Understanding Why Metabolic-Dysfunction-Associated Steatohepatitis Lags Behind Hepatitis C in Therapeutic Development and Treatment Advances
Abstract
:1. Metabolic-Dysfunction-Associated Fatty Liver Disease (MAFLD)
2. Diagnosis of MAFLD
- Waist circumference ≥ 102/88 cm in Caucasian men and women or ≥90/80 cm in Asian men and women.
- Blood pressure ≥ 130/85 mmHg or specific drug treatment for hypertension.
- Plasma triglycerides ≥ 150 mg/dL or on specific drug treatment.
- Plasma HDL-cholesterol < 40 mg/dL for men and <50 mg/dl for women or on specific drug treatment.
- Prediabetes
- Plasma high-sensitivity C-reactive protein level ≥ 2 mg/dL
- Homeostasis model assessment of insulin resistance score ≥ 2.5
3. Pathogenesis of MAFLD
4. Metabolic-Dysfunction-Associated Steatohepatitis (MASH)
5. Challenges in MAFLD Diagnosis and Clinical Trial Design
6. Current and Emerging Therapies in MAFLD Clinical Trials
6.1. Resmetirom/Rezdiffra (MAESTRO-NASH Trial and FDA Approval)
6.2. Pioglitazone vs. Vitamin E vs. Placebo (PIVENS Trial)
6.3. Obeticholic Acid (FLINT Trial)
6.4. Vitamin E or Metformin (TONIC Trial)
7. Advanced Exploration of Alternative Therapies and Diagnostic Innovations for MAFLD
7.1. Novel Diagnostic Approaches and Enhancing Non-Invasive Techniques
7.2. Novel Therapeutic Approaches and Multi-Targeted Strategies for MASH
7.3. Potential for Personalized Medicine in MASH
7.4. Future Perspectives and Novel Research Directions
8. Hepatitis C vs. MAFLD Therapeutic Development
8.1. FDA-Approved Hepatitis C Medications and Their Clinical Trials
8.2. Implications and Future Directions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Filozof, C.; Chow, S.; Dimick-Santos, L.; Chen, Y.; Williams, R.N.; Goldstein, B.J.; Sanyal, A. Clinical endpoints and adaptive clinical trials in precirrhotic nonalcoholic steatohepatitis: Facilitating development approaches for an emerging epidemic. Hepatol. Commun. 2017, 1, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, J.; Viggiano, T.R.; McGill, D.B.; Oh, B.J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 1980, 55, 434–438. [Google Scholar]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Targher, G.; Tilg, H.; Byrne, C.D. Non-alcoholic fatty liver disease: A multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol. Hepatol. 2021, 6, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62 (Suppl. 1), S47–S64. [Google Scholar] [CrossRef]
- Ayada, I.; van Kleef, L.A.; Alferink, L.J.M.; Li, P.; de Knegt, R.J.; Pan, Q. Systematically comparing epidemiological and clinical features of MAFLD and NAFLD by meta-analysis: Focusing on the non-overlap groups. Liver Int. 2022, 42, 277–287. [Google Scholar] [CrossRef]
- Targher, G. What’s Past Is Prologue: History of Nonalcoholic Fatty Liver Disease. Metabolites 2020, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sarin, S.K.; Wong, V.W.-S.; Fan, J.-G.; Kawaguchi, T.; Ahn, S.H.; Zheng, M.-H.; Shiha, G.; Yilmaz, Y.; Gani, R.; et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol. Int. 2020, 14, 889–919. [Google Scholar] [CrossRef]
- Hernaez, R.; Lazo, M.; Bonekamp, S.; Kamel, I.; Brancati, F.L.; Guallar, E.; Clark, J.M. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: A meta-analysis. Hepatology 2011, 54, 1082–1090. [Google Scholar] [CrossRef]
- Zhuang, Y.; Lai, L.L.; Wong, S.W.; Mohamad, S.Y.; Chuah, K.H.; Chan, W.K. Attenuation parameter and liver stiffness measurement using FibroTouch vs Fibroscan in patients with chronic liver disease. PLoS ONE 2021, 16, e0250300. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.-C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Newsome, P.N.; Sasso, M.; Deeks, J.J.; Paredes, A.; Boursier, J.; Chan, W.-K.; Yilmaz, Y.; Czernichow, S.; Zheng, M.-H.; Wong, V.W.-S.; et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: A prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 2020, 5, 362–373. [Google Scholar] [CrossRef]
- Noureddin, M.; Truong, E.; Gornbein, J.A.; Saouaf, R.; Guindi, M.; Todo, T.; Noureddin, N.; Yang, J.D.; Harrison, S.A.; Alkhouri, N. MRI-based (MAST) score accurately identifies patients with NASH and significant fibrosis. J. Hepatol. 2022, 76, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Noureddin, M. Utilization of Noninvasive Tests to Diagnose At-Risk Metabolic Dysfunction-Associated Steatohepati-tis. Gastroenterol. Hepatol. 2023, 19, 568–570. [Google Scholar]
- Jia, S.; Zhao, Y.; Liu, J.; Guo, X.; Chen, M.; Zhou, S.; Zhou, J. Magnetic Resonance Imaging-Proton Density Fat Fraction vs. Transient Elastography-Controlled Attenuation Parameter in Diagnosing Non-alcoholic Fatty Liver Disease in Children and Adolescents: A Meta-Analysis of Diagnostic Accuracy. Front. Pediatr. 2022, 9, 784221. [Google Scholar] [CrossRef]
- Zeng, Y.; He, H.; An, Z. Advance of Serum Biomarkers and Combined Diagnostic Panels in Nonalcoholic Fatty Liver Disease. Dis. Markers 2022, 2022, 1254014. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, M.W. NAFLD prevalence differs among hispanic subgroups: The multi-ethnic study of atherosclerosis. World J. Gastroenterol. 2014, 20, 4987–4993. [Google Scholar] [CrossRef]
- Shen, J.-H.; Li, Y.-L.; Li, D.; Wang, N.-N.; Jing, L.; Huang, Y.-H. The rs738409 (I148M) variant of the PNPLA3 gene and cirrhosis: A meta-analysis. J. Lipid Res. 2015, 56, 167–175. [Google Scholar] [CrossRef]
- Rotman, Y.; Koh, C.; Zmuda, J.M.; Kleiner, D.E.; Liang, T.J.; NASH CRN. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 2010, 52, 894–903. [Google Scholar] [CrossRef]
- Sookoian, S.; Pirola, C.J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011, 53, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Mao, Z.; Liu, Y.; Zhang, X.; Zhang, W.; Gustafsson, J.-A.; Guan, Y. Role of HSD17B13 in the liver physiology and pathophysiology. Mol. Cell. Endocrinol. 2019, 489, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Abul-Husn, N.S.; Cheng, X.; Li, A.H.; Xin, Y.; Schurmann, C.; Stevis, P.; Liu, Y.; Kozlitina, J.; Stender, S.; Wood, G.C.; et al. A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease. N. Engl. J. Med. 2018, 378, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Sookoian, S.; Castaño, G.O.; Scian, R.; Mallardi, P.; Gianotti, T.F.; Burgueño, A.L.; Martino, J.S.; Pirola, C.J. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 2015, 61, 515–525. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Petta, S.; Maglio, C.; Fracanzani, A.L.; Pipitone, R.; Mozzi, E.; Motta, B.M.; Kaminska, D.; Rametta, R.; Grimaudo, S.; et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015, 61, 506–514. [Google Scholar] [CrossRef]
- Chen, F.; Esmaili, S.; Rogers, G.B.; Bugianesi, E.; Petta, S.; Marchesini, G.; Bayoumi, A.; Metwally, M.; Azardaryany, M.K.; Coulter, S.; et al. Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation. Hepatology 2020, 71, 1213–1227. [Google Scholar] [CrossRef]
- Blomdahl, J.; Nasr, P.; Ekstedt, M.; Kechagias, S. Moderate alcohol consumption is associated with advanced fibrosis in non-alcoholic fatty liver disease and shows a synergistic effect with type 2 diabetes mellitus. Metabolism 2021, 115, 154439. [Google Scholar] [CrossRef]
- van Kleef, L.A.; de Knegt, R.J.; Brouwer, W.P. Metabolic dysfunction-associated fatty liver disease and excessive alcohol consumption are both independent risk factors for mortality. Hepatology 2023, 77, 942–948. [Google Scholar] [CrossRef]
- Dekker, M.J.; Su, Q.; Baker, C.; Rutledge, A.C.; Adeli, K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Metab. 2010, 299, E685–E694. [Google Scholar] [CrossRef]
- Herman, M.A.; Samuel, V.T. The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis. Trends Endocrinol. Metab. 2016, 27, 719–730. [Google Scholar] [CrossRef]
- McGarry, J.D. Banting Lecture 2001. Diabetes 2002, 51, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Carpino, G.; Del Ben, M.; Pastori, D.; Carnevale, R.; Baratta, F.; Overi, D.; Francis, H.; Cardinale, V.; Onori, P.; Safarikia, S.; et al. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology 2020, 72, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, C.; Shi, J.; Ding, J.; Wan, X.; Chen, D.; Gao, J.; Li, C.; Zhang, J.; Lin, Y.; et al. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut 2018, 67, 2169–2180. [Google Scholar] [CrossRef]
- Birkenfeld, A.L.; Shulman, G.I. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 Diabetes. Hepatology 2014, 59, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Investig. 2016, 126, 12–22. [Google Scholar] [CrossRef]
- Brown, G.T.; Kleiner, D.E. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism 2016, 65, 1080–1086. [Google Scholar] [CrossRef]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic Steatohepatitis: A Proposal for Grading and Staging The Histological Lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Hjelkrem, M.; Stauch, C.; Shaw, J.; Harrison, S.A. Validation of the non-alcoholic fatty liver disease activity score. Aliment. Pharmacol. Ther. 2011, 34, 214–218. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Brunt, E.M.; Kleiner, D.E.; Kowdley, K.V.; Chalasani, N.; LaVine, J.E.; Ratziu, V.; McCullough, A. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 2011, 54, 344–353. [Google Scholar] [CrossRef]
- Ratziu, V.; Francque, S.; Sanyal, A. Breakthroughs in therapies for NASH and remaining challenges. J. Hepatol. 2022, 76, 1263–1278. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Madrigal Pharmaceuticals. REZDIFFRA (Resmetirom) Tablets, for Oral Use. Full Prescribing Information. U.S. Food and Drug Administration (FDA). 2024. Available online: https://www.fda.gov/medwatch (accessed on 8 August 2024).
- Chalasani, N.P.; Sanyal, A.J.; Kowdley, K.V.; Robuck, P.R.; Hoofnagle, J.; Kleiner, D.E.; Ünalp, A.; Tonascia, J. Pioglitazone versus vitamin E versus placebo for the treatment of non-diabetic patients with non-alcoholic steatohepatitis: PIVENS trial design. Contemp. Clin. Trials 2009, 30, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Neuschwander-Tetri, B.A.; Loomba, R.; Sanyal, A.J.; Lavine, J.E.; Van Natta, M.L.; Abdelmalek, M.F.; Chalasani, N.; Dasarathy, S.; Diehl, A.M.; Hameed, B.; et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial. Lancet 2015, 385, 956–965. [Google Scholar] [CrossRef]
- LaVine, J.E.; Schwimmer, J.B.; Van Natta, M.L.; Molleston, J.P.; Murray, K.F.; Rosenthal, P.; Abrams, S.H.; Scheimann, A.O.; Sanyal, A.J.; Chalasani, N.; et al. Effect of Vitamin E or Metformin for Treatment of Nonalcoholic Fatty Liver Disease in Children and Adolescents: The TONIC randomized controlled trial. JAMA 2011, 305, 1659–1668. [Google Scholar] [CrossRef]
- Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H.; European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Haga, Y.; Kanda, T.; Sasaki, R.; Nakamura, M.; Nakamoto, S.; Yokosuka, O. Nonalcoholic fatty liver disease and hepatic cirrhosis: Comparison with viral hepatitis-associated steatosis. World J. Gastroenterol. 2015, 21, 12989–12995. [Google Scholar] [CrossRef]
- Nahon, P.; Bourcier, V.; Layese, R.; Audureau, E.; Cagnot, C.; Marcellin, P.; Guyader, D.; Fontaine, H.; Larrey, D.; De Lédinghen, V.; et al. Eradication of Hepatitis C Virus Infection in Patients with Cirrhosis Reduces Risk of Liver and Non-Liver Complications. Gastroenterology 2017, 152, 142–156.e2. [Google Scholar] [CrossRef]
- E Sise, M.; McQuaid, T.; Martin, P. Sofosbuvir-based hepatitis C therapies in patients with chronic and end-stage kidney disease. Nephrol. Dial. Transplant. 2022, 37, 2327–2334. [Google Scholar] [CrossRef] [PubMed]
- Lawitz, E.; Mangia, A.; Wyles, D.; Rodriguez-Torres, M.; Hassanein, T.; Gordon, S.C.; Schultz, M.; Davis, M.N.; Kayali, Z.; Reddy, K.R.; et al. Sofosbuvir for Previously Untreated Chronic Hepatitis C Infection. N. Engl. J. Med. 2013, 368, 1878–1887. [Google Scholar] [CrossRef]
- Mogalian, E.; Brainard, D.M.; Osinusi, A.; Moorehead, L.; Murray, B.; Ling, K.H.J.; Perry, R.; Curtis, C.; Lawitz, E.; Lasseter, K.; et al. Pharmacokinetics and Safety of Velpatasvir and Sofosbuvir/Velpatasvir in Subjects with Hepatic Impairment. Clin. Pharmacokinet. 2018, 57, 1449–1457. [Google Scholar] [CrossRef]
- Martinot-Peignoux, M.; Stern, C.; Maylin, S.; Ripault, M.-P.; Boyer, N.; Leclere, L.; Castelnau, C.; Giuily, N.; El Ray, A.; Cardoso, A.-C.; et al. Twelve weeks posttreatment follow-up is as relevant as 24 weeks to determine the sustained virologic response in patients with hepatitis C virus receiving pegylated interferon and ribavirin. Hepatology 2010, 51, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Belperio, P.S.; Shahoumian, T.A.; Loomis, T.P.; Backus, L.I. Real-world effectiveness of sofosbuvir/velpatasvir/voxilaprevir in 573 direct-acting antiviral experienced hepatitis C patients. J. Viral Hepat. 2019, 26, 980–990. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, R.; Pasulo, L.; Puoti, M.; Vinci, M.; Schiavini, M.; Lazzaroni, S.; Soria, A.; Gatti, F.; Menzaghi, B.; Aghemo, A.; et al. Real-world effectiveness and safety of glecaprevir/pibrentasvir in 723 patients with chronic hepatitis C. J. Hepatol. 2019, 70, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Chevaliez, S.; Soulier, A.; Poiteau, L.; Bouvier-Alias, M.; Pawlotsky, J.-M. Clinical utility of hepatitis C virus core antigen quantification in patients with chronic hepatitis C. J. Clin. Virol. 2014, 61, 145–148. [Google Scholar] [CrossRef]
- Aghemo, A.; Degasperi, E.; De Nicola, S.; Bono, P.; Orlandi, A.; D’ambrosio, R.; Soffredini, R.; Perbellini, R.; Lunghi, G.; Colombo, M. Quantification of Core Antigen Monitors Efficacy of Direct-acting Antiviral Agents in Patients with Chronic Hepatitis C Virus Infection. Clin. Gastroenterol. Hepatol. 2016, 14, 1331–1336. [Google Scholar] [CrossRef]
Diagnostic Method | Use | Accuracy | Advantages | Disadvantages |
---|---|---|---|---|
Ultrasound [9] | Detection of hepatic steatosis | Sensitivity: 84.8%, Specificity: 93.6%, AUC: 0.93 | Low-cost, widely accessible, no radiation, high specificity | Operator-dependent, limited in detecting mild steatosis, subjective assessment |
FibroScan (VCTE) [12] | Measures liver stiffness and steatosis using LSM and CAP | AUROC: 0.70–0.89 | Rapid, non-invasive, immediate results, useful for early assessment | Reduced accuracy in high-BMI settings, limited access in some settings, struggles with mild steatosis |
FAST Score [13] | Stratifies NASH severity using FibroScan and AST | Specificity: 85%, AUC: 0.868 | Simplicity, effective in clinical stratification without advanced imaging | Requires FibroScan technology, limited use in resource-constrained settings |
MRI-PDFF [14] | Quantifies liver fat and assesses fibrosis | Sensitivity: 95%, Specificity: 92%, AUC: 0.96 | Highly accurate, quantitative, no radiation, gold standard for fat quantification | High-cost, less accessible, time-consuming compared to other methods |
MAST Score [15] | Combines MRI-PDFF, MR elastography, and AST for NASH | Sensitivity: 89.3%, Specificity: 73.1%, AUC: 0.929 | Integrates advanced imaging and clinical data, useful in trials | High-cost, requires advanced imaging equipment, less applicable in general practice |
MRS [16] | Quantifies hepatic steatosis with detailed analysis | Sensitivity: 95%, Specificity: 92% | Provides precise quantification of liver fat, superior in research settings | High-cost, complex setup, not suitable for routine clinical use |
Serum Biomarkers [17] | Non-invasive assessment of NASH and fibrosis progression | Sensitivity: 63.6–83.7% for CK-18; AUC: 0.81 for MACK-3 | Accessible, non-invasive, complements imaging, useful in primary care | Variable accuracy, lower specificity compared to imaging, less effective alone in advanced fibrosis |
Therapeutic Agent/Trial Name | Mechanism of Action | Patient Population | Dosing | Primary Endpoint(s) and Key Findings | FDA Approval Status |
---|---|---|---|---|---|
Resmetirom (Rezdiffra)/ MAESTRO-NASH [41,42] | THR-β agonist; reduces steatosis, inflammation, and fibrosis | Adults with noncirrhotic NASH with moderate-to-advanced liver fibrosis (F2 to F3) | 80 mg and 100 mg | Dual primary endpoints met; NASH resolution (80 mg: 25.9%, 100 mg: 29.9%, placebo: 9.7%) and fibrosis improvement without worsening NASH (80 mg: 24.2%, 100 mg: 25.9%, placebo: 14.2%). | Approved in 2024 for adults with noncirrhotic NASH with moderate-to-advanced liver fibrosis |
Pioglitazone, Vitamin E/ PIVENS [43] | Pioglitazone: insulin sensitizer Vitamin E: antioxidant | Non-diabetic adults with NASH | Pioglitazone: 30 mg Vitamin E: 800 IU | Improvement in NAS by ≥2 points in two components or NAS ≤ 3, plus ≥1 point improvement in ballooning, with no fibrosis worsening. Vitamin E improved NAS significantly; pioglitazone was similarly effective with insulin sensitization. | Utilized based on trial evidence; not FDA-approved specifically for NASH |
Obeticholic Acid/ FLINT [44] | FXR agonist; modulates bile acid, inflammation, and fibrosis levels | Adults with noncirrhotic NASH | 25 mg | Histological improvement with a decrease in NAS without fibrosis worsening observed in 45% of the treatment group vs. 21% in the placebo group. | Fast Track designation from FDA for NASH; awaiting full approval |
Vitamin E/ TONIC [45] | Antioxidant | Pediatric NAFLD | 800 IU | No sustained ALT reduction; vitamin E led to improved NASH resolution and ballooning scores without significant changes in fibrosis, inflammation, or steatosis. Metformin showed no significant improvement. | Vitamin E has shown efficacy in trials, but it is not specifically FDA-approved for NAFLD/NASH in children |
Characteristic | Hepatitis C | MASH |
---|---|---|
Etiology | Viral infection | Metabolic dysfunction (insulin resistance, oxidative stress, genetic factors) |
Steatosis Mechanism | Viral protein-driven mechanism (HCV core protein) | Metabolic disturbances (insulin resistance, dyslipidemia) |
Primary Clinical Endpoint | Sustained Virological Response (SVR) | No single endpoint; liver biopsy is the gold standard for diagnosis |
Non-Invasive Diagnostic Tools | HCV RNA testing, FibroScan | FibroScan, MRI-PDFF, serum biomarkers (e.g., CK-18, GP73) |
Therapeutic Targets | Viral proteins (NS5A, NS5B, and NS3/4A inhibitors) | Multiple pathways (metabolic, inflammatory, fibrotic components) |
Standard Treatment | Direct-acting antivirals (DAAs) | Combination therapy (e.g., pioglitazone with vitamin E, Resmetirom) |
Regulatory Pathway | Streamlined, clear clinical endpoint (SVR) | Complex, no universally accepted surrogate endpoints |
Clinical Trial Design | Relatively uniform population, clear endpoint | Heterogeneous population, variable disease severity; longer, larger trials required due to slow disease progression |
Response to Therapy | High (>90% SVR) | Modest improvements; multi-pathway approach required |
Progression to Fibrosis | Slowed or halted with viral clearance | Common in advanced stages, requires targeted anti-fibrotic treatments |
DAA | Target Protein | Genotypic Efficacy | Side Effects | Key Clinical Trial Outcome |
---|---|---|---|---|
Sofosbuvir [50] | NS5B polymerase | High across all genotypes | Fatigue, headache, nausea, insomnia, anemia | Cure rate > 95% in combination therapies |
Velpatasvir [50] | NS5A protein | Broad spectrum, high across all genotypes | Headache, fatigue, nausea, asthenia, insomnia | Pan-genotypic efficacy, high cure rates in combination with Sofosbuvir |
Voxilaprevir [50] | NS3/4A protease | High in resistance-associated variants | Headache, fatigue, diarrhea, nausea, elevated bilirubin levels | High cure rates in DAA-experienced patients, especially those with resistance-associated variants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, C.; Ashraf, B.; Saeed, Z.; Tadros, M. Understanding Why Metabolic-Dysfunction-Associated Steatohepatitis Lags Behind Hepatitis C in Therapeutic Development and Treatment Advances. Gastroenterol. Insights 2024, 15, 944-962. https://doi.org/10.3390/gastroent15040066
Ferrari C, Ashraf B, Saeed Z, Tadros M. Understanding Why Metabolic-Dysfunction-Associated Steatohepatitis Lags Behind Hepatitis C in Therapeutic Development and Treatment Advances. Gastroenterology Insights. 2024; 15(4):944-962. https://doi.org/10.3390/gastroent15040066
Chicago/Turabian StyleFerrari, Caesar, Bilal Ashraf, Zainab Saeed, and Micheal Tadros. 2024. "Understanding Why Metabolic-Dysfunction-Associated Steatohepatitis Lags Behind Hepatitis C in Therapeutic Development and Treatment Advances" Gastroenterology Insights 15, no. 4: 944-962. https://doi.org/10.3390/gastroent15040066
APA StyleFerrari, C., Ashraf, B., Saeed, Z., & Tadros, M. (2024). Understanding Why Metabolic-Dysfunction-Associated Steatohepatitis Lags Behind Hepatitis C in Therapeutic Development and Treatment Advances. Gastroenterology Insights, 15(4), 944-962. https://doi.org/10.3390/gastroent15040066