Eligibility Criteria
2.3. Extraction of Study Characteristics
2.4. Integration of MS Features in Stroke Patients Compared to Controls
2.5. Extraction of Implications for Future Research
3. Results
3.1. Selected Studies
3.2. Study Characteristics
3.3. Number of MS in the Paretic Side of Limb by Stroke
3.4. MS Features in the Paretic Side of Limb by Stroke
4. Discussion
4.1. Number of MSs in Stroke Gait
4.2. Spatial Features of MS in Stroke Gait
4.3. Temporal Features of MS in Stroke Gait
4.4. Future Challenges for Gait Rehabilitation for Stroke Patients Based on MS
- Features of MS: for the key muscles (i.e., RF, hamstring, and TA), which are changed primarily in spatial features, how can we restore the weighted activation within specific MSs, and how can we improve the recovery of the activation timing of S2?
- Synergy merging and fractionation: How can we rapidly achieve the unmerging of MSs and enhance motor control complexity? Could single synergy-focused rehabilitation bring about significant changes not only in the recovery of muscle synergies but also in the unmerging of MSs?
- Gait difficulty considerations: what should be addressed in rehabilitation when considering gait conditions: straight versus curved walking or slow versus fast walking?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, C. Overview of Cardiac Rehabilitation and Current Situations in Korea. Ann. Cardiopulm. Rehabil. 2021, 1, 6–16. [Google Scholar] [CrossRef]
- Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Olsen, T.S. Recovery of Walking Function in Stroke Patients: The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 1995, 76, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Veerbeek, J.M.; Van Wegen, E.E.H.; Harmeling–Van Der Wel, B.C.; Kwakkel, G.; EPOS Investigators. Is Accurate Prediction of Gait in Nonambulatory Stroke Patients Possible Within 72 Hours Poststroke? The EPOS Study. Neurorehabil. Neural Repair 2011, 25, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, H.T.; Van Limbeek, J.; Geurts, A.C.; Zwarts, M.J. Motor Recovery after Stroke: A Systematic Review of the Literature. Arch. Phys. Med. Rehabil. 2002, 83, 1629–1637. [Google Scholar] [CrossRef]
- Schaechter, J.D. Motor Rehabilitation and Brain Plasticity after Hemiparetic Stroke. Prog. Neurobiol. 2004, 73, 61–72. [Google Scholar] [CrossRef]
- Vitiello, N.; Oddo, C.M.; Lenzi, T.; Roccella, S.; Beccai, L.; Vecchi, F.; Carrozza, M.C.; Dario, P. Neuro-Robotics Paradigm for Intelligent Assistive Technologies. In Intelligent Assistive Robots; Mohammed, S., Moreno, J.C., Kong, K., Amirat, Y., Eds.; Springer Tracts in Advanced Robotics; Springer International Publishing: Cham, Switzerland, 2015; Volume 106, pp. 1–40. ISBN 978-3-319-12921-1. [Google Scholar]
- Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A Review in Gait Rehabilitation Devices and Applied Control Techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 819–834. [Google Scholar] [CrossRef]
- Selves, C.; Stoquart, G.; Lejeune, T. Gait Rehabilitation after Stroke: Review of the Evidence of Predictors, Clinical Outcomes and Timing for Interventions. Acta Neurol. Belg. 2020, 120, 783–790. [Google Scholar] [CrossRef]
- Park, J.; Kim, T.-H. The Effects of Balance and Gait Function on Quality of Life of Stroke Patients. NeuroRehabilitation 2019, 44, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Baker, R. Gait Analysis Methods in Rehabilitation. J. NeuroEng. Rehabil. 2006, 3, 4. [Google Scholar] [CrossRef]
- Mohan, D.M.; Khandoker, A.H.; Wasti, S.A.; Ismail Ibrahim Ismail Alali, S.; Jelinek, H.F.; Khalaf, K. Assessment Methods of Post-Stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis. Front. Neurol. 2021, 12, 650024. [Google Scholar] [CrossRef]
- Bruni, M.F.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. What Does Best Evidence Tell Us about Robotic Gait Rehabilitation in Stroke Patients: A Systematic Review and Meta-Analysis. J. Clin. Neurosci. 2018, 48, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Ferrarello, F.; Bianchi, V.A.M.; Baccini, M.; Rubbieri, G.; Mossello, E.; Cavallini, M.C.; Marchionni, N.; Di Bari, M. Tools for Observational Gait Analysis in Patients with Stroke: A Systematic Review. Phys. Ther. 2013, 93, 1673–1685. [Google Scholar] [CrossRef]
- Beyaert, C.; Vasa, R.; Frykberg, G.E. Gait Post-Stroke: Pathophysiology and Rehabilitation Strategies. Neurophysiol. Clin. Neurophysiol. 2015, 45, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Knutsson, E.; Richards, C. Different Types of Disturbed Motor Control in Gait of Hemiparetic Patients. Brain J. Neurol. 1979, 102, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.H.; Willerslev-Olsen, M.; Conway, B.A.; Nielsen, J.B. The Motor Cortex Drives the Muscles during Walking in Human Subjects. J. Physiol. 2012, 590, 2443–2452. [Google Scholar] [CrossRef]
- Schubert, M.; Curt, A.; Jensen, L.; Dietz, V. Corticospinal Input in Human Gait: Modulation of Magnetically Evoked Motor Responses. Exp. Brain Res. 1997, 115, 234–246. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics of Normal and Pathological Gait: Implications for Understanding Human Locomotor Control. J. Mot. Behav. 1989, 21, 337–355. [Google Scholar] [CrossRef]
- Burridge, J.H.; Wood, D.E.; Taylor, P.N.; McLellan, D.L. Indices to Describe Different Muscle Activation Patterns, Identified during Treadmill Walking, in People with Spastic Drop-Foot. Med. Eng. Phys. 2001, 23, 427–434. [Google Scholar] [CrossRef]
- Intiso, D.; Santilli, V.; Grasso, M.G.; Rossi, R.; Caruso, I. Rehabilitation of Walking with Electromyographic Biofeedback in Foot-Drop after Stroke. Stroke 1994, 25, 1189–1192. [Google Scholar] [CrossRef]
- Den Otter, A.R.; Geurts, A.C.H.; Mulder, T.H.; Duysens, J. Abnormalities in the Temporal Patterning of Lower Extremity Muscle Activity in Hemiparetic Gait. Gait Posture 2007, 25, 342–352. [Google Scholar] [CrossRef]
- Garland, S.J.; Gray, V.L.; Knorr, S. Muscle Activation Patterns and Postural Control Following Stroke. Motor Control 2009, 13, 387–411. [Google Scholar] [CrossRef] [PubMed]
- De Quervain, I.A.K.; Simon, S.R.; Leurgans, S.U.E.; Pease, W.S.; Mcallister, D. Gait Pattern in the Early Recovery Period after Stroke. JBJS 1996, 78, 1506–1514. [Google Scholar] [CrossRef]
- Clark, D.J.; Ting, L.H.; Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke. J. Neurophysiol. 2010, 103, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Barroso, F.O.; Torricelli, D.; Molina-Rueda, F.; Alguacil-Diego, I.M.; Cano-de-la-Cuerda, R.; Santos, C.; Moreno, J.C.; Miangolarra-Page, J.C.; Pons, J.L. Combining Muscle Synergies and Biomechanical Analysis to Assess Gait in Stroke Patients. J. Biomech. 2017, 63, 98–103. [Google Scholar] [CrossRef]
- Van Criekinge, T.; Vermeulen, J.; Wagemans, K.; Schröder, J.; Embrechts, E.; Truijen, S.; Hallemans, A.; Saeys, W. Lower Limb Muscle Synergies during Walking after Stroke: A Systematic Review. Disabil. Rehabil. 2020, 42, 2836–2845. [Google Scholar] [CrossRef]
- Safavynia, S.; Torres-Oviedo, G.; Ting, L. Muscle Synergies: Implications for Clinical Evaluation and Rehabilitation of Movement. Top. Spinal Cord Inj. Rehabil. 2011, 17, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Kesar, T.M.; Ting, L.H. Motor Module Generalization across Balance and Walking Is Impaired after Stroke. J. Neurophysiol. 2019, 122, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Berger, D.J.; Gentner, R.; Edmunds, T.; Pai, D.K.; d’Avella, A. Differences in Adaptation Rates after Virtual Surgeries Provide Direct Evidence for Modularity. J. Neurosci. 2013, 33, 12384–12394. [Google Scholar] [CrossRef]
- Cheung, V.C.K.; Piron, L.; Agostini, M.; Silvoni, S.; Turolla, A.; Bizzi, E. Stability of Muscle Synergies for Voluntary Actions after Cortical Stroke in Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 19563–19568. [Google Scholar] [CrossRef]
- d’Avella, A.; Portone, A.; Fernandez, L.; Lacquaniti, F. Control of Fast-Reaching Movements by Muscle Synergy Combinations. J. Neurosci. 2006, 26, 7791–7810. [Google Scholar] [CrossRef]
- De Marchis, C.; Schmid, M.; Bibbo, D.; Bernabucci, I.; Conforto, S. Inter-Individual Variability of Forces and Modular Muscle Coordination in Cycling: A Study on Untrained Subjects. Hum. Mov. Sci. 2013, 32, 1480–1494. [Google Scholar] [CrossRef] [PubMed]
- Gentner, R.; Edmunds, T.; Pai, D.K.; d’Avella, A. Robustness of Muscle Synergies during Visuomotor Adaptation. Front. Comput. Neurosci. 2013, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Five Basic Muscle Activation Patterns Account for Muscle Activity during Human Locomotion. J. Physiol. 2004, 556, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Rymer, W.Z.; Perreault, E.J.; Yoo, S.B.; Beer, R.F. Alterations in Upper Limb Muscle Synergy Structure in Chronic Stroke Survivors. J. Neurophysiol. 2013, 109, 768–781. [Google Scholar] [CrossRef]
- Torres-Oviedo, G.; Ting, L.H. Subject-Specific Muscle Synergies in Human Balance Control Are Consistent Across Different Biomechanical Contexts. J. Neurophysiol. 2010, 103, 3084–3098. [Google Scholar] [CrossRef]
- Dipietro, L.; Krebs, H.I.; Fasoli, S.E.; Volpe, B.T.; Stein, J.; Bever, C.; Hogan, N. Changing Motor Synergies in Chronic Stroke. J. Neurophysiol. 2007, 98, 757–768. [Google Scholar] [CrossRef]
- Coscia, M.; Monaco, V.; Martelloni, C.; Rossi, B.; Chisari, C.; Micera, S. Muscle Synergies and Spinal Maps Are Sensitive to the Asymmetry Induced by a Unilateral Stroke. J. NeuroEng. Rehabil. 2015, 12, 39. [Google Scholar] [CrossRef]
- Ebihara, A.; Hirota, M.; Kumakura, Y.; Nagaoka, M. Analysis of Muscle Synergy and Gait Kinematics during Regain of Gait Function through Rehabilitation in a Monoplegic Patient. Front. Hum. Neurosci. 2024, 17, 1287675. [Google Scholar] [CrossRef]
- Ferrante, S.; Chia Bejarano, N.; Ambrosini, E.; Nardone, A.; Turcato, A.M.; Monticone, M.; Ferrigno, G.; Pedrocchi, A. A Personalized Multi-Channel FES Controller Based on Muscle Synergies to Support Gait Rehabilitation after Stroke. Front. Neurosci. 2016, 10, 425. [Google Scholar] [CrossRef]
- Gizzi, L.; Nielsen, J.F.; Felici, F.; Ivanenko, Y.P.; Farina, D. Impulses of Activation but Not Motor Modules Are Preserved in the Locomotion of Subacute Stroke Patients. J. Neurophysiol. 2011, 106, 202–210. [Google Scholar] [CrossRef]
- Lee, J. Characteristics of Muscle Synergy Extracted Using an Autoencoder in Patients with Stroke during the Curved Walking in Comparison with Healthy Controls. Gait Posture 2024, 107, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lim, T.; Lee, J.; Sim, J.; Chang, H.; Yoon, B.; Jung, H. Patient-Specific Functional Electrical Stimulation Strategy Based on Muscle Synergy and Walking Posture Analysis for Gait Rehabilitation of Stroke Patients. J. Int. Med. Res. 2021, 49, 030006052110167. [Google Scholar] [CrossRef] [PubMed]
- Routson, R.L.; Clark, D.J.; Bowden, M.G.; Kautz, S.A.; Neptune, R.R. The Influence of Locomotor Rehabilitation on Module Quality and Post-Stroke Hemiparetic Walking Performance. Gait Posture 2013, 38, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Young, D.R.; Banks, C.L.; McGuirk, T.E.; Patten, C. Evidence for Shared Neural Information between Muscle Synergies and Corticospinal Efficacy. Sci. Rep. 2022, 12, 8953. [Google Scholar] [CrossRef]
- Zhu, F.; Kern, M.; Fowkes, E.; Afzal, T.; Contreras-Vidal, J.-L.; Francisco, G.E.; Chang, S.-H. Effects of an Exoskeleton-Assisted Gait Training on Post-Stroke Lower-Limb Muscle Coordination. J. Neural Eng. 2021, 18, 046039. [Google Scholar] [CrossRef]
- Taborri, J.; Agostini, V.; Artemiadis, P.K.; Ghislieri, M.; Jacobs, D.A.; Roh, J.; Rossi, S. Feasibility of Muscle Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review. Appl. Bionics Biomech. 2018, 2018, 3934698. [Google Scholar] [CrossRef]
- Scano, A.; Mira, R.M.; Gabbrielli, G.; Molteni, F.; Terekhov, V. Whole-Body Adaptive Functional Electrical Stimulation Kinesitherapy Can Promote the Restoring of Physiological Muscle Synergies for Neurological Patients. Sensors 2022, 22, 1443. [Google Scholar] [CrossRef]
- Hirashima, M.; Oya, T. How Does the Brain Solve Muscle Redundancy? Filling the Gap between Optimization and Muscle Synergy Hypotheses. Neurosci. Res. 2016, 104, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Federolf, P.A. A Novel Approach to Study Human Posture Control: “Principal Movements” Obtained from a Principal Component Analysis of Kinematic Marker Data. J. Biomech. 2016, 49, 364–370. [Google Scholar] [CrossRef]
- Merkle, L.A.; Layne, C.S.; Bloomberg, J.J.; Zhang, J.J. Using Factor Analysis to Identify Neuromuscular Synergies during Treadmill Walking. J. Neurosci. Methods 1998, 82, 207–214. [Google Scholar] [CrossRef]
- Trumbower, R.D.; Ravichandran, V.J.; Krutky, M.A.; Perreault, E.J. Altered Multijoint Reflex Coordination Is Indicative of Motor Impairment Level Following Stroke. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, Canada, 20–25 August 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 3558–3561. [Google Scholar]
- Lee, D.; Seung, H.S. Algorithms for Non-Negative Matrix Factorization. Adv. Neural Inf. Process. Syst. 2000, 13, 535–541. [Google Scholar]
- Ranganathan, R.; Krishnan, C. Extracting Synergies in Gait: Using EMG Variability to Evaluate Control Strategies. J. Neurophysiol. 2012, 108, 1537–1544. [Google Scholar] [CrossRef]
- Tresch, M.C.; Cheung, V.C.K.; d’Avella, A. Matrix Factorization Algorithms for the Identification of Muscle Synergies: Evaluation on Simulated and Experimental Data Sets. J. Neurophysiol. 2006, 95, 2199–2212. [Google Scholar] [CrossRef]
- Rasool, G.; Iqbal, K.; Bouaynaya, N.; White, G. Real-Time Task Discrimination for Myoelectric Control Employing Task-Specific Muscle Synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Kieliba, P.; Tropea, P.; Pirondini, E.; Coscia, M.; Micera, S.; Artoni, F. How Are Muscle Synergies Affected by Electromyography Pre-Processing? IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 882–893. [Google Scholar] [CrossRef]
- Steele, K.M.; Tresch, M.C.; Perreault, E.J. Consequences of Biomechanically Constrained Tasks in the Design and Interpretation of Synergy Analyses. J. Neurophysiol. 2015, 113, 2102–2113. [Google Scholar] [CrossRef]
- Ebied, A.; Kinney-Lang, E.; Spyrou, L.; Escudero, J. Evaluation of Matrix Factorisation Approaches for Muscle Synergy Extraction. Med. Eng. Phys. 2018, 57, 51–60. [Google Scholar] [CrossRef] [PubMed]
- d’Avella, A.; Saltiel, P.; Bizzi, E. Combinations of Muscle Synergies in the Construction of a Natural Motor Behavior. Nat. Neurosci. 2003, 6, 300–308. [Google Scholar] [CrossRef]
- d’Avella, A.; Bizzi, E. Shared and Specific Muscle Synergies in Natural Motor Behaviors. Proc. Natl. Acad. Sci. USA 2005, 102, 3076–3081. [Google Scholar] [CrossRef]
- Liberati, A. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Ann. Intern. Med. 2009, 151, W-65. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Wade, D.T.; Wood, V.A.; Hewer, R.L. Recovery after Stroke–the First 3 Months. J. Neurol. Neurosurg. Psychiatry 1985, 48, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Horgan, N.F.; O’regan, M.; Cunningham, C.J.; Finn, A.M. Recovery after Stroke: A 1-Year Profile. Disabil. Rehabil. 2009, 31, 831–839. [Google Scholar] [CrossRef]
- Bonita, R.; Beaglehole, R. Recovery of Motor Function after Stroke. Stroke 1988, 19, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Scafetta, N.; Marchi, D.; West, B.J. Understanding the Complexity of Human Gait Dynamics. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 026108. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Gizzi, L.; Ketabi, S.; Farina, D.; Kersting, U.G. Modular Control of Treadmill vs Overground Running. PLoS ONE 2016, 11, e0153307. [Google Scholar] [CrossRef]
- Roh, J.; Rymer, W.Z.; Beer, R.F. Evidence for Altered Upper Extremity Muscle Synergies in Chronic Stroke Survivors with Mild and Moderate Impairment. Front. Hum. Neurosci. 2015, 9, 124339. [Google Scholar] [CrossRef]
- Mizuta, N.; Hasui, N.; Nishi, Y.; Higa, Y.; Matsunaga, A.; Deguchi, J.; Yamamoto, Y.; Nakatani, T.; Taguchi, J.; Morioka, S. Merged Swing-Muscle Synergies and Their Relation to Walking Characteristics in Subacute Post-Stroke Patients: An Observational Study. PLoS ONE 2022, 17, e0263613. [Google Scholar] [CrossRef]
- Nadeau, S.; Duclos, C.; Bouyer, L.; Richards, C.L. Guiding Task-Oriented Gait Training after Stroke or Spinal Cord Injury by Means of a Biomechanical Gait Analysis. Prog. Brain Res. 2011, 192, 161–180. [Google Scholar]
- Verma, R.; Narayan Arya, K.; Garg, R.K.; Singh, T. Task-Oriented Circuit Class Training Program with Motor Imagery for Gait Rehabilitation in Poststroke Patients: A Randomized Controlled Trial. Top. Stroke Rehabil. 2011, 18, 620–632. [Google Scholar] [CrossRef]
- Srivastava, S.; Kao, P.-C.; Kim, S.H.; Stegall, P.; Zanotto, D.; Higginson, J.S.; Agrawal, S.K.; Scholz, J.P. Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Sale, P.; Franceschini, M.; Waldner, A.; Hesse, S. Use of the Robot Assisted Gait Therapy in Rehabilitation of Patients with Stroke and Spinal Cord Injury. Eur. J. Phys. Rehabil. Med. 2012, 48, 111–121. [Google Scholar] [PubMed]
- Alsubiheen, A.M.; Choi, W.; Yu, W.; Lee, H. The Effect of Task-Oriented Activities Training on Upper-Limb Function, Daily Activities, and Quality of Life in Chronic Stroke Patients: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14125. [Google Scholar] [CrossRef]
- Lee, H.-S.; Lim, J.-H.; Jeon, B.-H.; Song, C.-S. Non-Immersive Virtual Reality Rehabilitation Applied to a Task-Oriented Approach for Stroke Patients: A Randomized Controlled Trial. Restor. Neurol. Neurosci. 2020, 38, 165–172. [Google Scholar] [CrossRef]
- Winstein, C.J.; Wolf, S.L.; Dromerick, A.W.; Lane, C.J.; Nelsen, M.A.; Lewthwaite, R.; Cen, S.Y.; Azen, S.P. Effect of a Task-Oriented Rehabilitation Program on Upper Extremity Recovery Following Motor Stroke: The ICARE Randomized Clinical Trial. JAMA 2016, 315, 571–581. [Google Scholar] [CrossRef]
- Berger, D.J.; d’Avella, A. Towards a Myoelectrically Controlled Virtual Reality Interface for Synergy-Based Stroke Rehabilitation. In Converging Clinical and Engineering Research on Neurorehabilitation II; Ibáñez, J., González-Vargas, J., Azorín, J.M., Akay, M., Pons, J.L., Eds.; Biosystems & Biorobotics; Springer International Publishing: Cham, Switzerland, 2017; Volume 15, pp. 965–969. ISBN 978-3-319-46668-2. [Google Scholar]
- Ghassemi, M.; Triandafilou, K.; Barry, A.; Stoykov, M.E.; Roth, E.; Mussa-Ivaldi, F.A.; Kamper, D.G.; Ranganathan, R. Development of an EMG-Controlled Serious Game for Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 283–292. [Google Scholar] [CrossRef]
- Chvatal, S.A.; Ting, L.H. Voluntary and Reactive Recruitment of Locomotor Muscle Synergies during Perturbed Walking. J. Neurosci. 2012, 32, 12237–12250. [Google Scholar] [CrossRef]
- Van Criekinge, T.; Hallemans, A.; Herssens, N.; Lafosse, C.; Claes, D.; De Hertogh, W.; Truijen, S.; Saeys, W. SWEAT2 Study: Effectiveness of Trunk Training on Gait and Trunk Kinematics after Stroke: A Randomized Controlled Trial. Phys. Ther. 2020, 100, 1568–1581. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, E.; Parati, M.; Peri, E.; De Marchis, C.; Nava, C.; Pedrocchi, A.; Ferriero, G.; Ferrante, S. Changes in Leg Cycling Muscle Synergies after Training Augmented by Functional Electrical Stimulation in Subacute Stroke Survivors: A Pilot Study. J. NeuroEng. Rehabil. 2020, 17, 35. [Google Scholar] [CrossRef]
- Ghislieri, M.; Lanotte, M.; Knaflitz, M.; Rizzi, L.; Agostini, V. Muscle Synergies in Parkinson’s Disease before and after the Deep Brain Stimulation of the Bilateral Subthalamic Nucleus. Sci. Rep. 2023, 13, 6997. [Google Scholar] [CrossRef]
- Jonsdottir, J.; Lencioni, T.; Gervasoni, E.; Crippa, A.; Anastasi, D.; Carpinella, I.; Rovaris, M.; Cattaneo, D.; Ferrarin, M. Improved Gait of Persons with Multiple Sclerosis after Rehabilitation: Effects on Lower Limb Muscle Synergies, Push-off, and Toe-Clearance. Front. Neurol. 2020, 11, 668. [Google Scholar] [CrossRef] [PubMed]
Reference | Participants | Time Since Stroke | Gait Task | Extraction Algorithm | Extraction Criteria | Signal Processing |
---|---|---|---|---|---|---|
Clark, D.J. et al. (2010) [24] | 55 patients, 59.5 ± 11.7 y M 35, F 20 Rt. 21, Lt. 34 | 57.8 ± 64.8 months | Treadmill | NNMF | Total VAF: >90% | High-pass-filtered (40 Hz), demeaned, rectified, and low-pass (4 Hz) Butterworth filter |
Coscia, M. et al. (2015) [38] | 12 patients, 58.5 ± 16.4 years M 9, F 3 Rt. 5, Lt. 7 | 54.6 ± 56.2 months | Treadmill, Overground Walking | FA | The number of retained synergies was identified using the criterion of the eigenvalue > 1; 3 synergies were extracted | Rectified and low-pass-filtered (10 Hz) Butterworth filter |
Ebihara, A. et al., (2024) [39] | 1 patient 49 years M 1 Lt. 1 | 33 days | Overground Walking | NNMF | Total VAF: >90% | Rectified and low-pass (40 Hz) Butterworth filter |
Ferrante, S. et al., (2016) [40] | 2 patients 67, 64 years M 2 Rt. 1, Lt. 1 | C1: 11 years C2: 9 months | Overground Walking | NNMF | Total VAF: >90% | Band-pass-filtered (40–400 Hz), rectified, and low-pass (5 Hz) Butterworth filter |
Gizzi, L. et al. (2011) [41] | 10 patients 45.9 ± 16.5 years M 7, F3 Rt. 8, Lt. 2 | 12.0 ± 4.73 months | Overground Walking | NNMF | Total VAF: >80% | Band-pass filtered (20–400 Hz), rectified and low-pass-filtered (10 Hz) Butterworth filter |
Lee, J. (2024) [42] | 13 patients 63.2 ± 8.3 years M 7, F 6 Rt. 9, Lt. 4 | 5.0 ± 0.8 months | Overground Walking | Autoencoder | Fixed synergy extraction at 4 | Band-pass filter (20–750 Hz), a high-pass filter (35 Hz), rectified, and low-pass filter (5 Hz) Butterworth filter |
Lim, J. et al. (2021) [43] | 2 patients 62, 60 years M 2 Rt. 1, Lt. 1 | C1: 10 months C2: 2 months | Overground Walking | NNMF | Fixed synergy extraction at 4 | Band-pass filter (40–400 Hz), rectified, and low-pass filter (5 Hz) Butterworth filter |
Routson, R.L. et al. (2013) [44] | 22 patients 57.3 ± 13.2 M 15, F 7 Rt. 8, Lt. 14 | 19.0 ± 13.0 months | Treadmill | NNMF | Total VAF: higher than 90% | High-pass filter (40 Hz), demeaned, and low-pass filter (10 Hz) Butterworth filter |
Young, D.R. et al., (2022) [45] | 2 groups, 8 patients each 58.1 ± 7.95 years M 14, F 2 Rt. 8, Lt. 8 | HFG: 64.9 ± 38.5 months LFG: 58.1 ± 55.3 months | Overground walking | NNMF | Total VAF: >90% | Rectified and demeaned band-pass filter (10–450 Hz) and low-pass filter (7 Hz) Butterworth |
Zhu, F. et al. (2021) [46] | 10 patients 59.3 ± 6.8 years M 8, F 2 Rt. 5, Lt. 5 | 44.7 ± 35.2 months | Treadmill | NNMF | Total VAF: >90% | Band-pass filter (20–250 Hz), rectified, and low-pass filter (4 Hz) Butterworth |
Reference | Numbers of Synergy in Stroke | Numbers of Synergy in Controls | Merging |
---|---|---|---|
Clark, D.J. et al. (2010) [24] | 2.7 synergies for the paretic leg, and 3.5 synergies for the non-paretic leg | 3.6 synergies for the healthy right leg, and 3.7 synergies for the healthy left leg | Identified |
Coscia, M. et al. (2015) [38] | 3 synergies for the paretic leg | 3 synergies for the healthy leg | None |
Ebihara, A. et al. (2024) [39] | 2-3 synergies for the paretic leg | 3 synergies for the non-paretic leg | Identified |
Ferrante, S. et al. (2016) [40] | 3 synergies for the paretic leg | 4 synergies for the healthy dominant leg | Identified |
Gizzi, L. et al. (2011) [41] | 4 synergies for the paretic leg, and 4 for the non-paretic leg | 4 synergies for the healthy left leg | None |
Routson, R.L. et al. (2013) [44] | 4 synergies for the bilateral legs | 4 synergies for healthy bilateral legs | None |
Young, D.R. et al. (2022) [45] | 1.38 synergies for the bilateral legs | 2 synergies for healthy bilateral legs | Identified |
Zhu, F. et al. (2021) [46] | 3.1 synergies for the paretic leg, and 3.8 synergies for the non-paretic leg | 4.45 synergies for bilateral legs | Identified |
Reference | Study Design | Classification | Involved Primary Muscles | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GM | Gm | TFL | RF | ADD | VM | ST | BF | LG | MG | SO | PEL | TA | |||
Clark, D.J. et al. (2010) [24] | Cross-sectional (vs healthy) | None | |||||||||||||
Coscia, M. et al. (2015) [38] | Cross-sectional (vs healthy) | None | |||||||||||||
Ebihara, A. et al., (2024) [39] | Case–control (vs non-paretic) | C1 | |||||||||||||
Ferrante, S. et al., (2016) [40] | Case–control (vs healthy) | C1 | - | - | |||||||||||
C2 | |||||||||||||||
Gizzi, L. et al., (2011) [41] | Cross-sectional (vs healthy) | None | |||||||||||||
Lee, J. (2024) [42] | Cross-sectional (vs healthy) | ICG | |||||||||||||
OCG | |||||||||||||||
Lim, J. et al., (2021) [43] | Case–control (vs healthy) | C1 | |||||||||||||
C2 | |||||||||||||||
Routson, R.L. et al. (2013) [44] | Cross-sectional (vs healthy) | None | |||||||||||||
Young, D.R. et al., (2022) [45] | Cross-sectional (vs healthy) | HFG | |||||||||||||
LFG | |||||||||||||||
Zhu, F. et al., (2021) [46] | Cross-sectional (vs. non-paretic) | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, K.; Cho, Y.; Kim, H. Application of Muscle Synergies for Gait Rehabilitation After Stroke: Implications for Future Research. Neurol. Int. 2024, 16, 1451-1463. https://doi.org/10.3390/neurolint16060108
Lee J, Kim K, Cho Y, Kim H. Application of Muscle Synergies for Gait Rehabilitation After Stroke: Implications for Future Research. Neurology International. 2024; 16(6):1451-1463. https://doi.org/10.3390/neurolint16060108
Chicago/Turabian StyleLee, Jaehyuk, Kimyung Kim, Youngchae Cho, and Hyeongdong Kim. 2024. "Application of Muscle Synergies for Gait Rehabilitation After Stroke: Implications for Future Research" Neurology International 16, no. 6: 1451-1463. https://doi.org/10.3390/neurolint16060108
APA StyleLee, J., Kim, K., Cho, Y., & Kim, H. (2024). Application of Muscle Synergies for Gait Rehabilitation After Stroke: Implications for Future Research. Neurology International, 16(6), 1451-1463. https://doi.org/10.3390/neurolint16060108