fMRI Insights into Visual Cortex Dysfunction as a Biomarker for Migraine with Aura
Abstract
:1. Introduction
2. Pathophysiology of Migraine with Aura
2.1. CACNA Genes in Migraine with Aura
2.2. Vascular Dysregulation and Migraine Aura
2.3. Neuronal Hyperexcitability and Sensory Dysregulation
2.4. Neurovascular Coupling and Aura Pathogenesis
3. fMRI Insights and Visual Cortex Dysfunction
3.1. Methodology in Migraine Studies
3.2. Interictal Abnormalities in Visual and Non-Visual Cortices
3.3. Visual Stimuli
3.4. Cortical Connectivity and Network Dynamics in MwA
3.5. Functional Connectivity in Migraine
3.6. Comparison of fMRI Findings in MwA and Other Primary Headaches
3.7. Imaging Patterns of Visual Cortex Dysfunction
4. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hougaard, A.; Amin, F.M.; Hoffmann, M.B.; Larsson, H.B.; Magon, S.; Sprenger, T.; Ashina, M. Structural gray matter abnormalities in migraine relate to headache lateralization, but not aura. Cephalalgia 2015, 35, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Pikor, D.; Hurła, M.; Słowikowski, B.; Szymanowicz, O.; Poszwa, J.; Banaszek, N.; Drelichowska, A.; Jagodziński, P.P.; Kozubski, W.; Dorszewska, J. Calcium ions in the physiology and pathology of the central nervous system. Int. J. Mol. Sci. 2024, 25, 13133. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Prendecki, M.; Piekut, T.; Kozubski, W.; Dorszewska, J. Migraine: Calcium channels and glia. Int. J. Mol. Sci. 2021, 22, 2688. [Google Scholar] [CrossRef] [PubMed]
- Faragó, P.; Tóth, E.; Kocsis, K.; Kincses, B.; Veréb, D.; Király, A.; Bozsik, B.; Tajti, J.; Párdutz, Á.; Szok, D.; et al. Altered resting state functional activity and microstructure of the white matter in migraine with aura. Front. Neurol. 2019, 10, 1039. [Google Scholar] [CrossRef]
- Datta, R.; Aguirre, G.K.; Hu, S.; Detre, J.A.; Cucchiara, B. Interictal cortical hyperresponsiveness in migraine is directly related to the presence of aura. Cephalalgia 2013, 33, 365–374. [Google Scholar] [CrossRef]
- Tedeschi, G.; Russo, A.; Conte, F.; Corbo, D.; Caiazzo, G.; Giordano, A.; Conforti, R.; Esposito, F.; Tessitore, A. Increased interictal visual network connectivity in patients with migraine with aura. Cephalalgia 2015, 36, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Wang, W.; Zhang, X.; Bai, X.; Tang, H.; Mei, Y.; Zhang, P.; Qiu, D.; Zhang, X.; Zhang, Y.; et al. Altered functional connectivity of the right caudate nucleus in chronic migraine: A resting-state fMRI study. J. Headache Pain 2022, 23, 154. [Google Scholar] [CrossRef]
- Noseda, R.; Burstein, R. Advances in understanding the mechanisms of migraine-type photophobia. Curr. Opin. Neurol. 2011, 24, 197–202. [Google Scholar] [CrossRef]
- Boulloche, N.; Denuelle, M.; Payoux, P.; Fabre, N.; Trotter, Y.; Geraud, G. Photophobia in migraine: An interictal PET study of cortical hyperexcitability and its modulation by pain. J. Neurol. Neurosurg. Psychiatry 2010, 81, 978–984. [Google Scholar] [CrossRef]
- Chong, C.D.; Gaw, N.; Fu, Y.; Li, J.; Wu, T.; Schwedt, T.J. Migraine classification using magnetic resonance imaging resting-state functional connectivity data. Cephalalgia 2017, 37, 828–844. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Tessitore, A.; Silvestro, M.; Di Nardo, F.; Trojsi, F.; Del Santo, T.; De Micco, R.; Esposito, F.; Tedeschi, G. Advanced visual network and cerebellar hyperresponsiveness to trigeminal nociception in migraine with aura. J. Headache Pain 2019, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Messina, R.; Rocca, M.A.; Colombo, B.; Pagani, E.; Falini, A.; Comi, G.; Filippi, M. White matter microstructure abnormalities in pediatric migraine patients. Cephalalgia 2015, 35, 1278–1286. [Google Scholar] [CrossRef]
- Planchuelo-Gómez, Á.; García-Azorín, D.; Guerrero, Á.; Aja-Fernández, S.; Rodríguez, M.; de Luis-García, R. White matter changes in chronic and episodic migraine: A diffusion tensor imaging study. J. Headache Pain 2020, 21, 1. [Google Scholar] [CrossRef]
- Planchuelo-Gómez, Á.; García-Azorín, D.; Guerrero, Á.; Luis-García, R.; Rodríguez, M.; Aja-Fernández, S. Alternative microstructural measures to complement diffusion tensor imaging in migraine studies with standard MRI acquisition. Brain Sci. 2020, 10, 711. [Google Scholar] [CrossRef] [PubMed]
- Pietrobon, D.; Moskowitz, M.A. Pathophysiology of migraine. Annu. Rev. Physiol. 2013, 75, 365–391. [Google Scholar] [CrossRef] [PubMed]
- Charles, A. The pathophysiology of migraine: Implications for clinical management. Lancet Neurol. 2018, 17, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Andreou, A.P.; Goadsby, P.J. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert. Opin. Investig. Drugs 2009, 18, 789–803. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.M.; Hauge, A.W.; Ashina, M.; Olesen, J. Trigger factors for familial hemiplegic migraine. Cephalalgia 2011, 31, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Brennan, K.C.; Pietrobon, D. A systems neuroscience approach to migraine. Neuron 2018, 97, 1004–1021. [Google Scholar] [CrossRef]
- Burstein, R.; Noseda, R.; Borsook, D. Migraine: Multiple processes, complex pathophysiology. J. Neurosci. 2015, 35, 6619–6629. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, H.; Speckmann, E.J.; Gorji, A. Familial hemiplegic migraine and spreading depression. Iran. J. Child. Neurol. 2014, 8, 6–11. [Google Scholar] [PubMed]
- Weyrer, C.; Turecek, J.; Niday, Z.; Liu, P.W.; Nanou, E.; Catterall, W.A.; Bean, B.P.; Regehr, W.G. The role of CaV2.1 channel facilitation in synaptic facilitation. Cell Rep. 2019, 26, 2289–2297. [Google Scholar] [CrossRef]
- Grangeon, L.; Lange, K.S.; Waliszewska-Prosół, M.; Onan, D.; Marschollek, K.; Wiels, W.; Mikulenka, P.; Farham, F.; Gollion, C.; Ducros, A. Genetics of migraine: Where are we now? J. Headache Pain. 2023, 24, 12. [Google Scholar] [CrossRef]
- Melliti, K.; Grabner, M.; Seabrook, G.R. The familial hemiplegic migraine mutation R192Q reduces G-protein-mediated inhibition of P/Q-type (CaV2.1) calcium channels expressed in human embryonic kidney cells. J. Physiol. 2003, 546, 337–347. [Google Scholar] [CrossRef]
- Maksemous, N.; Harder, A.V.E.; Ibrahim, O.; Vijfhuizen, L.S.; Sutherland, H.; Pelzer, N.; de Boer, I.; Terwindt, G.M.; Lea, R.A.; van den Maagdenberg, A.M.J.M.; et al. Whole exome sequencing of hemiplegic migraine patients shows an increased burden of missense variants in CACNA1H and CACNA1I genes. Mol. Neurobiol. 2023, 60, 3034–3043. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, A.; D’Onofrio, M.; Buzzi, M.G.; Arisi, I.; Grieco, G.S.; Pierelli, F.; Santorelli, F.M.; Schoenen, J. Possible involvement of the CACNA1E gene in migraine: A search for single nucleotide polymorphism in different clinical phenotypes. Headache 2017, 57, 1136–1144. [Google Scholar] [CrossRef]
- Kürtüncü, M.; Kaya, D.; Zuliani, L.; Erdağ, E.; Içöz, S.; Uğurel, E.; Cavuş, F.; Ayşit, N.; Birişik, O.; Vincent, A.; et al. CACNA1H antibodies associated with headache with neurological deficits and cerebrospinal fluid lymphocytosis (HaNDL). Cephalalgia 2013, 33, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; van Emde Boas, W.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Karsan, N.; Silva, E.; Goadsby, P.J. Evaluating migraine with typical aura with neuroimaging. Front. Hum. Neurosci. 2023, 17, 1112790. [Google Scholar] [CrossRef] [PubMed]
- Schain, A.J.; Melo-Carrillo, A.; Stratton, J.; Strassman, A.M.; Burstein, R. CSD-Induced Arterial Dilatation and Plasma Protein Extravasation Are Unaffected by Fremanezumab: Implications for CGRP’s Role in Migraine with Aura. J. Neurosci. 2019, 39, 6001–6011. [Google Scholar] [CrossRef]
- Petrusic, I.; Jovanovic, V.; Kovic, V.; Savic, A. Characteristics of N400 component elicited in patients who have migraine with aura. J. Headache Pain. 2021, 22, 157. [Google Scholar] [CrossRef] [PubMed]
- DeSouza, D.D.; Cowan, R.P. Insights into chronic migraine pathophysiology—What measures of gray matter reveal. Cephalalgia 2020, 40, 1136–1137. [Google Scholar] [CrossRef]
- Chaudhary, K.; Agrahari, B.; Biswas, B.; Chatterjee, N.; Chaudhary, A.; Kumar, A.; Sonker, H.; Dewan, S.; Saxena, D.; Akhir, A.; et al. Pyridine-2,6-Dicarboxamide Proligands and their Cu(II)/Zn(II) Complexes Targeting Staphylococcus aureus for the Attenuation of In Vivo Dental Biofilm. Adv. Healthc. Mater. 2024, 13, e2400378. [Google Scholar] [CrossRef] [PubMed]
- Puledda, F.; Ffytche, D.; O’Daly, O.; Goadsby, P.J. Imaging the visual network in the migraine spectrum. Front. Neurol. 2019, 10, 1325. [Google Scholar] [CrossRef] [PubMed]
- Neverdahl, J.P.; Omland, P.M.; Uglem, M.; Engstrøm, M.; Sand, T. Reduced motor cortical inhibition in migraine: A blinded transcranial magnetic stimulation study. Clin. Neurophysiol. 2017, 128, 2411–2418. [Google Scholar] [CrossRef]
- Schwedt, T.J.; Chiang, C.C.; Chong, C.D.; Dodick, D.W. Functional MRI of migraine. Lancet Neurol. 2015, 14, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Schramm, S.; Börner, C.; Sollmann, N.; Baum, T.; Zimmer, C.; Heinen, F.; Bonfert, M.V.; Sollmann, N. Functional magnetic resonance imaging in migraine: A systematic review. Cephalalgia 2023, 43, 03331024221128278. [Google Scholar] [CrossRef] [PubMed]
- Tfelt-Hansen, P.C. History of migraine with aura and cortical spreading depression from 1941 and onwards. Cephalalgia 2010, 30, 780–792. [Google Scholar] [CrossRef]
- Cadiot, D.; Longuet, R.; Bruneau, B.; Treguier, C.; Carsin-Vu, A.; Corouge, I.; Gomes, C.; Proisy, M. Magnetic resonance imaging in children presenting migraine with aura: Association of hypoperfusion detected by arterial spin labelling and vasospasm on MR angiography findings. Cephalalgia 2017, 38, 949–958. [Google Scholar] [CrossRef]
- Zhao, J.; Levy, D. Cortical spreading depression promotes persistent mechanical sensitization of intracranial meningeal afferents: Implications for the intracranial mechanosensitivity of migraine. eNeuro. 2016, 3, ENEURO.0287-16.2016. [Google Scholar] [CrossRef] [PubMed]
- Eikermann-Haerter, K.; Lee, J.H.; Yalcin, N.; Yu, E.S.; Daneshmand, A.; Wei, Y.; Zheng, Y.; Can, A.; Sengul, B.; Ferrari, M.D.; et al. Migraine prophylaxis, ischemic depolarizations, and stroke outcomes in mice. Stroke 2015, 46, 229–236. [Google Scholar] [CrossRef]
- Chen, S.P.; Tolner, E.A.; Eikermann-Haerter, K. Animal models of monogenic migraine. Cephalalgia 2016, 36, 704–721. [Google Scholar] [CrossRef]
- Brennan, K.C.; Bates, E.A.; Shapiro, R.E.; Zyuzin, J.; Hallows, W.C.; Huang, Y.; Lee, H.Y.; Jones, C.R.; Fu, Y.H.; Charles, A.C.; et al. Casein kinase Iδ mutations in familial migraine and advanced sleep phase. Sci. Transl. Med. 2013, 5, 183ra56. [Google Scholar] [CrossRef]
- Arngrim, N.; Hougaard, A.; Schytz, H.W.; Vestergaard, M.B.; Britze, J.; Amin, F.M.; Olsen, K.S.; Larsson, H.B.; Olesen, J.; Ashina, M. Effect of hypoxia on BOLD fMRI response and total cerebral blood flow in migraine with aura patients. J. Cereb. Blood Flow. Metab. 2019, 39, 680–689. [Google Scholar] [CrossRef]
- Ghanizada, H.; Al-Karagholi, M.A.; Walker, C.S.; Arngrim, N.; Rees, T.; Petersen, J.; Siow, A.; Mørch-Rasmussen, M.; Tan, S.; O’Carroll, S.J.; et al. Amylin analog pramlintide induces migraine-like attacks in patients. Ann. Neurol. 2021, 89, 1157–1171. [Google Scholar] [CrossRef] [PubMed]
- Labastida-Ramírez, A.; Rubio-Beltrán, E.; Holland, P.R.; Hoffmann, J. Sexually dimorphic effects of Amylin 1 receptor activation in trigeminovascular neurons. bioRxiv 2024. [Google Scholar] [CrossRef]
- Rees, T.A.; Russo, A.F.; O’Carroll, S.J.; Hay, D.L.; Walker, C.S. CGRP and the calcitonin receptor are co-expressed in mouse, rat and human trigeminal ganglia neurons. Front. Physiol. 2022, 13, 860037. [Google Scholar] [CrossRef] [PubMed]
- Rees, T.A.; Labastida-Ramírez, A.; Rubio-Beltrán, E. Calcitonin/PAC1 receptor splice variants: A blind spot in migraine research. Trends Pharmacol. Sci. 2023, 44, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Al-Karagholi, M.A. Involvement of potassium channel signalling in migraine pathophysiology. Pharmaceuticals 2023, 16, 438. [Google Scholar] [CrossRef]
- Schytz, H.W.; Birk, S.; Wienecke, T.; Kruuse, C.; Olesen, J.; Ashina, M. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 2009, 132, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Ghanizada, H.; Al-Karagholi, M.A.; Arngrim, N.; Olesen, J.; Ashina, M. PACAP27 induces migraine-like attacks in migraine patients. Cephalalgia 2020, 40, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Fahrenkrug, J.; Goetzl, E.J.; Gozes, I.; Harmar, A.; Laburthe, M.; May, V.; Pisegna, J.R.; Said, S.I.; Vaudry, D.; Vaudry, H.; et al. VIP and PACAP receptors in GtoPdb v.2023.1. IUPHAR/BPS Guide Pharmacol. CITE 2023, 2023, 1. [Google Scholar] [CrossRef]
- Rubio-Beltrán, E.; Correnti, E.; Deen, M.; Kamm, K.; Kelderman, T.; Papetti, L.; Vigneri, S.; MaassenVanDenBrink, A.; Edvinsson, L. PACAP38 and PAC1 receptor blockade: A new target for headache? J. Headache Pain 2018, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Tasma, Z.; Siow, A.; Harris, P.W.R.; Brimble, M.A.; Hay, D.L.; Walker, C.S. Characterisation of agonist signalling profiles and agonist-dependent antagonism at PACAP-responsive receptors: Implications for drug discovery. Br. J. Pharmacol. 2022, 179, 435–453. [Google Scholar] [CrossRef]
- Olesen, J. Provocation of attacks to discover migraine signaling mechanisms and new drug targets: Early history and future perspectives—A narrative review. J. Headache Pain 2024, 25, 105. [Google Scholar] [CrossRef]
- Raggi, A.; Leonardi, M.; Arruda, M.; Caponnetto, V.; Castaldo, M.; Coppola, G.; Pietra, A.D.; Fan, X.; Garcia-Azorin, D.; Gazerani, P.; et al. Hallmarks of primary headache: Part 1—Migraine. J. Headache Pain 2024, 25, 189. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef]
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007, 8, 700–711. [Google Scholar] [CrossRef] [PubMed]
- de Tommaso, M.; Vecchio, E.; Quitadamo, S.G.; Coppola, G.; Di Renzo, A.; Parisi, V.; Silvestro, M.; Russo, A.; Tedeschi, G. Pain-Related Brain Connectivity Changes in Migraine: A Narrative Review and Proof of Concept about Possible Novel Treatments Interference. Brain Sci. 2021, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Schwedt, T.J.; Chong, C.D.; Dodick, D.W. Structural and functional brain alterations in migraine. Nat. Rev. Neurol. 2013, 9, 637–651. [Google Scholar] [CrossRef]
- Lerebours, F.; Boulanouar, K.; Barège, M.; Denuelle, M.; Bonneville, F.; Payoux, P.; Larrue, V.; Fabre, N. Functional connectivity of hypothalamus in chronic migraine with medication overuse. Cephalalgia Int. J. Headache 2019, 39, 892–899. [Google Scholar] [CrossRef]
- Farahani, F.V.; Karwowski, W.; Lighthall, N.R. Application of graph Theory for identifying connectivity patterns in human brain networks: A systematic review. Front. Neurosci. 2019, 13, 585. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, T.; Magon, S. Can functional magnetic resonance imaging at rest shed light on the pathophysiology of migraine? Headache 2013, 53, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Pedra, E.; Mourão-Miranda, J.; Bramati, I.E.; Henrique, A.R.; Moll, J. Enhanced interictal responsiveness of the migraineous visual cortex to incongruent bar stimulation: A functional MRI visual activation study. Cephalalgia 2003, 23, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Hougaard, A.; Amin, F.M.; Hoffmann, M.B.; Rostrup, E.; Larsson, H.B.; Asghar, M.S.; Larsen, V.A.; Olesen, J.; Ashina, M. Interhemispheric differences of fMRI responses to visual stimuli in patients with side-fixed migraine aura. Hum. Brain Mapp. 2014, 35, 2714–2723. [Google Scholar] [CrossRef]
- Rocca, M.A.; Colombo, B.; Pagani, E.; Falini, A.; Codella, M.; Scotti, G.; Comi, G.; Filippi, M. Evidence for cortical functional changes in patients with migraine and white matter abnormalities on conventional and diffusion tensor magnetic resonance imaging. Stroke 2003, 34, 665–670. [Google Scholar] [CrossRef]
- Colombo, B.; Dalla Costa, G.; Dalla Libera, D.; Comi, G. From neuroimaging to clinical setting: What have we learned from migraine pain? Neurol. Sci. 2012, 33, S95–S97. [Google Scholar] [CrossRef]
- Cutrer, F.M.; Smith, J.H. Human studies in the pathophysiology of migraine: Genetics and functional neuroimaging. Headache 2013, 53, 401–412. [Google Scholar] [CrossRef]
- Lakhan, S.E.; Avramut, M.; Tepper, S.J. Structural and functional neuroimaging in migraine: Insights from 3 decades of research. Headache 2013, 53, 46–66. [Google Scholar] [CrossRef] [PubMed]
- Mainero, C.; Boshyan, J.; Hadjikhani, N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann. Neurol. 2011, 70, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Conforto, B.A.; Chaim, T.K.; Peres, P.F.M.; Gonçalves, A.L.; Siqueira, I.L.; Barreiros, M.A.M.; Amaro, E. Interictal abnormal fMRI activation of visual areas during a motor task cued by visual stimuli in migraine. Einstein 2017, 15, 17–23. [Google Scholar] [CrossRef]
- Ambrosini, A.; Magis, D.; Schoenen, J. Migraine—Clinical neurophysiology. Handb. Clin. Neurol. 2010, 97, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Hadjikhani, N.; Sanchez del Rio, M.; Wu, O.; Schwartz, D.; Bakker, D.; Fischl, B.; Kwong, K.K.; Cutrer, F.M.; Rosen, B.R.; Tootell, R.B.; et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl. Acad. Sci. USA 2001, 98, 4687–4692. [Google Scholar] [CrossRef]
- Lantéri-Minet, M. The role of general practitioners in migraine management. Cephalalgia Int. J. Headache 2008, 28 (Suppl. 2), 1–8. [Google Scholar] [CrossRef] [PubMed]
- Richards, W. The neurophysiology of migraine. Sci. Am. 1971, 224, 88–96. [Google Scholar] [CrossRef]
- Spreafico, C.; Frigerio, R.; Santoro, P.; Ferrarese, C.; Agostoni, E. Visual evoked potentials in migraine. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2004, 25 (Suppl. 3), S288–S290. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.S.; Ogawa, S.; Tank, D.W.; Ugurbil, K. 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn. Reson. Med. 1993, 30, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Yuan, K.; Cheng, P.; Zhao, L.; Zhao, L.; Yu, D.; Dong, T.; von Deneen, K.M.; Gong, Q.; Qin, W.; et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed. 2013, 26, 1051–1058. [Google Scholar] [CrossRef]
- Yu, D.; Yuan, K.; Zhao, L.; Zhao, L.; Dong, M.; Liu, P.; Wang, G.; Liu, J.; Sun, J.; Zhou, G.; et al. Regional homogeneity abnormalities in patients with interictal migraine without aura: A resting-state study. NMR Biomed. 2012, 25, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Schiltz, C.; Bodart, J.M.; Dubois, S.; Dejardin, S.; Michel, C.; Roucoux, A.; Crommelinck, M.; Orban, G.A. Neuronal mechanisms of perceptual learning: Changes in human brain activity with training in orientation discrimination. Neuroimage 1999, 9, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Granziera, C.; DaSilva, A.F.; Snyder, J.; Tuch, D.S.; Hadjikhan, N. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med. 2006, 3, e402. [Google Scholar] [CrossRef]
- Aurora, S.K.; Wilkinson, F. The brain is hyperexcitable in migraine. Cephalalgia 2007, 27, 1442–1453. [Google Scholar] [CrossRef]
- Magis, D.; Vigano, A.; Sava, S.; d’Elia, T.S.; Schoenen, J.; Coppola, G. Pearls and pitfalls: Electrophysiology for primary headaches. Cephalalgia 2013, 33, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Mantini, D.; Perrucci, M.G.; Del Gratta, C.; Romani, G.L.; Corbetta, M. Electro-physiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 2007, 104, 13170–13175. [Google Scholar] [CrossRef] [PubMed]
- Denuelle, M.; Boulloche, N.; Payoux, P.; Fabre, N.; Trotter, Y.; Géraud, G. A PET study of photophobia during spontaneous migraine attacks. Neurology 2011, 76, 213–218. [Google Scholar] [CrossRef]
- Vincent, M.B.; Hadjikhani, N. Migraine aura and related phenomena: Beyond scotomata and scintillations. Cephalalgia 2007, 27, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Sarchielli, P.; Tarducci, R.; Presciutti, O.; Gobbi, G.; Pelliccioli, G.P.; Stipa, G.; Alberti, A.; Capocchi, G. Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage 2005, 24, 1025–1031. [Google Scholar] [CrossRef]
- Siniatchkin, M.; Sendacki, M.; Moeller, F.; Wolff, S.; Janen, O.; Siebner, H.; Stephani, U. Abnormal changes of synaptic excitability in migraine with aura. Cereb. Cortex. 2012, 22, 2207–2216. [Google Scholar] [CrossRef]
- Coppola, G. From neuroimaging to the bedside: Take the sheets off the thalamus. Cephalalgia 2013, 33, 359–361. [Google Scholar] [CrossRef]
- Hu, S.; Hao, Z.; Li, M.; Zhao, M.; Wen, J.; Gao, Y.; Wang, Q.; Xi, H.; Antki, C.O.; Jia, X.; et al. Resting-state abnormalities in functional connectivity of the default mode network in migraine: A meta-analysis. Front. Neurosci. 2023, 17, 1136790. [Google Scholar] [CrossRef]
- Russo, A.; Tessitore, A.; Giordano, A.; Corbin’s, D.; Marcuccio, L.; De Stefano, M.; Salemi, F.; Conforti, R.; Esposito, F.; Tedeschi, G. Executive resting-state network connectivity in migraine without aura. Cephalalgia 2012, 32, 1041–1048. [Google Scholar] [CrossRef]
- Jia, Z.; Yu, S. Grey matter alterations in migraine: A systematic review and meta-analysis. Neuroimage Clin. 2017, 14, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, K.N.; Silvers, J.A.; Buhle, J.T. Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Ann. N. Y. Acad. Sci. 2012, 1251, E1–E24. [Google Scholar] [CrossRef] [PubMed]
- Schankin, C.J.; Maniyar, F.H.; Sprenger, T.; Chou, D.E.; Eller, M.; Goadsby, P.J. The relation between migraine, typical migraine aura, and “visual snow”. Headache 2014, 54, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, D.; Volkow, N.D. Association between functional connectivity hubs and brain networks. Cereb. Cortex. 2011, 21, 2003–2013. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Silvestro, M.; Tessitore, A.; Tedeschi, G. Recent insights in migraine with aura: A narrative review of advanced neuroimaging. Headache 2019, 59, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, M.; Tessitore, A.; Di Nardo, F.; Scottish do Clemente, F.; Trojan, F.; Cirillo, M.; Esposito, F.; Tedeschi, G.; Russo, A. Functional connectivity changes in complex migraine aura: Beyond the visual network. Eur. J. Neurol. 2022, 29, 295–304. [Google Scholar] [CrossRef]
- Zhang, J.; Su, J.; Wang, M.; Zhao, Y.; Yao, Q.; Zhang, Q.; Lu, H.; Zhang, H.; Wang, S.; Li, G.F.; et al. Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura. J. Headache Pain 2016, 17, 98. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Zeng, F.; Lan, L.; Li, Z.; Maleki, N.; Liu, B.; Chen, J.; Wang, C.; Park, J.; Lang, C.; et al. An fMRI-based neural marker for migraine without aura. Neurology 2020, 94, e741–e751. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, D.; Huang, W.; Chen, B. Intrinsic brain functional activity abnormalities in episodic tension-type headache. Neural Plast. 2023, 2023, 6560298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, H.; Xu, Q.; Wang, C.; Li, X.; Sun, J.; Wang, Y.; Sun, T.; Wang, Q.; Zhang, C.; et al. Regional homogeneity alterations in multi-frequency bands in tension-type headache: A resting-state fMRI study. J. Headache Pain 2021, 22, 129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, Y.; Zhang, Y.; Wang, X.; Li, X.; Lin, H.; Xiong, L.; Huang, C. Decreased degree centrality values as a potential neuroimaging biomarker for migraine: A resting-state functional magnetic resonance imaging study and support vector machine analysis. Front. Neurol. 2022, 13, 1105592. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.A.; Valsasina, P.; Absinta, M.; Colombo, B.; Barcella, V.; Falini, A.; Comi, G.; Filippi, M. Central nervous system dysregulation extends beyond the pain-matrix network in cluster headache. Cephalalgia 2010, 30, 1383–1391. [Google Scholar] [CrossRef]
- Ferraro, S.; Medina, J.P.; Nigri, A.; Giani, L.; Demichelis, G.; Pinardi, C.; Bruzzone, M.G.; Cecchini Proietti, A.; Becker, B.; Chiapparini, L.; et al. Mesocorticolimbic system abnormalities in chronic cluster headache patients: A neural signature? Cephalalgia 2022, 42, 1039–1049. [Google Scholar] [CrossRef]
- May, A.; Bahra, A.; Büchel, C.; Turner, R.; Goadsby, P.J. Functional magnetic resonance imaging in spontaneous attacks of SUNCT: Short-lasting neuralgiform headache with conjunctival injection and tearing. Ann. Neurol. 1999, 46, 791–794. [Google Scholar] [CrossRef]
- Matharu, M.S.; Cohen, A.S.; Boes, C.J.; Goadsby, P.J. Short-lasting unilateral neuralgiform headache with conjunctival injection and tearing syndrome: A review. Curr. Pain. Headache Rep. 2003, 7, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Auer, T.; Janszky, J.; Schwarcz, A.; Dóczi, T.; Trauninger, A.; Alkonyi, B.; Komoly, S.; Pfund, Z. Attack-related brainstem activation in a patient with SUNCT syndrome: An ictal fMRI study. Headache 2009, 49, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yuan, Z.; Zhang, X.; Bai, X.; Tang, H.; Mei, Y.; Qiu, D.; Zhang, Y.; Zhang, P.; Zhang, X.; et al. Mapping the aberrant brain functional connectivity in new daily persistent headache: A resting-state functional magnetic resonance imaging study. J. Headache Pain 2023, 24, 46. [Google Scholar] [CrossRef]
- Qiu, D.; Wang, W.; Mei, Y.; Tang, H.; Yuan, Z.; Zhang, P.; Zhang, Y.; Yu, X.; Yang, C.; Wang, Q.; et al. Brain structure and cortical activity changes of new daily persistent headache: Multimodal evidence from MEG/sMRI. J. Headache Pain 2023, 24, 45. [Google Scholar] [CrossRef]
- Messina, R.; Gollion, C.; Christensen, R.H.; Amin, F.M. Functional MRI in migraine. Curr. Opin. Neurol. 2022, 35, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, O., Jr.; Ramos, L.R.; Acchar, M.C.; Sanchez, T.A. Migraine aura discrimination using machine learning: An fMRI study during ictal and interictal periods. Med. Biol. Eng. Comput. 2024, 62, 2545–2556. [Google Scholar] [CrossRef] [PubMed]
- Arngrim, N.; Hougaard, A.; Ahmadi, K.; Vestergaard, M.B.; Schytz, H.W.; Amin, F.M.; Larsson, H.B.W.; Olesen, J.; Hoffmann, M.B.; Ashina, M. Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Ann. Neurol. 2017, 82, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Hougaard, A.; Amin, F.; Christensen, C.; Younis, S.; Wolfram, F.; Cramer, S.; Larsson, H.B.W.; Ashina, M. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain 2017, 140, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-J.; Chen, X.; Sah, S.K.; Zeng, C.; Li, Y.; Li, N.; Liu, M.-Q.; Du, S.-L. Amplitude of low-frequency fluctuation (ALFF) and fractional ALFF in migraine patients: A resting-state functional MRI study. Clin. Radiol. 2016, 71, 558–564. [Google Scholar] [CrossRef]
- Chen, H.; Qi, G.; Zhang, Y.; Huang, Y.; Zhang, S.; Yang, D.; He, J.; Mu, L.; Zhou, L.; Zeng, M. Altered dynamic amplitude of low-frequency fluctuations in patients with migraine without aura. Front. Hum. Neurosci. 2021, 15, 636472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zielman, R.; Wijnen, J.; Webb, A.; Onderwater, G.; Ronen, I.; Ferrari, M.; Kan, H.E.; Terwindt, G.M.; Kruit, M.C. Cortical glutamate in migraine. Brain 2017, 140, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikor, D.; Banaszek-Hurla, N.; Drelichowska, A.; Hurla, M.; Dorszewska, J.; Wolak, T.; Kozubski, W. fMRI Insights into Visual Cortex Dysfunction as a Biomarker for Migraine with Aura. Neurol. Int. 2025, 17, 15. https://doi.org/10.3390/neurolint17020015
Pikor D, Banaszek-Hurla N, Drelichowska A, Hurla M, Dorszewska J, Wolak T, Kozubski W. fMRI Insights into Visual Cortex Dysfunction as a Biomarker for Migraine with Aura. Neurology International. 2025; 17(2):15. https://doi.org/10.3390/neurolint17020015
Chicago/Turabian StylePikor, Damian, Natalia Banaszek-Hurla, Alicja Drelichowska, Mikołaj Hurla, Jolanta Dorszewska, Tomasz Wolak, and Wojciech Kozubski. 2025. "fMRI Insights into Visual Cortex Dysfunction as a Biomarker for Migraine with Aura" Neurology International 17, no. 2: 15. https://doi.org/10.3390/neurolint17020015
APA StylePikor, D., Banaszek-Hurla, N., Drelichowska, A., Hurla, M., Dorszewska, J., Wolak, T., & Kozubski, W. (2025). fMRI Insights into Visual Cortex Dysfunction as a Biomarker for Migraine with Aura. Neurology International, 17(2), 15. https://doi.org/10.3390/neurolint17020015