Insights into the Characteristics and Functions of Mast Cells in the Gut
Abstract
:1. Introduction
2. Biological Characteristics of Mast Cells in the Gastrointestinal Tract
3. Mast Cells in IBD: Initiating Immunity and Maintaining Epithelial Barrier
3.1. Interactions between MCs and Cytokines: Initiating Immunity
3.2. Roles of MCs in Maintaining Epithelial Barrier
4. Roles of MCs in Defending against Infection
5. Roles of Mast Cells in IBS via Neurotransmitters and Molecules
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCLXL | B-cell lymphoma-X large |
CA | cinnamaldehyde |
CP | carboxypeptidase |
C-C motif | chemokine |
CCL2 | chemokine ligand 2 |
CCR2 | chemokine receptor 2 |
CD117 | c-Kit |
chymase | Chymotrypsin-like |
CLDN8 | claudin-8 |
COX | cyclooxygenase |
CPA3 | carboxypeptidase A3 |
CRC | colorectal cancer |
CRH | corticotrophin-releasing hormone |
CTMC | connective tissue mast cells |
CXCR2 | CXC chemokine receptor 2 |
ET-1 | endothelin 1 |
FD | functional dyspepsia |
FOS | fructo-oligosaccharides |
FD | functional dyspHmm |
GI | gastrointestinal |
GPCR | G protein-coupled receptor |
H4R | histamine receptor 4 |
HMC-1 | human mast cell-1 |
HMCs-1 | human mast cells-1 |
I/R | ischemia-reperfusion |
IBD | inflammatory bowel disease |
IBS | irritable bowel syndrome |
IECs | intestinal epithelial cells |
IECs | intestinal epithelial cells |
IPC | ischemic preconditioning |
IB4 | isolectin B4 |
KC | keratinocyte chemoattractant |
Mφ | macrophage |
MCP | mast cell proteases |
MMC | mucosal mast cells |
MRGPRX2 | mMas-related GPCR-X2 |
Nb | nippostrongylus brasiliensis |
NGF | nerve growth factor |
NOD | nucleotide-binding and oligomerization domain |
NSAIDs | non-steroidal anti-inflammatory drugs |
PAR-2 | protease-activated receptors-2 |
PCIS | precision cut intestinal slices |
PGs | prostaglandins |
SCF | stem-cell factor |
TLR | Toll-like receptors |
TRPV1 | transient reporter. potential channel V1 |
VHS | visceral hypersensitivity |
VIP | vasoactive intestinal peptide |
References
- Ehrlich, P. Beiträge zur Theorie und Praxis der Histologischen Färbung. Inaugural-Dissertation, Universität Leipzig, Leipzig, Germany, 1878. [Google Scholar]
- Asadi, S.; Theoharides, T.C. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin. J. Neuroinflammation 2012, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Herbomel, P.; Thisse, B.; Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999, 126, 3735–3745. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Kalesnikoff, J.; Grimbaldeston, M.A.; Piliponsky, A.M.; Williams, C.M.; Tsai, M. Mast cells as “tunable” effector and immunoregulatory cells: Recent advances. Annu. Rev. Immunol. 2005, 23, 749–786. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Borregaard, N.; Wynn, T.A. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nat. Immunol. 2011, 12, 1035–1044. [Google Scholar] [CrossRef]
- Soule, B.P.; Brown, J.M.; Kushnir-Sukhov, N.M.; Simone, N.L.; Mitchell, J.B.; Metcalfe, D.D. Effects of gamma radiation on FcepsilonRI and TLR-mediated mast cell activation. J. Immunol. 2007, 179, 3276–3286. [Google Scholar] [CrossRef]
- Hamann, K.; Haas, N.; Grabbe, J.; Welker, P.; Czarnetzki, B.M. Two novel mast cell phenotypic markers, monoclonal antibodies Ki-MC1 and Ki-M1P, identify distinct mast cell subtypes. Br. J. Dermatol. 1995, 133, 547–552. [Google Scholar] [CrossRef]
- Vogel, P.; Janke, L.; Gravano, D.M.; Lu, M.; Sawant, D.V.; Bush, D.; Shuyu, E.; Vignali, D.A.A.; Pillai, A.; Rehg, J.E. Globule Leukocytes and Other Mast Cells in the Mouse Intestine. Vet. Pathol. 2018, 55, 76–97. [Google Scholar] [CrossRef]
- Benedé, S.; Cody, E.; Agashe, C.; Berin, M.C. Immune Characterization of Bone Marrow-Derived Models of Mucosal and Connective Tissue Mast Cells. Allergy Asthma Immunol. Res. 2018, 10, 268–277. [Google Scholar] [CrossRef]
- Xing, W.; Austen, K.F.; Gurish, M.F.; Jones, T.G. Protease phenotype of constitutive connective tissue and of induced mucosal mast cells in mice is regulated by the tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 14210–14215. [Google Scholar] [CrossRef]
- Moreno, F.J. Gastrointestinal digestion of food allergens: Effect on their allergenicity. Biomed. Pharmacother. 2007, 61, 50–60. [Google Scholar] [CrossRef]
- Eypasch, E.; Williams, J.I.; Wood-Dauphinee, S.; Ure, B.M.; Schmülling, C.; Neugebauer, E.; Troidl, H. Gastrointestinal Quality of Life Index: Development, validation and application of a new instrument. Br. J. Surg. 1995, 82, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Norton, C.; Czuber-Dochan, W.; Artom, M.; Sweeney, L.; Hart, A. Systematic review: Interventions for abdominal pain management in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017, 46, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Defrees, D.N.; Bailey, J. Irritable Bowel Syndrome: Epidemiology, Pathophysiology, Diagnosis, and Treatment. Prim. Care 2017, 44, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Luo, Q.Q.; Chen, S.L. The role of intestinal mast cell infiltration in irritable bowel syndrome. J. Dig. Dis. 2021, 22, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Klooker, T.K.; Braak, B.; Koopman, K.E.; Welting, O.; Wouters, M.M.; van der Heide, S.; Schemann, M.; Bischoff, S.C.; van den Wijngaard, R.M.; Boeckxstaens, G.E. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut 2010, 59, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Nanagas, V.C.; Kovalszki, A. Gastrointestinal Manifestations of Hypereosinophilic Syndromes and Mast Cell Disorders: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2019, 57, 194–212. [Google Scholar] [CrossRef]
- Yong, L.C.J. The mast cell: Origin, morphology, distribution, and function. Exp. Toxicol. Pathol. 1997, 49, 409–424. [Google Scholar] [CrossRef]
- Bloom, G.D.; Haegermark, O. Studies on morphological changes and histamine release induced by bee venom, n-decylamine and hypotonic solutions in rat peritoneal mast cells. Acta Physiol. Scand. 1967, 71, 257–269. [Google Scholar] [CrossRef]
- Uvnäs, B. Chemistry and Storage Function of Mast Cell Granules. J. Investig. Dermatol. 1978, 71, 76–80. [Google Scholar] [CrossRef]
- Goldstein, S.M.; Kaempfer, C.E.; Proud, D.; Schwartz, L.B.; Irani, A.M.; Wintroub, B.U. Detection and partial characterization of a human mast cell carboxypeptidase. J. Immunol. 1987, 139, 2724–2729. [Google Scholar] [CrossRef]
- Meurer, S.K.; Neß, M.; Weiskirchen, S.; Kim, P.; Tag, C.G.; Kauffmann, M.; Huber, M.; Weiskirchen, R. Isolation of Mature (Peritoneum-Derived) Mast Cells and Immature (Bone Marrow-Derived) Mast Cell Precursors from Mice. PLoS ONE 2016, 11, e0158104. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B. Analysis of MC(T) and MC(TC) mast cells in tissue. Methods Mol. Biol. 2006, 315, 53–62. [Google Scholar] [PubMed]
- Pejler, G.; Rönnberg, E.; Waern, I.; Wernersson, S. Mast cell proteases: Multifaceted regulators of inflammatory disease. Blood 2010, 115, 4981–4990. [Google Scholar] [CrossRef] [PubMed]
- Byrne, S.N.; Limón-Flores, A.Y.; Ullrich, S.E. Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J. Immunol. 2008, 180, 4648–4655. [Google Scholar] [CrossRef]
- Takeuchi, M.; Sato, Y.; Ohno, K.; Tanaka, S.; Takata, K.; Gion, Y.; Orita, Y.; Ito, T.; Tachibana, T.; Yoshino, T. T helper 2 and regulatory T-cell cytokine production by mast cells: A key factor in the pathogenesis of IgG4-related disease. Mod. Pathol. 2014, 27, 1126–1136. [Google Scholar] [CrossRef]
- Brown, M.A.; Weinberg, R.B. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease. Front. Immunol. 2018, 9, 514. [Google Scholar] [CrossRef]
- Da Silva, C.A.; Reber, L.; Frossard, N. Stem cell factor expression, mast cells and inflammation in asthma. Fundam. Clin. Pharmacol. 2006, 20, 21–39. [Google Scholar] [CrossRef]
- Ryan, J.J.; Kashyap, M.; Bailey, D.; Kennedy, S.; Speiran, K.; Brenzovich, J.; Barnstein, B.; Oskeritzian, C.; Gomez, G. Mast cell homeostasis: A fundamental aspect of allergic disease. Crit. Rev. Immunol. 2007, 27, 15–32. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Liu, L.; Sun, J.; Shi, M.A.; Sukhova, G.K.; Shi, G.P. Chemokine (C-C motif) receptor 2 mediates mast cell migration to abdominal aortic aneurysm lesions in mice. Cardiovasc. Res. 2012, 96, 543–551. [Google Scholar] [CrossRef]
- Zhong, B.; Li, Y.; Liu, X.; Wang, D. Association of mast cell infiltration with gastric cancer progression. Oncol. Lett. 2018, 15, 755–764. [Google Scholar] [CrossRef]
- Abe, T.; Ochiai, H.; Minamishima, Y.; Nawa, Y. Induction of intestinal mastocytosis in nude mice by repeated injection of interleukin-3. Int. Arch. Allergy Appl. Immunol. 1988, 86, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Caughey, G.H. Mast cell tryptases and chymases in inflammation and host defense. Immunol. Rev. 2007, 217, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Chuang, L.S.; Giri, M.; Villaverde, N.; Hsu, N.Y.; Sabic, K.; Joshowitz, S.; Gettler, K.; Nayar, S.; Chai, Z.; et al. Inflamed Ulcerative Colitis Regions Associated With MRGPRX2-Mediated Mast Cell Degranulation and Cell Activation Modules, Defining a New Therapeutic Target. Gastroenterology 2021, 160, 1709–1724. [Google Scholar] [CrossRef] [PubMed]
- Chompunud Na Ayudhya, C.; Roy, S.; Thapaliya, M.; Ali, H. Roles of a Mast Cell-Specific Receptor MRGPRX2 in Host Defense and Inflammation. J. Dent. Res. 2020, 99, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Gerbaulet, A.; Wickenhauser, C.; Scholten, J.; Peschke, K.; Drube, S.; Horny, H.P.; Kamradt, T.; Naumann, R.; Müller, W.; Krieg, T.; et al. Mast cell hyperplasia, B-cell malignancy, and intestinal inflammation in mice with conditional expression of a constitutively active kit. Blood 2011, 117, 2012–2021. [Google Scholar] [CrossRef]
- Rahman, M.M.; Afroz, S.; Arthur, S.; Sundaram, U. Mast Cell Mediated Regulation of Small Intestinal Chloride Malabsorption in SAMP1/YitFc Mouse Model of Spontaneous Chronic Ileitis. Cells 2021, 10, 697. [Google Scholar] [CrossRef]
- Junxiu, Z.; Yu, F.; Yanyan, H.; Yin, Z.; Yi, L.; Minghui, Y.; Shaodan, L. Mast cell activation, TLR4-NF-κB/TNF-α pathway variation in rats’ intestinal ischemia-reperfusion injury and Tongxinluo’s therapeutic effect. Pak. J. Pharm. Sci. 2020, 33, 1599–1608. [Google Scholar]
- Kurashima, Y.; Amiya, T.; Nochi, T.; Fujisawa, K.; Haraguchi, T.; Iba, H.; Tsutsui, H.; Sato, S.; Nakajima, S.; Iijima, H.; et al. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat. Commun. 2012, 3, 1034. [Google Scholar] [CrossRef]
- Liu, B.; Yang, M.Q.; Yu, T.Y.; Yin, Y.Y.; Liu, Y.; Wang, X.D.; He, Z.G.; Yin, L.; Chen, C.Q.; Li, J.Y. Mast Cell Tryptase Promotes Inflammatory Bowel Disease-Induced Intestinal Fibrosis. Inflamm. Bowel Dis. 2021, 27, 242–255. [Google Scholar] [CrossRef]
- Li, M.; Zhao, J.; Cao, M.; Liu, R.; Chen, G.; Li, S.; Xie, Y.; Xie, J.; Cheng, Y.; Huang, L.; et al. Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol. Res. 2020, 53, 12. [Google Scholar] [CrossRef]
- Tu, Y.H.; Oluwole, C.; Struiksma, S.; Perdue, M.H.; Yang, P.C. Mast cells modulate transport of CD23/IgE/antigen complex across human intestinal epithelial barrier. N. Am. J. Med. Sci. 2009, 1, 16–24. [Google Scholar] [PubMed]
- Groschwitz, K.R.; Ahrens, R.; Osterfeld, H.; Gurish, M.F.; Han, X.; Abrink, M.; Finkelman, F.D.; Pejler, G.; Hogan, S.P. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 22381–22386. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, S.; Qin, B. Eosinophil and mast cell-derived exosomes promote integrity of intestinal mucosa via the NEAT1/miR-211-5p/glial cell line-derived neurotrophic factor axis in duodenum. Environ. Toxicol. 2023, 8, 2595–2607. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, D.; Zhang, W. Mast cells of ileocecal junction in irritable bowel syndrome. Zhonghua Nei Ke Za Zhi 1997, 36, 231–233. [Google Scholar] [PubMed]
- Li, M.Y.; Zhu, M.; Zhu, B.; Wang, Z.Q. Tryptase disturbs endocytic allergen degradation in intestinal epithelial cells. Anal. Biochem. 2013, 434, 54–59. [Google Scholar] [CrossRef]
- Grabauskas, G.; Wu, X.; Gao, J.; Li, J.Y.; Turgeon, D.K.; Owyang, C. Prostaglandin E(2), Produced by Mast Cells in Colon Tissues From Patients With Irritable Bowel Syndrome, Contributes to Visceral Hypersensitivity in Mice. Gastroenterology 2020, 158, 2195–2207.e6. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yan, S.; Guo, Y.; Qiao, L.; Ma, L.; Dou, X.; Zhang, B. Lactobacillus casei ATCC 393 alleviates Enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway. Life Sci. 2020, 244, 117281. [Google Scholar] [CrossRef]
- Wu, L.; Feng, B.S.; He, S.H.; Zheng, P.Y.; Croitoru, K.; Yang, P.C. Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: The role of TLR2 and NOD2. Immunol. Cell Biol. 2007, 85, 538–545. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, Y.; He, X.; Sun, W.; Lv, Y.; Hou, X. Study on screening potential allergenic proteins from infant milk powders based on human mast cell membrane chromatography and histamine release assays. J. Pharm. Anal. 2019, 9, 55–61. [Google Scholar] [CrossRef]
- Hong, M.H.; Lee, J.Y.; Jung, H.; Jin, D.H.; Go, H.Y.; Kim, J.H.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Sophora flavescens Aiton inhibits the production of pro-inflammatory cytokines through inhibition of the NF kappaB/IkappaB signal pathway in human mast cell line (HMC-1). Toxicol. Vitr. 2009, 23, 251–258. [Google Scholar] [CrossRef]
- Yashiro, T.; Ogata, H.; Zaidi, S.F.; Lee, J.; Hayashi, S.; Yamamoto, T.; Kadowaki, M. Pathophysiological Roles of Neuro-Immune Interactions between Enteric Neurons and Mucosal Mast Cells in the Gut of Food Allergy Mice. Cells 2021, 10, 1586. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.J.; Feng, C.C.; Liu, Q.; Zhang, L.Y.; Dong, X.; Liu, Z.L.; Cao, Z.J.; Mo, J.Z.; Li, Y.; Fang, J.Y.; et al. Vagal afferents mediate antinociception of estrogen in a rat model of visceral pain: The involvement of intestinal mucosal mast cells and 5-hydroxytryptamine 3 signaling. J. Pain. 2014, 15, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Norkina, O.; Burnett, T.G.; De Lisle, R.C. Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine. Infect. Immun. 2004, 72, 6040–6049. [Google Scholar] [CrossRef]
- Gamal, N.G.; Abd El-Salam, R.M.; Gadelrub, L.N.; Ahmed-Farid, O.A.; Khayyal, M.T. The herbal preparation STW 5 affects serotonergic pathways in the brain and colon as well as stress parameters in experimental irritable bowel syndrome. Neurogastroenterol. Motil. 2022, 34, e14301. [Google Scholar] [CrossRef] [PubMed]
- Conti, P.; Carinci, F.; Caraffa, A.; Ronconi, G.; Lessiani, G.; Theoharides, T.C. Link between mast cells and bacteria: Antimicrobial defense, function and regulation by cytokines. Med. Hypotheses 2017, 106, 10–14. [Google Scholar] [CrossRef]
- Kirshenbaum, A.S.; Swindle, E.; Kulka, M.; Wu, Y.; Metcalfe, D.D. Effect of lipopolysaccharide (LPS) and peptidoglycan (PGN) on human mast cell numbers, cytokine production, and protease composition. BMC Immunol. 2008, 9, 45. [Google Scholar] [CrossRef]
- Lv, Y.P.; Teng, Y.S.; Mao, F.Y.; Peng, L.S.; Zhang, J.Y.; Cheng, P.; Liu, Y.G.; Kong, H.; Wang, T.T.; Wu, X.L.; et al. Helicobacter pylori-induced IL-33 modulates mast cell responses, benefits bacterial growth, and contributes to gastritis. Cell Death Dis. 2018, 9, 457. [Google Scholar] [CrossRef]
- Nishiya, K.; Sawada, M.; Dijkstra, J.M.; Miyamae, J.; Okano, M.; Katakura, F.; Moritomo, T. A fish cytokine related to human IL-3, IL-5, and GM-CSF, induces development of eosinophil/basophil/mast-cell type (EBM) granulocytes. Dev. Comp. Immunol. 2020, 108, 103671. [Google Scholar] [CrossRef]
- Cassard, L.; Lalanne, A.I.; Garault, P.; Cotillard, A.; Chervaux, C.; Wels, M.; Smokvina, T.; Daëron, M.; Bourdet-Sicard, R. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation. Immun. Inflamm. Dis. 2016, 4, 289–299. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tsuchiya, K.; Hara, T.; Nakahata, T.; Kurokawa, M.; Ishiwata, K.; Uchiyama, F.; Nawa, Y. Intestinal mast cell response and mucosal defence against Strongyloides venezuelensis in interleukin-3-hyporesponsive mice. Parasite Immunol. 1998, 20, 279–284. [Google Scholar] [CrossRef]
- Abe, T.; Nawa, Y. Worm expulsion and mucosal mast cell response induced by repetitive IL-3 administration in Strongyloides ratti-infected nude mice. Immunology 1988, 63, 181–185. [Google Scholar] [PubMed]
- Vukman, K.V.; Visnovitz, T.; Adams, P.N.; Metz, M.; Maurer, M.; O’Neill, S.M. Mast cells cultured from IL-3-treated mice show impaired responses to bacterial antigen stimulation. Inflamm. Res. 2012, 61, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Vde, F.; Barreto Ede, O.; Farias-Filho, F.A.; Gomes, L.H.; Mendonça Lde, L.; Cordeiro, R.S.; Martins, M.A.; Rodrigues e Silva, P.M. Reduced expression of IL-3 mediates intestinal mast cell depletion in diabetic rats: Role of insulin and glucocorticoid hormones. Int. J. Exp. Pathol. 2009, 90, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Sellge, G.; Lorentz, A.; Gebhardt, T.; Levi-Schaffer, F.; Bektas, H.; Manns, M.P.; Schuppan, D.; Bischoff, S.C. Human intestinal fibroblasts prevent apoptosis in human intestinal mast cells by a mechanism independent of stem cell factor, IL-3, IL-4, and nerve growth factor. J. Immunol. 2004, 172, 260–267. [Google Scholar] [CrossRef]
- Meiners, J.; Reitz, M.; Rüdiger, N.; Turner, J.E.; Heepmann, L.; Rudolf, L.; Hartmann, W.; McSorley, H.J.; Breloer, M. IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- and IL-9-driven mast cell activation. PLoS Pathog. 2020, 16, e1009121. [Google Scholar] [CrossRef]
- Wang, J.X.; Kaieda, S.; Ameri, S.; Fishgal, N.; Dwyer, D.; Dellinger, A.; Kepley, C.L.; Gurish, M.F.; Nigrovic, P.A. IL-33/ST2 axis promotes mast cell survival via BCLXL. Proc. Natl. Acad. Sci. USA 2014, 111, 10281–10286. [Google Scholar] [CrossRef]
- Hsu, C.L.; Chhiba, K.D.; Krier-Burris, R.; Hosakoppal, S.; Berdnikovs, S.; Miller, M.L.; Bryce, P.J. Allergic inflammation is initiated by IL-33-dependent crosstalk between mast cells and basophils. PLoS ONE 2020, 15, e0226701. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lee, J.B.; Liu, B.; Ohta, S.; Wang, P.Y.; Kartashov, A.V.; Mugge, L.; Abonia, J.P.; Barski, A.; Izuhara, K.; et al. Induction of Interleukin-9-Producing Mucosal Mast Cells Promotes Susceptibility to IgE-Mediated Experimental Food Allergy. Immunity 2015, 43, 788–802. [Google Scholar] [CrossRef]
- Saadalla, A.M.; Osman, A.; Gurish, M.F.; Dennis, K.L.; Blatner, N.R.; Pezeshki, A.; McNagny, K.M.; Cheroutre, H.; Gounari, F.; Khazaie, K. Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner. Proc. Natl. Acad. Sci. USA 2018, 115, 1588–1592. [Google Scholar] [CrossRef]
- McDermott, J.R.; Bartram, R.E.; Knight, P.A.; Miller, H.R.; Garrod, D.R.; Grencis, R.K. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc. Natl. Acad. Sci. USA 2003, 100, 7761–7766. [Google Scholar] [CrossRef]
- Johnson, C.; Huynh, V.; Hargrove, L.; Kennedy, L.; Graf-Eaton, A.; Owens, J.; Trzeciakowski, J.P.; Hodges, K.; DeMorrow, S.; Han, Y.; et al. Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell Factor-Dependent Signaling. Am. J. Pathol. 2016, 186, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Nakano, N.; Kitaura, J. Mucosal Mast Cells as Key Effector Cells in Food Allergies. Cells 2022, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- Magadmi, R.; Meszaros, J.; Damanhouri, Z.A.; Seward, E.P. Secretion of Mast Cell Inflammatory Mediators Is Enhanced by CADM1-Dependent Adhesion to Sensory Neurons. Front. Cell. Neurosci. 2019, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B.; Austen, K.F. Enzymes of the mast cell granule. J. Investig. Dermatol. 1980, 74, 349–353. [Google Scholar] [CrossRef]
- Santos, J.; Yang, P.C.; Söderholm, J.D.; Benjamin, M.; Perdue, M.H. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 2001, 48, 630–636. [Google Scholar] [CrossRef]
- Sagami, Y. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 2004, 53, 958–964. [Google Scholar] [CrossRef]
- Tache, Y.; Larauche, M.; Yuan, P.Q.; Million, M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr. Mol. Pharmacol. 2018, 11, 51–71. [Google Scholar] [CrossRef]
- Qian, A.H.; Liu, X.Q.; Yao, W.Y.; Wang, H.Y.; Sun, J.; Zhou, L.; Yuan, Y.Z. Voltage-gated potassium channels in IB4-positive colonic sensory neurons mediate visceral hypersensitivity in the rat. Am. J. Gastroenterol. 2009, 104, 2014–2027. [Google Scholar] [CrossRef]
- Sand, E.; Themner-Persson, A.; Ekblad, E. Mast cells reduce survival of myenteric neurons in culture. Neuropharmacology 2009, 56, 522–530. [Google Scholar] [CrossRef]
- Branco, A.C.C.C.; Yoshikawa, F.S.Y.; Pietrobon, A.J.; Sato, M.N. Role of Histamine in Modulating the Immune Response and Inflammation. Mediat. Inflamm. 2018, 2018, 9524075. [Google Scholar] [CrossRef]
- Gao, C.; Ganesh, B.P.; Shi, Z.; Shah, R.R.; Fultz, R.; Major, A.; Venable, S.; Lugo, M.; Hoch, K.; Chen, X.; et al. Gut Microbe-Mediated Suppression of Inflammation-Associated Colon Carcinogenesis by Luminal Histamine Production. Am. J. Pathol. 2017, 187, 2323–2336. [Google Scholar] [CrossRef] [PubMed]
- Aldinucci, A.; Bonechi, E.; Manuelli, C.; Nosi, D.; Masini, E.; Passani, M.B.; Ballerini, C. Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response. J. Biol. Chem. 2016, 291, 14803–14814. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Shimbori, C.; Reed, D.E.; Yu, Y.; Rabbia, V.; Lu, J.; Jimenez-Vargas, N.; Sessenwein, J.; Lopez-Lopez, C.; Pigrau, M.; et al. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. Sci. Transl. Med. 2022, 14, eabj1895. [Google Scholar] [CrossRef] [PubMed]
- Hung, L.; Celik, A.; Yin, X.; Yu, K.; Berenjy, A.; Kothari, A.; Obernolte, H.; Upton, J.E.M.; Lindholm Bøgh, K.; Somers, G.R.; et al. Precision cut intestinal slices, a novel model of acute food allergic reactions. Allergy 2023, 78, 500–511. [Google Scholar] [CrossRef]
- Schirmer, B.; Neumann, D. The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut. Int. J. Mol. Sci. 2021, 22, 6116. [Google Scholar] [CrossRef]
- Carco, C.; Young, W.; Gearry, R.B.; Talley, N.J.; McNabb, W.C.; Roy, N.C. Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis. Front. Cell Infect Microbiol. 2020, 10, 468. [Google Scholar] [CrossRef]
- Botschuijver, S.; van Diest, S.A.; van Thiel, I.A.M.; Saia, R.S.; Strik, A.S.; Yu, Z.; Maria-Ferreira, D.; Welting, O.; Keszthelyi, D.; Jennings, G.; et al. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Sci. Rep. 2019, 9, 12530. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Wei, H.; Liu, Y.; Li, N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front. Immunol. 2023, 14, 1209056. [Google Scholar] [CrossRef]
- Sakita, J.Y.; Elias-Oliveira, J.; Carlos, D.; de Souza Santos, E.; Almeida, L.Y.; Malta, T.M.; Brunaldi, M.O.; Albuquerque, S.; Araújo Silva, C.L.; Andrade, M.V.; et al. Mast cell-T cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: Potential for therapeutically targeting via mast cell inhibition. J. Immunother. Cancer 2022, 10, e004653. [Google Scholar] [CrossRef]
- Meloti-Fiorio, L.; Silva-Sinara-Alves, I.; Rohor-de-Souza, F.; Grassi-Bautz, W.; Silva-Souza-Ribeiro, F.; Pinto-Nogueira-da-Gama, L.; Nogueira-da-Gama-de-Souza, L. Perivascular mast cells and expression of vascular endothelial growth factor, laminin-332 and matrix metalloproteinase-9 in human colorectal neoplasms. Rev. Gastroenterol. Mex. 2022, 6, S2255-534X(22)00067-6. [Google Scholar] [CrossRef]
- Israelyan, N.; Del Colle, A.; Li, Z.; Park, Y.; Xing, A.; Jacobsen, J.P.R.; Luna, R.A.; Jensen, D.D.; Madra, M.; Saurman, V.; et al. Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on Gastrointestinal Motility in a Mouse Model of Depression. Gastroenterology 2019, 157, 507–521.e4. [Google Scholar] [CrossRef] [PubMed]
- Rönnberg, E.; Calounova, G.; Pejler, G. Mast cells express tyrosine hydroxylase and store dopamine in a serglycin-dependent manner. Biol. Chem. 2012, 393, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Graeff, F.G.; Guimarães, F.S.; De Andrade, T.G.; Deakin, J.F. Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 1996, 54, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xiong, T.; Grabauskas, G.; Owyang, C. Mucosal Serotonin Reuptake Transporter Expression in Irritable Bowel Syndrome Is Modulated by Gut Microbiota Via Mast Cell-Prostaglandin E2. Gastroenterology 2022, 162, 1962–1974.e6. [Google Scholar] [CrossRef]
- Kodani, M.; Fukui, H.; Tomita, T.; Oshima, T.; Watari, J.; Miwa, H. Association between gastrointestinal motility and macrophage/mast cell distribution in mice during the healing stage after DSS-induced colitis. Mol. Med. Rep. 2018, 17, 8167–8172. [Google Scholar] [CrossRef]
- Friend, D.S.; Ghildyal, N.; Gurish, M.F.; Hunt, J.; Hu, X.; Austen, K.F.; Stevens, R.L. Reversible expression of tryptases and chymases in the jejunal mast cells of mice infected with Trichinella spiralis. J. Immunol. 1998, 160, 5537–5545. [Google Scholar] [CrossRef]
- Miller, H.R.; Pemberton, A.D. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 2002, 105, 375–390. [Google Scholar] [CrossRef]
- Fernández-Blanco, J.A.; Estévez, J.; Shea-Donohue, T.; Martínez, V.; Vergara, P. Changes in Epithelial Barrier Function in Response to Parasitic Infection: Implications for IBD Pathogenesis. J Crohns Colitis. 2015, 9, 463–476. [Google Scholar] [CrossRef]
- Caughey, G.H.; Leidig, F.; Viro, N.F.; Nadel, J.A. Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J. Pharmacol. Exp. Ther. 1988, 244, 133–137. [Google Scholar]
- Chandrasekharan, U.M.; Sanker, S.; Glynias, M.J.; Karnik, S.S.; Husain, A. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science 1996, 271, 502–505. [Google Scholar] [CrossRef]
- Ghildyal, N.; McNeil, H.P.; Stechschulte, S.; Austen, K.F.; Silberstein, D.; Gurish, M.F.; Somerville, L.L.; Stevens, R.L. IL-10 induces transcription of the gene for mouse mast cell protease-1, a serine protease preferentially expressed in mucosal mast cells of Trichinella spiralis-infected mice. J. Immunol. 1992, 149, 2123–2129. [Google Scholar] [CrossRef]
- Andersson, M.K.; Pemberton, A.D.; Miller, H.R.; Hellman, L. Extended cleavage specificity of mMCP-1, the major mucosal mast cell protease in mouse-high specificity indicates high substrate selectivity. Mol. Immunol. 2008, 45, 2548–2558. [Google Scholar] [CrossRef]
- Xing, D.; Zhang, R.; Li, S.; Huang, P.; Luo, C.; Hei, Z.; Xia, Z.; Gan, X. Pivotal role of mast cell carboxypeptidase A in mediating protection against small intestinal ischemia-reperfusion injury in rats after ischemic preconditioning. J. Surg. Res. 2014, 192, 177–186. [Google Scholar] [CrossRef]
- Dobson, J.T.; Seibert, J.; Teh, E.M.; Da’as, S.; Fraser, R.B.; Paw, B.H.; Lin, T.J.; Berman, J.N. Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood 2008, 112, 2969–2972. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Oshima, T.; Huang, X.; Tomita, T.; Fukui, H.; Miwa, H. Microinflammation in the intestinal mucosa and symptoms of irritable bowel syndrome. J. Gastroenterol. 2022, 57, 62–69. [Google Scholar] [CrossRef]
- Stead, R.H.; Kosecka-Janiszewska, U.; Oestreicher, A.B.; Dixon, M.F.; Bienenstock, J. Remodeling of B-50 (GAP-43)- and NSE-immunoreactive mucosal nerves in the intestines of rats infected with Nippostrongylus brasiliensis. J. Neurosci. 1991, 11, 3809–3821. [Google Scholar] [CrossRef]
- Gong, L.; Li, J.; Tang, Y.; Han, T.; Wei, C.; Yu, X.; Li, J.; Wang, R.; Ma, X.; Liu, K.; et al. The antinociception of oxytocin on colonic hypersensitivity in rats was mediated by inhibition of mast cell degranulation via Ca2+-NOS pathway. Sci. Rep. 2016, 6, 31452. [Google Scholar] [CrossRef]
- Hagenlocher, Y.; Kiessling, K.; Schäffer, M.; Bischoff, S.C.; Lorentz, A. Cinnamaldehyde is the main mediator of cinnamon extract in mast cell inhibition. Eur. J. Nutr. 2015, 54, 1297–1309. [Google Scholar] [CrossRef]
- Yang, B.; Li, J.J.; Cao, J.J.; Yang, C.B.; Liu, J.; Ji, Q.M.; Liu, Z.G. Polydatin attenuated food allergy via store-operated calcium channels in mast cell. World J. Gastroenterol. 2013, 19, 3980–3989. [Google Scholar] [CrossRef]
- McKay, D.M.; Bienenstock, J.; Perdue, M.H. Inhibition of antigen-induced secretion in the rat jejunum by interferon alpha/beta. Reg. Immunol. 1993, 5, 53–59. [Google Scholar]
- Kamphuis, J.B.J.; Reber, L.; Eutamène, H.; Theodorou, V. Increased fermentable carbohydrate intake alters colonic mucus barrier function through glycation processes and increased mast cell counts. FASEB J. 2022, 36, e22297. [Google Scholar] [CrossRef]
- Aguilera-Lizarraga, J.; Florens, M.; Hussein, H.; Boeckxstaens, G. Local immune response as novel disease mechanism underlying abdominal pain in patients with irritable bowel syndrome. Acta Clin. Belg. 2022, 77, 889–896. [Google Scholar] [CrossRef]
- Brandt, E.B.; Strait, R.T.; Hershko, D.; Wang, Q.; Muntel, E.E.; Scribner, T.A.; Zimmermann, N.; Finkelman, F.D.; Rothenberg, M.E. Mast cells are required for experimental oral allergen-induced diarrhea. J. Clin. Investig. 2003, 112, 1666–1677. [Google Scholar] [CrossRef]
- Singh, S.; Arthur, S.; Talukder, J.; Palaniappan, B.; Coon, S.; Sundaram, U. Mast cell regulation of Na-glutamine co-transporters B0AT1 in villus and SN2 in crypt cells during chronic intestinal inflammation. BMC Gastroenterol. 2015, 15, 47. [Google Scholar] [CrossRef]
- Fujikawa, Y.; Tominaga, K. Enhanced neuron-glia network in the submucosa and increased neuron outgrowth into the mucosa are associated with distinctive expressions of neuronal factors in the colon of rat IBS model. Neurogastroenterol. Motil. 2023, 35, e14595. [Google Scholar] [CrossRef]
- Ceulemans, M.; Jacobs, I.; Wauters, L.; Vanuytsel, T. Immune Activation in Functional Dyspepsia: Bystander Becoming the Suspect. Front. Neurosci. 2022, 16, 831761. [Google Scholar] [CrossRef]
- Accarie, A.; Toth, J.; Wauters, L.; Farré, R.; Tack, J.; Vanuytsel, T. Estrogens Play a Critical Role in Stress-Related Gastrointestinal Dysfunction in a Spontaneous Model of Disorders of Gut-Brain Interaction. Cells 2022, 11, 1214. [Google Scholar] [CrossRef]
- So, S.Y.; Savidge, T.C. Sex-Bias in Irritable Bowel Syndrome: Linking Steroids to the Gut-Brain Axis. Front. Endocrinol. 2021, 12, 684096. [Google Scholar] [CrossRef]
- Sun, H.; Ma, Y.; An, S.; Wang, Z. Altered gene expression signatures by calcitonin gene-related peptide promoted mast cell activity in the colon of stress-induced visceral hyperalgesia mice. Neurogastroenterol. Motil. 2021, 33, e14073. [Google Scholar] [CrossRef]
- Meira de-Faria, F.; Casado-Bedmar, M.; Mårten Lindqvist, C.; Jones, M.P.; Walter, S.A.; Keita, Å.V. Altered interaction between enteric glial cells and mast cells in the colon of women with irritable bowel syndrome. Neurogastroenterol. Motil. 2021, 33, e14130. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Gharibani, P.; Yin, J.; Chen, J.D.Z. Neuro-Immune Modulation Effects of Sacral Nerve Stimulation for Visceral Hypersensitivity in Rats. Front. Neurosci. 2021, 15, 645393. [Google Scholar] [CrossRef] [PubMed]
- Konnikova, L.; Robinson, T.O.; Owings, A.H.; Shirley, J.F.; Davis, E.; Tang, Y.; Wall, S.; Li, J.; Hasan, M.H.; Gharaibeh, R.Z.; et al. Small intestinal immunopathology and GI-associated antibody formation in hereditary alpha-tryptasemia. J. Allergy Clin. Immunol. 2021, 148, 813–821.e7. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Q.; Yu, J.; Zhang, R.; Sun, T.; Jiang, W.; Hu, N.; Yang, P.; Luo, L.; Ren, J.; et al. Costunolide ameliorates intestinal dysfunction and depressive behaviour in mice with stress-induced irritable bowel syndrome via colonic mast cell activation and central 5-hydroxytryptamine metabolism. Food Funct. 2021, 12, 4142–4151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, W.; Yu, L.; Tian, F.; Wang, G.; Lu, W.; Narbad, A.; Chen, W.; Zhai, Q. Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food Funct. 2021, 12, 1121–1134. [Google Scholar] [CrossRef]
- Spiller, R. Impact of Diet on Symptoms of the Irritable Bowel Syndrome. Nutrients 2021, 13, 575. [Google Scholar] [CrossRef]
- Singh, P.; Grabauskas, G.; Zhou, S.Y.; Gao, J.; Zhang, Y.; Owyang, C. High FODMAP diet causes barrier loss via lipopolysaccharide-mediated mast cell activation. JCI Insight 2021, 6, e146529. [Google Scholar] [CrossRef]
- Ammendola, M.; Sacco, R.; Donato, G.; Zuccalà, V.; Russo, E.; Luposella, M.; Vescio, G.; Rizzuto, A.; Patruno, R.; De Sarro, G.; et al. Mast cell positivity to tryptase correlates with metastatic lymph nodes in gastrointestinal cancer patients treated surgically. Oncology 2013, 85, 111–116. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bandyopadhyay, G.; Dutta, C.; Bhattacharya, A.; Karmakar, R.; Barui, G. Evaluation of endoscopic biopsy in gastric lesions with a special reference to the significance of mast cell density. Indian. J. Pathol. Microbiol. 2009, 52, 20–24. [Google Scholar] [CrossRef]
- Ribatti, D.; Guidolin, D.; Marzullo, A.; Nico, B.; Annese, T.; Benagiano, V.; Crivellato, E. Mast cells and angiogenesis in gastric carcinoma. Int. J. Exp. Pathol. 2010, 91, 350–356. [Google Scholar] [CrossRef]
- Sinnamon, M.J.; Carter, K.J.; Sims, L.P.; Lafleur, B.; Fingleton, B.; Matrisian, L.M. A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 2008, 29, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeon, Y.D.; Xin, M.; Lim, J.Y.; Lee, Y.M.; Kim, D.K. Mast cell modulates tumorigenesis caused by repeated bowel inflammation condition in azoxymethane/dextran sodium sulfate-induced colon cancer mouse model. Biochem. Biophys. Rep. 2022, 30, 101253. [Google Scholar] [CrossRef] [PubMed]
- Hizay, A.; Keleş-Çelik, N.; Acar, N.; Çomak-Göçer, E.M.; Şekerci, R.; Öz, N.; Golal, E.; Elpek, G. Probiotics in Experimental Ulcerative Colitis: Mast Cell Density and Neuronal Hypertrophy. Turk. J. Gastroenterol. 2022, 33, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Xu, J.; Saxena, R. Increased Mast Cell Counts and Degranulation in Microscopic Colitis. Gastroenterol. Res. Pract. 2020, 2020, 9089027. [Google Scholar] [CrossRef]
- Matsukawa, T.; Izawa, K.; Isobe, M.; Takahashi, M.; Maehara, A.; Yamanishi, Y.; Kaitani, A.; Okumura, K.; Teshima, T.; Kitamura, T.; et al. Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation. Gut 2016, 65, 777–787. [Google Scholar] [CrossRef]
- Balletta, A.; Lorenz, D.; Rummel, A.; Gerhard, R.; Bigalke, H.; Wegner, F. Clostridium difficile toxin B inhibits the secretory response of human mast cell line-1 (HMC-1) cells stimulated with high free-Ca2+ and GTPγS. Toxicology 2015, 328, 48–56. [Google Scholar] [CrossRef]
- Folch, J.; Petrov, D.; Ettcheto, M.; Pedrós, I.; Abad, S.; Beas-Zarate, C.; Lazarowski, A.; Marin, M.; Olloquequi, J.; Auladell, C.; et al. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert. Rev. Neurother. 2015, 15, 587–596. [Google Scholar] [CrossRef]
- Huang, H.; Li, Y. Mechanisms controlling mast cell and basophil lineage decisions. Curr. Allergy Asthma Rep. 2014, 14, 457. [Google Scholar] [CrossRef]
- Marshall, J.S.; Portales-Cervantes, L.; Leong, E. Mast Cell Responses to Viruses and Pathogen Products. Int. J. Mol. Sci. 2019, 20, 4241. [Google Scholar] [CrossRef]
- Mantri, C.K.; St John, A.L. Immune synapses between mast cells and γδ T cells limit viral infection. J. Clin. Investig. 2019, 129, 1094–1108. [Google Scholar] [CrossRef]
- Buhner, S.; Li, Q.; Vignali, S.; Barbara, G.; De Giorgio, R.; Stanghellini, V.; Cremon, C.; Zeller, F.; Langer, R.; Daniel, H.; et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 2009, 137, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.; Amadesi, S.; Bunnett, N.W. Frontiers in Neuroscience Protease-Activated Receptors: Mechanisms by Which Proteases Sensitize TRPV Channels to Induce Neurogenic Inflammation and Pain, in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades; Liedtke, W.B., Heller, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Skrobisz, K.; Piotrowicz, G.; Naumczyk, P.; Sabisz, A.; Markiet, K.; Rydzewska, G.; Szurowska, E. Imaging of Morphological Background in Selected Functional and Inflammatory Gastrointestinal Diseases in fMRI. Front. Psychiatry 2020, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Quigley, E. The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS). J. Clin. Med. 2018, 7, 6. [Google Scholar] [CrossRef]
- Theodorou, V.; Beaufrand, C.; Yvon, S.; Laforge, G.; Burmeister, Y.; Müller, A.; Seilheimer, B.; Bueno, L.; Eutamene, H. The multicomponent medication Spascupreel attenuates stress-induced gut dysfunction in rats. Neurogastroenterol. Motil. 2020, 32, e13798. [Google Scholar] [CrossRef] [PubMed]
- Ayyadurai, S.; Gibson, A.J.; D’Costa, S.; Overman, E.L.; Sommerville, L.J.; Poopal, A.C.; Mackey, E.; Li, Y.; Moeser, A.J. Frontline Science: Corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. J. Leukoc. Biol. 2017, 102, 1299–1312. [Google Scholar] [CrossRef]
- Ravnefjord, A.; Pettersson, M.; Rehnström, E.; Martinez, V. Acute colonic ischaemia in rats results in long-term structural changes without alterations of colonic sensitivity. Int. J. Exp. Pathol. 2008, 89, 476–489. [Google Scholar] [CrossRef]
- van den Wijngaard, R.M.; Klooker, T.K.; Welting, O.; Stanisor, O.I.; Wouters, M.M.; van der Coelen, D.; Bulmer, D.C.; Peeters, P.J.; Aerssens, J.; de Hoogt, R.; et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol. Motil. 2009, 21, 1107-e94. [Google Scholar] [CrossRef]
- Barbara, G.; Wang, B.; Stanghellini, V.; de Giorgio, R.; Cremon, C.; Di Nardo, G.; Trevisani, M.; Campi, B.; Geppetti, P.; Tonini, M.; et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007, 132, 26–37. [Google Scholar] [CrossRef]
- Dobranowski, P.; Sly, L.M. SHIP negatively regulates type II immune responses in mast cells and macrophages. J. Leukoc. Biol. 2018, 103, 1053–1064. [Google Scholar] [CrossRef]
- Pang, X.; Boucher, W.; Triadafilopoulos, G.; Sant, G.R.; Theoharides, T.C. Mast cell and substance P-positive nerve involvement in a patient with both irritable bowel syndrome and interstitial cystitis. Urology 1996, 47, 436–438. [Google Scholar] [CrossRef]
Model | Findings | Conclusions | Possible Sense | Refs |
---|---|---|---|---|
Mice with lactose or FOS | Increased MCs in colonic mucosa | Lactose or FOS could increase MCs in colonic mucosa and affect the GI barrier functions | Regulators of MCs | [112] |
Functional dyspepsia (FD) | Increased MCs in colonic mucosa | Eosinophils and MCs are relative to FD | Effective regulators of FD MCs remain unclear | [95] |
Exosomes isolated from HMCs-1or CaCO2 of IECs | Inhibited expression of CLDN8, CD23, mcpt4, CLDN3, and A20 in IECs | MC regulated GI barrier functions via regulating CLDN8, CD23, mcpt4, CLDN3 and A20 | Potential drugs targeting gut permeability | [41] |
HT29 | Upregulated CD23 expression | MCs modulate transport of CD23/IgE/antigen complex across intestinal epithelial barrier | Promoting antigen transportation | [42] |
Adult male SD rats | MCs activated by substance P (SP) | Improved the excitability of IB4+ colonic neurons but pressing IA and shifting the inactivation of IA and IK in the hyperpolarizing direction in neuron cells | Regulation of ion transportation by MCs remains unclear | [79] |
Preclinical or IBS patients | MCs and bacteria secrete histamine | visceral hypersensitivity (VHS) | Histamine is a marker and target for regulating VHS | [113] |
Polyposis-prone mice | MCs secrete histamine during maturation | Involved in Inflammation-associated colon carcinogenesis | / | |
C57Bl/6 mice | MCs secrete serotonin with mastocytosis | Associated with abdominal pain | Serotonin is a target for the treatment of abdominal pain and diarrhea | [114] |
Male rabbits with intragastric inoculation of Eimeria magna oocytes | B0AT1 and SN2 in crypts are regulated by MCs | MCs regulated gut permeability | B0AT1 and SN2 as potential targets in MCs related to IBS | [115] |
WKY and IBS rat model by balloon catheter insertion | MCs could secrete NGF but are probably not directly associated with IBS | Expression of NGF is not in the same area of MCs | A more precise relationship between MC and enteric neurons is required | [116] |
SD rats | CPA is secreted by MCs in I/R injury | MC limit toxins and ET-1 in I/R injury | IPC protected against I/R injury via the MC degranulation-mediated release of MC-CPA | [104] |
Specimens from patients | Enhanced level of CXCL11 in IBS | Positive correlation between the MCs number of duodenal and ileal IELs in diarrhea | CXCL11 as potential target and marker for IBS | [106] |
IEC lines | Lowering A20 production | Tryptase suppressed A20 in the IEC lines and lowered barrier dysfunction | Treatment targeting allergens | [46] |
Diseases | Key Molecules | Mast Cell Alterations | Typical Symptoms | Refs |
---|---|---|---|---|
IBS | Advanced glycation end products (AGEs) | Number increased | Colonic mucus barrier dysregulation in mice | |
5-HT and SERT | Main sources | Diarrhea and visceral hypersensitivity | ||
5-HT signaling | Number increased | Stress parameters | [55] | |
Histamine and HR4 | MC activation | Visceral hyperalgesia | [84] | |
Serine Protease | MC infiltration | Functional dyspepsia (FD) | [117] | |
Estrogen | MC infiltration | Stress-worsened intestinal alterations | [118,119] | |
Nr4a3 | Promoted MC activity | Stress-induced visceral hyperalgesia in mice | [120] | |
Active VIP and VIP receptors (VPAC1/VPAC2) | Increased MC and VPAC1+ MC numbers and decreased VIP+ MC | Detrimental consequences to colonic permeability | [121] | |
Acetylcholine | Mast cell overactivation | Visceral hypersensitivity (VH) | [122] | |
Hereditary α-tryptasemia (HαT) | Increased MC number | IEC pyroptosis | [123] | |
5-HT | Increased MC activation | Intestinal dysfunction and depression-like behaviors | [124] | |
IL-1β, IL-6, PAR-2, and mast cell tryptase | Visceral hypersensitivity | [125] | ||
TLR4 | Enhanced MCs activation | Visceral hypersensitivity and barrier loss | [126,127] | |
GI cancer | Tryptase release after c-Kit receptor activation | Mast cell activation | Increased number of metastatic lymph nodes | [128] |
Inflammatory responses | MC density | Benign cancer | [129] | |
Angiogenesis and carcinoma progression | MC density | Patient malignancy | [130] | |
c-Kit receptor-related pathway | MC number | Early time intestinal tumor | [131] | |
Colitis | Ki-67 and β-catenin protein | MC activation | Gastrointestinal tumorigenesis | [132] |
MRGPRX2-mediated | MC degranulation | MC degranulation and activation modules | [34,133] | |
Not mentioned | MC counts and degranulation | Gastrointestinal motility | [134] | |
Mannose receptor (MR) | Mφs/MC distribution | Mφs/MC distribution | [96] | |
Kit-mediated | MC activation | Experimental colitis | [135] | |
P2X7 purinoceptors | MC activation | Intestinal inflammation | [39] | |
free-Ca2+ and GTPγS | MC activation | Secretory responses | [136] | |
AD | Mast cell-glia axis and a Fyn kinase | MCs activation | Aggravated AD pathology | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, B.; Gao, H.; He, C.; Xin, S.; Hua, R.; Liu, X.; Zhang, S.; Xu, J. Insights into the Characteristics and Functions of Mast Cells in the Gut. Gastroenterol. Insights 2023, 14, 637-652. https://doi.org/10.3390/gastroent14040043
Guo Y, Wang B, Gao H, He C, Xin S, Hua R, Liu X, Zhang S, Xu J. Insights into the Characteristics and Functions of Mast Cells in the Gut. Gastroenterology Insights. 2023; 14(4):637-652. https://doi.org/10.3390/gastroent14040043
Chicago/Turabian StyleGuo, Yuexin, Boya Wang, Han Gao, Chengwei He, Shuzi Xin, Rongxuan Hua, Xiaohui Liu, Sitian Zhang, and Jingdong Xu. 2023. "Insights into the Characteristics and Functions of Mast Cells in the Gut" Gastroenterology Insights 14, no. 4: 637-652. https://doi.org/10.3390/gastroent14040043
APA StyleGuo, Y., Wang, B., Gao, H., He, C., Xin, S., Hua, R., Liu, X., Zhang, S., & Xu, J. (2023). Insights into the Characteristics and Functions of Mast Cells in the Gut. Gastroenterology Insights, 14(4), 637-652. https://doi.org/10.3390/gastroent14040043