The Esophageal Microbiota in Esophageal Health and Disease
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Analysis
2.4. Quality Assessment
3. Results
3.1. The Esophageal Microbiota of the Healthy Esophagus
3.2. Esophageal Microbiota in Achalasia, Gastroesophageal Reflux Disease, and Barret’s Esophagus
3.3. The Esophageal Microbiota in Eosinophilic Esophagitis
Study (Year) | Population | Sample Type; Method of Analysis | Main Findings |
---|---|---|---|
[13] Park et al. (2020) | 18 NERD patients | NA * | Firmicutes, Proteobacteria, and Bacteroidetes dominated at the phylum level. At the genus level, the more common were Streptococcus, Haemophilus, Prevotella, Veillonella, Neisseria, and Granulicatella |
[44] Zhou et al. (2020) | 16 healthy patients; 11 NERD patients; 20 RE patients; 17 BE patients; | Proximal and distal esophagus | NERD patients had a shift from Fusobacteria and Actinobacteria to Proteobacteria and Bacteroidetes; RE and BE patients had a shift from Firmicutes to Fusobacteria and Proteobacteria |
[12] Okereke et al. (2021) | 34 BE patients; 40 GERD patients | Proximal and distal esophagus | Microbial diversity decreased with the increase in the length of Barrett’s column |
[55] Facchin S. et al. (2022) | Saliva: 29 people with EoE patients and 20 non-EoE controls Biopsies: 25 people EoE patients and 5 non-EoE controls | N/A * | In saliva samples, 23 ASVs were positively associated with EoE and 27 ASVs with controls, making it possible to discriminate between EoE, enabling differentiation between patients with and non-without EoE.; Analysis of observed esophageal microbiota samples showed a clear microbial pattern able to discriminate between patients with active and inactive EoE. |
[21] Geng et al. (2023) | 32 subjects with achalasia and 27 healthy individuals | Lower esophagus | Abundant taxa in achalasia patients: Aquabacterium, Novosphingobium; Lactobacillus, Faecalibacterium, Acidovorax, and Ruminococcus |
[20] Ikeda et al. (2024) | 16 subjects with achalasia and 11 control individuals | N/A * | Actinobacteria and Bacteroides were significantly higher in achalasia patients at the phylum level. At the genus level, Streptococcus, Helicobacter pylori, and Xanthomonas were significantly lower in achalasia patients while Dialister and Actinomyces were higher. |
[60] Solfisburg et al. (2024) | 125 non-BE patients; 20 non-dysplatic BE and 78 EAC patients | Oral swab | Increased relative abundance of Streptococcus in EAC patients |
3.4. Esophageal Microbiota in Esophageal Cancer
3.4.1. Esophageal Microbiota in ESCC
3.4.2. Esophageal Microbiota in EAC
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the Human Microbiome. Nutr. Rev. 2012, 70 (Suppl. S1), S38–S44. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Bini, E.J.; Yang, L.; Zhou, M.; Francois, F.; Blaser, M.J. Bacterial biota in the human distal esophagus. Proc. Natl. Acad. Sci. USA 2004, 101, 4250–4255. [Google Scholar] [CrossRef] [PubMed]
- Norder Grusell, E.; Dahlén, G.; Ruth, M.; Ny, L.; Quiding-Järbrink, M.; Bergquist, H.; Bove, M. Bacterial flora of the human oral cavity, and the upper and lower esophagus: The esophageal normal flora. Dis. Esophagus 2013, 26, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Hasan, L.K.; Schnabl, B.; Greytak, M.; Yadlapati, R. Microbiome of the Aerodigestive Tract in Health and Esophageal Disease. Dig. Dis. Sci. 2021, 66, 12–18. [Google Scholar] [CrossRef]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474, 327–336. [Google Scholar] [CrossRef]
- Donia, M.S.; Fischbach, M.A. Small molecules from the human microbiota. Science 2015, 349, 1254766. [Google Scholar] [CrossRef]
- Zou, Q.; Feng, L.; Cai, X.; Qian, Y.; Xu, L. Esophageal microflora in esophageal diseases. Front. Cell. Infect. Microbiol. 2023, 13, 1145791. [Google Scholar] [CrossRef]
- Yang, L.; Lu, X.; Nossa, C.W.; Francois, F.; Peek, R.M.; Pei, Z. Inflammation and Intestinal Metaplasia of the Distal Esophagus Are Associated With Alterations in the Microbiome. Gastroenterology 2009, 137, 588–597. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Gagliardi, D.; Makihara, S.; Corsi, P.R.; De Toledo Viana, A.; Wiczer, M.V.F.S.; Nakakubo, S.; Mimica, L.M.J. Microbial flora of the normal esophagus. Dis. Esophagus 1998, 11, 248–250. [Google Scholar] [CrossRef]
- Fillon, S.A.; Harris, J.K.; Wagner, B.D.; Kelly, C.J.; Stevens, M.J.; Moore, W.; Fang, R.; Schroeder, S.; Masterson, J.C.; Robertson, C.E.; et al. Novel Device to Sample the Esophageal Microbiome—The Esophageal String Test. PLoS ONE 2012, 7, e42938. [Google Scholar] [CrossRef] [PubMed]
- Okereke, I.C.; Miller, A.L.; Jupiter, D.C.; Hamilton, C.F.; Reep, G.L.; Krill, T.; Andersen, C.R.; Pyles, R.B. Microbiota Detection Patterns Correlate With Presence and Severity of Barrett’s Esophagus. Front. Cell Infect. Microbiol. 2021, 11, 555072. [Google Scholar] [CrossRef]
- Park, C.H.; Seo, S.I.; Kim, J.S.; Kang, S.H.; Kim, B.J.; Choi, Y.J.; Byun, H.J.; Yoon, J.-H.; Lee, S.K. Treatment of non-erosive reflux disease and dynamics of the esophageal microbiome: A prospective multicenter study. Sci. Rep. 2020, 10, 15154. [Google Scholar] [CrossRef] [PubMed]
- Laserna-Mendieta, E.J.; FitzGerald, J.A.; Arias-Gonzalez, L.; Ollala, J.M.; Bernardo, D.; Claesson, M.J.; Lucendo, A.J. Esophageal microbiome in active eosinophilic esophagitis and changes induced by different therapies. Sci. Rep. 2021, 11, 7113. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ando, T.; Ishiguro, K.; Maeda, O.; Watanabe, O.; Funasaka, K.; Nakamura, M.; Miyahara, R.; Ohmiya, N.; Goto, H. Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett’s esophagus. BMC Infect. Dis. 2013, 13, 130. [Google Scholar] [CrossRef]
- May, M.; Abrams, J.A. Emerging Insights into the Esophageal Microbiome. Curr. Treat. Options Gastroenterol. 2018, 16, 72–85. [Google Scholar] [CrossRef]
- Corning, B.; Copland, A.P.; Frye, J.W. The Esophageal Microbiome in Health and Disease. Curr. Gastroenterol. Rep. 2018, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Boeckxstaens, G.E.; Zaninotto, G.; Richter, J.E. Achalasia. Lancet 2014, 383, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Furuzawa-Carballeda, J.; Aguilar-León, D.; Gamboa-Domínguez, A.; Valdovinos, M.A.; Nuñez-Álvarez, C.; Martín-del-Campo, L.A.; Enríquez, A.B.; Coss-Adame, E.; Svarch, A.E.; Flores-Nájera, A.; et al. Achalasia—An Autoimmune Inflammatory Disease: A Cross-Sectional Study. J. Immunol. Res. 2015, 2015, 1–18. [Google Scholar] [CrossRef]
- Ikeda, H.; Ihara, E.; Takeya, K.; Mukai, K.; Onimaru, M.; Ouchida, K.; Hata, Y.; Bai, X.; Tanaka, Y.; Sasaki, T.; et al. The interplay between alterations in esophageal microbiota associated with Th17 immune response and impaired LC20 phosphorylation in achalasia. J. Gastroenterol. 2024, 59, 361–375. [Google Scholar] [CrossRef]
- Geng, Z.-H.; Zhu, Y.; Chen, W.-F.; Fu, P.-Y.; Xu, J.-Q.; Wang, T.-Y.; Yao, L.; Liu, Z.-Q.; Li, X.-Q.; Zhang, Z.-C.; et al. The role of type II esophageal microbiota in achalasia: Activation of macrophages and degeneration of myenteric neurons. Microbiol. Res. 2023, 276, 127470. [Google Scholar] [CrossRef] [PubMed]
- Stephens, M.; Von Der Weid, P.-Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes 2020, 11, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Fass, R.; Boeckxstaens, G.E.; El-Serag, H.; Rosen, R.; Sifrim, D.; Vaezi, M.F. Gastro-oesophageal reflux disease. Nat. Rev. Dis. Primers 2021, 7, 55. [Google Scholar] [CrossRef]
- Lopez, R.N.; Lemberg, D.A. Gastro-oesophageal reflux disease in infancy: A review based on international guidelines. Med. J. Aust. 2020, 212, 40–44. [Google Scholar] [CrossRef]
- Holmberg, D.; Santoni, G.; Von Euler-Chelpin, M.; Färkkilä, M.; Kauppila, J.H.; Maret-Ouda, J.; Ness-Jensen, E.; Lagergren, J. Non-erosive gastro-oesophageal reflux disease and incidence of oesophageal adenocarcinoma in three Nordic countries: Population based cohort study. BMJ 2023, 382, e076017. [Google Scholar] [CrossRef]
- Gyawali, C.P.; Kahrilas, P.J.; Savarino, E.; Zerbib, F.; Mion, F.; Smout, A.J.P.M.; Vaezi, M.; Sifrim, D.; Fox, M.R.; Vela, M.F.; et al. Modern diagnosis of GERD: The Lyon Consensus. Gut 2018. [CrossRef]
- Savarino, E.; De Bortoli, N.; De Cassan, C.; Della Coletta, M.; Bartolo, O.; Furnari, M.; Ottonello, A.; Marabotto, E.; Bodini, G.; Savarino, V. The natural history of gastro-esophageal reflux disease: A comprehensive review: Natural history of GERD. Dis. Esophagus 2016, 30, 1–9. [Google Scholar] [CrossRef]
- Chen, J.W.; Vela, M.F.; Peterson, K.A.; Carlson, D.A. AGA Clinical Practice Update on the Diagnosis and Management of Extraesophageal Gastroesophageal Reflux Disease: Expert Review. Clin. Gastroenterol. Hepatol. 2023, 21, 1414–1421.e3. [Google Scholar] [CrossRef] [PubMed]
- Katzka, D.A.; Pandolfino, J.E.; Kahrilas, P.J. Phenotypes of Gastroesophageal Reflux Disease: Where Rome, Lyon, and Montreal Meet. Clin. Gastroenterol. Hepatol. 2020, 18, 767–776. [Google Scholar] [CrossRef]
- Ghisa, M.; Della Coletta, M.; Barbuscio, I.; Marabotto, E.; Barberio, B.; Frazzoni, M.; De Bortoli, N.; Zentilin, P.; Tolone, S.; Ottonello, A.; et al. Updates in the field of non-esophageal gastroesophageal reflux disorder. Expert. Rev. Gastroenterol. Hepatol. 2019, 13, 827–838. [Google Scholar] [CrossRef]
- Savarino, E.; Carbone, R.; Marabotto, E.; Furnari, M.; Sconfienza, L.; Ghio, M.; Zentilin, P.; Savarino, V. Gastro-oesophageal reflux and gastric aspiration in idiopathic pulmonary fibrosis patients. Eur. Respir. J. 2013, 42, 1322–1331. [Google Scholar] [CrossRef]
- Calabrese, F.; Pasta, A.; Bodini, G.; Furnari, M.; Zentilin, P.; Giannini, E.G.; Maniero, D.; Della Casa, D.; Cataudella, G.; Frazzoni, M.; et al. Applying Lyon consensus criteria in the work-up of patients with extra-oesophageal symptoms—A multicentre retrospective study. Aliment. Pharmacol. Ther. 2024, 59, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Hershcovici, T.; Fass, R. Nonerosive Reflux Disease (NERD)—An Update. J. Neurogastroenterol. Motil. 2010, 16, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Bayerdörffer, E.; Bigard, M.-A.; Weiss, W.; Mearin, F.; Rodrigo, L.; Dominguez Muñoz, J.E.; Grundling, H.; Persson, T.; Svedberg, L.-E.; Keeling, N.; et al. Randomized, multicenter study: On-demand versus continuous maintenance treatment with esomeprazole in patients with non-erosive gastroesophageal reflux disease. BMC Gastroenterol. 2016, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Savarino, E.; Tutuian, R.; Zentilin, P.; Dulbecco, P.; Pohl, D.; Marabotto, E.; Parodi, A.; Sammito, G.; Gemignani, L.; Bodini, G.; et al. Characteristics of Reflux Episodes and Symptom Association in Patients With Erosive Esophagitis and Nonerosive Reflux Disease: Study Using Combined Impedance–pH Off Therapy. Am. J. Gastroenterol. 2010, 105, 1053–1061. [Google Scholar] [CrossRef]
- Lundell, L.R.; Dent, J.; Bennett, J.R.; Blum, A.L.; Armstrong, D.; Galmiche, J.P.; Johnson, F.; Hongo, M.; Richter, J.E.; Spechler, S.J.; et al. Endoscopic assessment of oesophagitis: Clinical and functional correlates and further validation of the Los Angeles classification. Gut 1999, 45, 172–180. [Google Scholar] [CrossRef]
- Savarino, E.; Gemignani, L.; Pohl, D.; Zentilin, P.; Dulbecco, P.; Assandri, L.; Marabotto, E.; Bonfanti, D.; Inferrera, S.; Fazio, V.; et al. Oesophageal motility and bolus transit abnormalities increase in parallel with the severity of gastro-oesophageal reflux disease: Abnormal bolus transit in patients with GERD or functional heartburn. Aliment. Pharmacol. Ther. 2011, 34, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Savarino, E.; Zentilin, P.; Frazzoni, M.; Cuoco, D.L.; Pohl, D.; Dulbecco, P.; Marabotto, E.; Sammito, G.; Gemignani, L.; Tutuian, R.; et al. Characteristics of gastro-esophageal reflux episodes in Barrett’s esophagus, erosive esophagitis and healthy volunteers: Acid and weakly acidic reflux in Barrett’s esophagus. Neurogastroenterol. Motil. 2010, 22, 1061-e280. [Google Scholar] [CrossRef]
- Frazzoni, M.; De Bortoli, N.; Frazzoni, L.; Furnari, M.; Martinucci, I.; Tolone, S.; Farioli, A.; Marchi, S.; Fuccio, L.; Savarino, V.; et al. Impairment of chemical clearance and mucosal integrity distinguishes hypersensitive esophagus from functional heartburn. J. Gastroenterol. 2017, 52, 444–451. [Google Scholar] [CrossRef]
- Tolone, S.; De Cassan, C.; De Bortoli, N.; Roman, S.; Galeazzi, F.; Salvador, R.; Marabotto, E.; Furnari, M.; Zentilin, P.; Marchi, S.; et al. Esophagogastric junction morphology is associated with a positive impedance-pH monitoring in patients with GERD. Neurogastroenterol. Motil. 2015, 27, 1175–1182. [Google Scholar] [CrossRef]
- Tolone, S.; De Bortoli, N.; Marabotto, E.; De Cassan, C.; Bodini, G.; Roman, S.; Furnari, M.; Savarino, V.; Docimo, L.; Savarino, E. Esophagogastric junction contractility for clinical assessment in patients with GERD: A real added value? Neurogastroenterol. Motil. 2015, 27, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Savarino, E.; Zentilin, P.; Mastracci, L.; Dulbecco, P.; Marabotto, E.; Gemignani, L.; Bruzzone, L.; De Bortoli, N.; Frigo, A.C.; Fiocca, R.; et al. Microscopic esophagitis distinguishes patients with non-erosive reflux disease from those with functional heartburn. J. Gastroenterol. 2013, 48, 473–482. [Google Scholar] [CrossRef]
- Savarino, V.; Marabotto, E.; Zentilin, P.; Furnari, M.; Bodini, G.; De Maria, C.; Tolone, S.; De Bortoli, N.; Frazzoni, M.; Savarino, E. Pathophysiology, diagnosis, and pharmacological treatment of gastro-esophageal reflux disease. Expert. Rev. Clin. Pharmacol. 2020, 13, 437–449. [Google Scholar] [CrossRef]
- Zhou, J.; Shrestha, P.; Qiu, Z.; Harman, D.G.; Teoh, W.-C.; Al-Sohaily, S.; Liem, H.; Turner, I.; Ho, V. Distinct Microbiota Dysbiosis in Patients with Non-Erosive Reflux Disease and Esophageal Adenocarcinoma. J. Clin. Med. 2020, 9, 2162. [Google Scholar] [CrossRef]
- Mastracci, L.; Grillo, F.; Parente, P.; Unti, E.; Battista, S.; Spaggiari, P.; Campora, M.; Scaglione, G.; Fassan, M.; Fiocca, R. Gastro-esophageal reflux disease and Barrett’s esophagus: An overview with an histologic diagnostic approach. Pathol.-J. Ital. Soc. Anat. Pathol. Diagn. Cytopathol. 2020, 112, 117–127. [Google Scholar] [CrossRef]
- Johansson, J.; Håkansson, H.-O.; Mellblom, L.; Kempas, A.; Johansson, K.-E.; Granath, F.; Nyrén, O. Prevalence of precancerous and other metaplasia in the distal oesophagus and gastro-oesophageal junction. Scand. J. Gastroenterol. 2005, 40, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W.; Lien, H.-C.; Chang, C.-S.; Chang, C.-H.; Ko, C.-W.; Yeh, H.-Z. Differences of risk factors and clinical presentations in male and female Taiwanese individuals with Barrett’s esophagus. J. Chin. Med. Assoc. 2018, 81, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Okereke, I.; Hamilton, C.; Reep, G.; Krill, T.; Booth, A.; Ghouri, Y.; Jala, V.; Andersen, C.; Pyles, R. Microflora composition in the gastrointestinal tract in patients with Barrett’s esophagus. J. Thorac. Dis. 2019, 11, S1581–S1587. [Google Scholar] [CrossRef]
- Snider, E.J.; Compres, G.; Freedberg, D.E.; Giddins, M.J.; Khiabanian, H.; Lightdale, C.J.; Nobel, Y.R.; Toussaint, N.C.; Uhlemann, A.-C.; Abrams, J.A. Barrett’s esophagus is associated with a distinct oral microbiome. Clin. Transl. Gastroenterol. 2018, 9, 135. [Google Scholar] [CrossRef]
- Snider, E.J.; Freedberg, D.E.; Abrams, J.A. Potential Role of the Microbiome in Barrett’s Esophagus and Esophageal Adenocarcinoma. Dig. Dis. Sci. 2016, 61, 2217–2225. [Google Scholar] [CrossRef]
- Lucendo, A.J.; Molina-Infante, J.; Arias, Á.; von Arnim, U.; Bredenoord, A.J.; Bussmann, C.; Amil Dias, J.; Bove, M.; González-Cervera, J.; Larsson, H.; et al. Guidelines on eosinophilic esophagitis: Evidence-based statements and recommendations for diagnosis and management in children and adults. United Eur. Gastroenterol. J. 2017, 5, 335–358. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; Arias, Á.; Arias-González, L.; Laserna-Mendieta, E.J.; Ruiz-Ponce, M.; Lucendo, A.J. Systematic review with meta-analysis: The growing incidence and prevalence of eosinophilic oesophagitis in children and adults in population-based studies. Aliment. Pharmacol. Ther. 2019, 49, 1116–1125. [Google Scholar] [CrossRef]
- De Bortoli, N.; Visaggi, P.; Penagini, R.; Annibale, B.; Baiano Svizzero, F.; Barbara, G.; Bartolo, O.; Battaglia, E.; Di Sabatino, A.; De Angelis, P.; et al. The 1st EoETALY Consensus on the Diagnosis and Management of Eosinophilic Esophagitis—Definition, Clinical Presentation and Diagnosis. Dig. Liver Dis. 2024, 56, 951–963. [Google Scholar] [CrossRef]
- Massimino, L.; Barchi, A.; Mandarino, F.V.; Spanò, S.; Lamparelli, L.A.; Vespa, E.; Passaretti, S.; Biroulet, L.P.; Savarino, E.V.; Jairath, V.; et al. A multi-omic analysis reveals the esophageal dysbiosis as the predominant trait of eosinophilic esophagitis. J. Transl. Med. 2023, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Facchin, S.; Calgaro, M.; Pandolfo, M.; Caldart, F.; Ghisa, M.; Greco, E.; Sattin, E.; Valle, G.; Dellon, E.S.; Vitulo, N.; et al. Salivary microbiota composition may discriminate between patients with eosinophilic oesophagitis (EoE) and non-EoE subjects. Aliment. Pharmacol. Ther. 2022, 56, 450–462. [Google Scholar] [CrossRef]
- Chang, J.W.; Jensen, E.T.; Dellon, E.S. Nature with nurture: The role of intrinsic genetic and extrinsic environmental factors on eosinophilic esophagitis. Curr. Allergy Asthma Rep. 2022, 22, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Sig Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Benitez, A.J.; Hoffmann, C.; Muir, A.B.; Dods, K.K.; Spergel, J.M.; Bushman, F.D.; Wang, M.-L. Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome 2015, 3, 23. [Google Scholar] [CrossRef]
- Johnson, J.; Dellon, E.S.; McCoy, A.N.; Sun, S.; Jensen, E.T.; Fodor, A.A.; Keku, T.O. Lack of association of the esophageal microbiome in adults with eosinophilic esophagitis compared with non-eosinophilic esophagitis controls. J. Gastrointest. Liver Dis. 2021, 30, 17–24. [Google Scholar] [CrossRef]
- Solfisburg, Q.S.; Baldini, F.; Baldwin-Hunter, B.; Austin, G.I.; Lee, H.H.; Park, H.; Freedberg, D.E.; Lightdale, C.J.; Korem, T.; Abrams, J.A. The Salivary Microbiome and Predicted Metabolite Production Are Associated with Barrett’s Esophagus and High-Grade Dysplasia or Adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2024, 33, 371–380. [Google Scholar] [CrossRef]
- Abnet, C.C.; Arnold, M.; Wei, W.-Q. Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology 2018, 154, 360–373. [Google Scholar] [CrossRef]
- Visaggi, P.; Barberio, B.; Ghisa, M.; Ribolsi, M.; Savarino, V.; Fassan, M.; Valmasoni, M.; Marchi, S.; De Bortoli, N.; Savarino, E. Modern Diagnosis of Early Esophageal Cancer: From Blood Biomarkers to Advanced Endoscopy and Artificial Intelligence. Cancers 2021, 13, 3162. [Google Scholar] [CrossRef] [PubMed]
- Marabotto, E.; Pellegatta, G.; Sheijani, A.D.; Ziola, S.; Zentilin, P.; De Marzo, M.G.; Giannini, E.G.; Ghisa, M.; Barberio, B.; Scarpa, M.; et al. Prevention Strategies for Esophageal Cancer—An Expert Review. Cancers 2021, 13, 2183. [Google Scholar] [CrossRef]
- Matson, V.; Chervin, C.S.; Gajewski, T.F. Cancer and the Microbiome—Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology 2021, 160, 600–613. [Google Scholar] [CrossRef]
- Wang, N.; Fang, J.-Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol. 2023, 31, 159–172. [Google Scholar] [CrossRef]
- Yang, W.; Chen, C.-H.; Jia, M.; Xing, X.; Gao, L.; Tsai, H.-T.; Zhang, Z.; Liu, Z.; Zeng, B.; Yeung, S.-C.J.; et al. Tumor-Associated Microbiota in Esophageal Squamous Cell Carcinoma. Front. Cell Dev. Biol. 2021, 9, 641270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xiao, Q.; Chen, H.; Zhou, T.; Yin, Y. Comparison of tumor-associated and nontumor-associated esophageal mucosa microbiota in patients with esophageal squamous cell carcinoma. Medicine 2022, 101, e30483. [Google Scholar] [CrossRef]
- Yamamura, K.; Izumi, D.; Kandimalla, R.; Sonohara, F.; Baba, Y.; Yoshida, N.; Kodera, Y.; Baba, H.; Goel, A. Intratumoral Fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin. Cancer Res. 2019, 25, 6170–6179. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Vogtmann, E.; Liu, A.; Qin, J.; Chen, W.; Abnet, C.C.; Wei, W. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China. Cancer 2019, 125, 3993–4002. [Google Scholar] [CrossRef]
- Arnold, M.; Ferlay, J.; Van Berge Henegouwen, M.I.; Soerjomataram, I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut 2020, 69, 1564–1571. [Google Scholar] [CrossRef]
- Simard, E.P.; Ward, E.M.; Siegel, R.; Jemal, A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA A Cancer J Clin. 2012, 62, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.H.; Kelly, L.A.; Kreft, R.E.; Barlek, M.; Omstead, A.N.; Matsui, D.; Boyd, N.H.; Gazarik, K.E.; Heit, M.I.; Nistico, L.; et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer 2016, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Lopetuso, L.R.; Severgnini, M.; Pecere, S.; Ponziani, F.R.; Boskoski, I.; Larghi, A.; Quaranta, G.; Masucci, L.; Ianiro, G.; Camboni, T.; et al. Esophageal microbiome signature in patients with Barrett’s esophagus and esophageal adenocarcinoma. PLoS ONE 2020, 15, e0231789. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, J.; Shen, Z.; Zhang, Z.; Wang, S. Characterization of Esophageal Microbiota in Patients With Esophagitis and Esophageal Squamous Cell Carcinoma. Front. Cell Infect. Microbiol. 2021, 11, 774330. [Google Scholar] [CrossRef] [PubMed]
- Kovaleva, O.; Podlesnaya, P.; Rashidova, M.; Samoilova, D.; Petrenko, A.; Mochalnikova, V.; Kataev, V.; Khlopko, Y.; Plotnikov, A.; Gratchev, A. Prognostic Significance of the Microbiome and Stromal Cells Phenotype in Esophagus Squamous Cell Carcinoma. Biomedicines 2021, 9, 743. [Google Scholar] [CrossRef]
- Li, Z.; Shi, C.; Zheng, J.; Guo, Y.; Fan, T.; Zhao, H.; Jian, D.; Cheng, X.; Tang, H.; Ma, J. Fusobacterium nucleatum predicts a high risk of metastasis for esophageal squamous cell carcinoma. BMC Microbiol. 2021, 21, 301. [Google Scholar] [CrossRef]
- Hao, Y.; Karaoz, U.; Yang, L.; Yachimski, P.S.; Tseng, W.; Nossa, C.W.; Ye, W.; Tseng, M.; Poles, M.; Francois, F.; et al. Progressive dysbiosis of human orodigestive microbiota along the sequence of gastroesophageal reflux, Barrett’s esophagus and esophageal adenocarcinoma. Intl J. Cancer 2022, 151, 1703–1716. [Google Scholar] [CrossRef]
- Shen, W.; Tang, D.; Wan, P.; Peng, Z.; Sun, M.; Guo, X.; Liu, R. Identification of tissue-specific microbial profile of esophageal squamous cell carcinoma by full-length 16S rDNA sequencing. Appl. Microbiol. Biotechnol. 2022, 106, 3215–3229. [Google Scholar] [CrossRef]
- Zaramella, A.; Arcidiacono, D.; Nucci, D.; Fabris, F.; Benna, C.; Pucciarelli, S.; Fassan, M.; Fantin, A.; De Re, V.; Cannizzaro, R.; et al. Resident Esophageal Microbiota Dysbiosis Correlates with Cancer Risk in Barrett’s Esophagus Patients and Is Linked to Low Adherence to WCRF/AICR Lifestyle Recommendations. Nutrients 2023, 15, 2885. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, J.; Qian, X.; Zhang, Z.; Wang, S. Oral microbiota may predict the presence of esophageal squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2023, 149, 4731–4739. [Google Scholar] [CrossRef]
- Seppi, M.; Pasqualini, J.; Facchin, S.; Savarino, E.V.; Suweis, S. Emergent Functional Organization of Gut Microbiomes in Health and Diseases. Biomolecules 2023, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Vernaci, G.; Savarino, E.V.; Patuzzi, I.; Facchin, S.; Zingone, F.; Massa, D.; Faggioni, G.; Giarratano, T.; Miglietta, F.; Griguolo, G.; et al. Characterization of Gut Microbiome Composition in Patients with Triple-Negative Breast Cancer Treated with Neoadjuvant Chemotherapy. Oncol. 2023, 28, e703–e711. [Google Scholar] [CrossRef] [PubMed]
- Barberio, B.; Facchin, S.; Patuzzi, I.; Ford, A.C.; Massimi, D.; Valle, G.; Sattin, E.; Simionati, B.; Bertazzo, E.; Zingone, F.; et al. A specific microbiota signature is associated to various degrees of ulcerative colitis as assessed by a machine learning approach. Gut Microbes 2022, 14, 2028366. [Google Scholar] [CrossRef] [PubMed]
- Facchin, S.; Vitulo, N.; Calgaro, M.; Buda, A.; Romualdi, C.; Pohl, D.; Perini, B.; Lorenzon, G.; Marinelli, C.; D’Incà, R.; et al. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol. Motil. 2020, 32, e13914. [Google Scholar] [CrossRef] [PubMed]
- Barberio, B.; Facchin, S.; Mele, E.; D’Incà, R.; Sturniolo, G.C.; Farinati, F.; Zingone, F.; Quagliariello, A.; Ghisa, M.; Massimi, D.; et al. Faecal microbiota transplantation in Clostridioides difficile infection: Real-life experience from an academic Italian hospital. Ther. Adv. Gastroenterol. 2020, 13, 1756284820934315. [Google Scholar] [CrossRef]
- Barchi, A.; Massimino, L.; Mandarino, F.V.; Vespa, E.; Sinagra, E.; Almolla, O.; Passaretti, S.; Fasulo, E.; Parigi, T.L.; Cagliani, S.; et al. Microbiota profiling in esophageal diseases: Novel insights into molecular staining and clinical outcomes. Comput. Struct. Biotechnol. J. 2023, 23, 626–637. [Google Scholar] [CrossRef]
Study (Year) | Population | Sample Type; Method of Analysis | Main Findings |
---|---|---|---|
[2] Pei et al. (2004) | 4 healthy individuals, with healthy esophagus | Distal esophagus | Members of 6 phyla were represented: Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Actinobacteria, and Sacchari bacteria |
[8] Yang et al. (2009) | 12 healthy individuals; 12 esophagitis patients; 10 BE patients | Distal esophagus | Esophageal microflora consisted of Gram-positive bacteria (dominated by Streptococcus) which mainly characterize the healthy esophagus |
[15] Liu et al. (2013) | 6 healthy individuals; 6 RE patients; 6 BE patients | Distal esophagus | There were 4 principal phyla associated with the healthy esophagus: Proteobacteria, Firmicutes, Bacteroidetes (8%), and Actinomycetes. |
Study (Year) | Population | Sample Type; Method of Analysis | Main Findings |
---|---|---|---|
[74] Jiang et al. (2021) | 32 ESCC patients; 15 ES patients; 21 healthy individuals | NA * | At genus level, Faecalibacterium, Curvibacter, Bacteroides, and Blautia levels were lower in patients with ESCC |
[75] Kovaleva et al. (2021) | 48 ESCC patients | NA * | Two different groups were distinguished: one characterized by a high abundance of Gram-positive bacteria, while in the second one there was a lower abundance of Gram-positive bacteria |
[76] Li et al. (2021) | 41 ESCC patients | NA * | Most abundant phyla were Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria Proteobacteria, and Spirochaetes, which dominated the bacterial flora; the presence of F. nucleatum was strongly correlated with tumor clinical stage |
[66] Yang et al. (2021) | 18 ESCC patients; 11 healthy individuals | NA * | ESCC patients: decreased microbial diversity and lower presence of Bacteroidetes, Spirochaetes, and Fusobacterium |
[77] Hao et al. (2022) | 27 healthy subjects, 37 GERD, 32 BE and 25 EAC | Esophageal biopsy | Streptococcus was depleted in EAC compared to healthy control while Atopobiu, Actinomyces, Veillonella, etc., were increased. Tumor tissues Brevibacillus and Treponema were more common in N1 and N2 stages, respectively; Acinetobacter was more common in T3 |
[78] Shen et al. (2022) | 19 ESCC patients | Tumor tissues and adjacent nontumor tissues | Tumor tissue: at genus level, bacterium with highest proportions in tumors was Streptococcus and was present in higher abundance; adjacent nontumor tissues: bacterium with highest proportions was Labrys. |
[79] Zaramella et al. (2023) | 58 patients with no dysplatic BE; 8 patients with low-grade dyspltatic BE; 8 patients with high-gradedysplasia; and 7 patients with EAC | Distal esophageal biopsy | The main genera in EAC were Prevotella and Streptococcus, although their amount was lower compared to the BE group. EAC microbiota was also characterized by an increase of Fusobacterium |
[80] Jiang et al. (2023) | 53 healthy individuals and 56 ESCC patients | Oral swab | Microbial richness and diversity were higher in oral microbiota of ESCC patients. At phylum level, Fusobacteria was increased in the ESCC group; Neisseriaceae were increased as family and Leptorichia was increased at genus level in the ESCC group. |
[60] Solfisburg et al. (2024) | 125 non-BE patients; 20 non-dysplatic BE and 78 EAC patients | Oral swab | Increased relative abundance of Streptococcus in EAC patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonazzi, E.; Lorenzon, G.; Maniero, D.; De Barba, C.; Bertin, L.; Barberio, B.; Salvador, R.; Valmasoni, M.; Zingone, F.; Ghisa, M.; et al. The Esophageal Microbiota in Esophageal Health and Disease. Gastroenterol. Insights 2024, 15, 998-1013. https://doi.org/10.3390/gastroent15040069
Bonazzi E, Lorenzon G, Maniero D, De Barba C, Bertin L, Barberio B, Salvador R, Valmasoni M, Zingone F, Ghisa M, et al. The Esophageal Microbiota in Esophageal Health and Disease. Gastroenterology Insights. 2024; 15(4):998-1013. https://doi.org/10.3390/gastroent15040069
Chicago/Turabian StyleBonazzi, Erica, Greta Lorenzon, Daria Maniero, Caterina De Barba, Luisa Bertin, Brigida Barberio, Renato Salvador, Michele Valmasoni, Fabiana Zingone, Matteo Ghisa, and et al. 2024. "The Esophageal Microbiota in Esophageal Health and Disease" Gastroenterology Insights 15, no. 4: 998-1013. https://doi.org/10.3390/gastroent15040069
APA StyleBonazzi, E., Lorenzon, G., Maniero, D., De Barba, C., Bertin, L., Barberio, B., Salvador, R., Valmasoni, M., Zingone, F., Ghisa, M., & Savarino, E. V. (2024). The Esophageal Microbiota in Esophageal Health and Disease. Gastroenterology Insights, 15(4), 998-1013. https://doi.org/10.3390/gastroent15040069