Clinical and Epidemiological Features of Hospitalized and Ambulatory Patients with Human Monkeypox Infection: A Retrospective Observational Study in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Participants
2.2. Variables
2.3. Data Analysis
2.4. Ethical Issues
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Smallpox, Historic Milestone Underscores Urgent Need to Invest in Global Health Security and Universal Health Coverage. Available online: https://www.who.int/csr/disease/smallpox/en/ (accessed on 23 July 2022).
- World Health Organization. Smallpox Vaccines. Available online: https://www.who.int/csr/disease/smallpox/vaccines/en/ (accessed on 23 July 2022).
- Lloyd-Smith, J.O. Vacated Niches, Competitive Release and the Community Ecology of Pathogen Eradication. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Magnus, P.; Andersen, E.K.; Petersen, K.B.; Birch-Andersen, A. A Pox-like Disease in Cynomolgus Monkeys. Acta Pathol. Microbiol. Scand. 1959, 46, 156–176. [Google Scholar] [CrossRef]
- Marennikova, S.S.; Seluhina, E.M.; Mal’ceva, N.N.; Cimiskjan, K.L.; Macevic, G.R. Isolation and Properties of the Causal Agent of a New Variola-like Disease (Monkeypox) in Man. Bull. World Health Organ. 1972, 46, 599–611. [Google Scholar] [PubMed]
- Doty, J.B.; Malekani, J.M.; Kalemba, L.N.; Stanley, W.T.; Monroe, B.P.; Nakazawa, Y.U.; Mauldin, M.R.; Bakambana, T.L.; Dja Liyandja, T.L.; Braden, Z.H.; et al. Assessing Monkeypox Virus Prevalence in Small Mammals at the Human-Animal Interface in the Democratic Republic of the Congo. Viruses 2017, 9, 283. [Google Scholar] [CrossRef] [PubMed]
- Antunes, F.; Cordeiro, R.; Virgolino, A.; Doutor, H.; Jorge, R. Monkeypox: From A Neglected Tropical Disease to a Public Health Threat. Infect. Dis. Rep. 2022, 14, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Ježek, Z.; Szczeniowski, M.; Paluku, K.M.; Mutombo, M. Human Monkeypox: Clinical Features of 282 Patients. J. Infect. Dis. 1987, 156, 293–298. [Google Scholar] [CrossRef]
- Yinka-Ogunleye, A.; Aruna, O.; Dalhat, M.; Ogoina, D.; McCollum, A.; Disu, Y.; Mamadu, I.; Akinpelu, A.; Ahmad, A.; Burga, J.; et al. Outbreak of Human Monkeypox in Nigeria in 2017–2018: A Clinical and Epidemiological Report. Lancet Infect. Dis. 2019, 19, 872–879. [Google Scholar] [CrossRef]
- Beer, E.M.; Bhargavi Rao, V. A Systematic Review of the Epidemiology of Human Monkeypox Outbreaks and Implications for Outbreak Strategy. PLoS Negl. Trop. Dis. 2019, 13, e0007791. [Google Scholar] [CrossRef] [Green Version]
- Likos, A.M.; Sammons, S.A.; Olson, V.A.; Frace, A.M.; Li, Y.; Olsen-Rasmussen, M.; Davidson, W.; Galloway, R.; Khristova, M.L.; Reynolds, M.G.; et al. A Tale of Two Clades: Monkeypox Viruses. J. Gen. Virol. 2005, 86, 2661–2672. [Google Scholar] [CrossRef]
- World Health Organization. Monkeypox: Experts Give Virus Variants New Names. Available online: https://www.who.int/news/item/12-08-2022-monkeypox--experts-give-virus-variants-new-names (accessed on 19 October 2022).
- Jezek, Z.; Grab, B.; Szczeniowski, M.; Paluku, K.M.; Mutombo, M. Clinico-Epidemiological Features of Monkeypox Patients with an Animal or Human Source of Infection. Bull. World Health Organ. 1988, 66, 459–464. [Google Scholar]
- Reynolds, M.G.; Davidson, W.B.; Curns, A.T.; Conover, C.S.; Huhn, G.; Davis, J.P.; Wegner, M.; Croft, D.R.; Newman, A.; Obiesie, N.N.; et al. Spectrum of Infection and Risk Factors for Human Monkeypox, United States, 2003. Emerg. Infect. Dis. 2007, 13, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Ogoina, D.; Izibewule, J.H.; Ogunleye, A.; Ederiane, E.; Anebonam, U.; Neni, A.; Oyeyemi, A.; Etebu, E.N.; Ihekweazu, C. The 2017 Human Monkeypox Outbreak in Nigeria—Report of Outbreak Experience and Response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. PLoS ONE 2019, 14, e0214229. [Google Scholar] [CrossRef] [Green Version]
- Simpson, K.; Heymann, D.; Brown, C.S.; Edmunds, W.J.; Elsgaard, J.; Fine, P.; Hochrein, H.; Hoff, N.A.; Green, A.; Ihekweazu, C.; et al. Human Monkeypox—After 40 Years, an Unintended Consequence of Smallpox Eradication. Vaccine 2020, 38, 5077–5081. [Google Scholar] [CrossRef]
- Reed, K.D.; Melski, J.W.; Graham, M.B.; Regnery, R.L.; Sotir, M.J.; Wegner, M.V.; Kazmierczak, J.J.; Stratman, E.J.; Li, Y.; Fairley, J.A.; et al. The Detection of Monkeypox in Humans in the Western Hemisphere. N. Engl. J. Med. 2004, 350, 342–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, A.; Aarons, E.; Astbury, J.; Balasegaram, S.; Beadsworth, M.; Beck, C.R.; Chand, M.; O’connor, C.; Dunning, J.; Ghebrehewet, S.; et al. Two Cases of Monkeypox Imported to the United Kingdom, September 2018. Eurosurveillance 2018, 23, 1800509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The Changing Epidemiology of Human Monkeypox—A Potential Threat? A Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef]
- Duque, M.P.; Ribeiro, S.; Martins, J.V.; Casaca, P.; Leite, P.P.; Tavares, M.; Mansinho, K.; Duque, L.M.; Fernandes, C.; Cordeiro, R.; et al. Ongoing Monkeypox Virus Outbreak, Portugal, 29 April to 23 May 2022. Eurosurveillance 2022, 27, 2200424. [Google Scholar] [CrossRef]
- Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S.; et al. Monkeypox Virus Infection in Humans across 16 Countries—April–June 2022. N. Engl. J. Med. 2022, 387, 679–691. [Google Scholar] [CrossRef]
- Patel, A.; Bilinska, J.; Tam, J.C.H.; da Silva Fontoura, D.; Mason, C.Y.; Daunt, A.; Snell, L.B.; Murphy, J.; Potter, J.; Tuudah, C.; et al. Clinical Features and Novel Presentations of Human Monkeypox in a Central London Centre during the 2022 Outbreak: Descriptive Case Series. BMJ 2022, 378, e072410. [Google Scholar] [CrossRef]
- Peiro-Mestres, A.; Fuertes, I.; Camprubi-Ferrer, D.; Marcos, M.A.; Vilella, A.; Navarro, M.; Rodriguez-Elena, L.; Riera, J.; Catala, A.; Martinez, M.J.; et al. Frequent Detection of Monkeypox Virus DNA in Saliva, Semen, and Other Clinical Samples from 12 Patients, Barcelona, Spain, May to June 2022. Eurosurveillance 2022, 27, 2200503. [Google Scholar] [CrossRef]
- Tarín-Vicente, E.J.; Alemany, A.; Agud-Dios, M.; Ubals, M.; Suñer, C.; Antón, A.; Arando, M.; Arroyo-Andrés, J.; Calderón-Lozano, L.; Casañ, C.; et al. Clinical Presentation and Virological Assessment of Confirmed Human Monkeypox Virus Cases in Spain: A Prospective Observational Cohort Study. Lancet 2022, 400, 661–669. [Google Scholar] [CrossRef]
- Hutson, C.L.; Carroll, D.S.; Gallardo-Romero, N.; Weiss, S.; Clemmons, C.; Hughes, C.M.; Salzer, J.S.; Olson, V.A.; Abel, J.; Karem, K.L.; et al. Monkeypox Disease Transmission in an Experimental Setting: Prairie Dog Animal Model. PLoS ONE 2011, 6, e28295. [Google Scholar] [CrossRef] [PubMed]
- Jezek, Z.; Grab, B.; Szczeniowski, M.V.; Paluku, K.M.; Mutombo, M. Human Monkeypox: Secondary Attack Rates. Bull. World Health Organ. 1988, 66, 465–470. [Google Scholar] [PubMed]
- Adler, H.; Gould, S.; Hine, P.; Snell, L.B.; Wong, W.; Houlihan, C.F.; Osborne, J.C.; Rampling, T.; Beadsworth, M.B.; Duncan, C.J.; et al. Clinical Features and Management of Human Monkeypox: A Retrospective Observational Study in the UK. Lancet Infect. Dis. 2022, 22, 1153–1162. [Google Scholar] [CrossRef]
All Patients (N = 41) | HIV-Positive Patients (n = 25) | HIV-Negative Patients (n = 16) | p-Value a | |
---|---|---|---|---|
Age | ||||
Mean (SD)—years | 37.2 (8.3) | 39.6 (8.1) | 33.6 (7.6) | 0.013 |
Median (IQR)—years | 37.0 (12.0) | 38.0 (12.0) | 31.0 (8.0) | |
Minimum–maximum | 22–58 | 29–58 | 22–50 | |
Gender– No. (%) | ||||
Male | 40 (97.6) | 25 (100.0) | 15 (93.7) | |
Female | 1 (2.4) | 0 (0.0) | 1 (6.3) | |
Patient self-reported sexual orientation—No. (%) | ||||
MSM | 38 (92.7) | 25 (100.0) | 13 (81.2) | |
MSMW | 2 (4.9) | 0 (0.0) | 2 (12.5) | |
WSM | 1 (2.4) | 0 (0.0) | 1 (6.3) | |
Country of origin—No. (%) | ||||
Brazil | 18 (43.9) | 13 (52.0) | 5 (31.3) | |
Portugal | 15 (36.6) | 7 (28.0) | 8 (50.0) | |
France | 2 (4.9) | 2 (8.0) | 0 (0.0) | |
Colombia | 2 (4.9) | 1 (4.0) | 1 (6.3) | |
Spain | 1 (2.4) | 0 (0.0) | 1 (6.3) | |
Peru | 1 (2.4) | 1 (4.0) | 0 (0.0) | |
Cape Verde | 1 (2.4) | 1 (4.0) | 0 (0.0) | |
Lebanon | 1 (2.4) | 0 (0.0) | 1 (6.3) | |
International travel in the preceding month (before symptom onset)—No. (%) | 7 (17.1) | 3 (12.0) | 4 (25.0) | 0.513 |
Country of travel—No. (%) | ||||
Israel | 2 (28.6) | 0 (0.0) | 2 (66.7) | |
Germany | 1 (14.3) | 1 (33.3) | 0 (0.0) | |
Spain | 1 (14.3) | 0 (0.0) | 1 (33.3) | |
Belgium | 1 (14.3) | 1 (33.3) | 0 (0.0) | |
United Kingdom | 1 (14.3) | 0 (0.0) | 1 (33.3) | |
Dominican Republic | 1 (14.3) | 1 (33.3) | 0 (0.0) | |
STI screening—No. (%) | 38 (92.7) | 24 (96.0) | 14 (87.5) | 0.686 |
Concomitant STI diagnosis—No. (n/total screened = %) | ||||
Gonorrhoea | 5 (13.2) | 4 (16.0) | 1 (6.3) | |
Chlamydia | 2 (5.3) | 0 (0.0) | 2 (12.5) | |
Syphilis | 1 (2.6) | 0 (0.0) | 1 (6.3) | |
Viral hepatitis infection—No. (%) | ||||
Positive HCV RNA | 3 (7.3) | 1 (4.0) | 2 (12.5) | |
Positive HBV surface antigen | 1 (2.4) | 1 (4.0) | 0 (0.0) | |
PrEP use | b | 12 (75.0) | ||
Sex with multiple and/or anonymous partners or unprotected sex in the previous month—No. (%) | ||||
Yes | 37 (90.2) | 21 (84.0) | 16 (100.0) | |
No | 4 (9.8) | 4 (16.0) | 0 (0.0) | |
Sex with MPX-confirmed case | 16 (39.0) | 12 (48.0) | 4 (25.0) | 0.250 |
Sex party or venue attendance in the previous month—No. (%) | 6 (14.6) | 5 (20.0) | 1 (6.3) | 0.446 |
“Chemsex” in the previous month—No. (%) | 8 (19.5) | 4 (6.0) | 4 (25.0) | 0.760 |
Reported or registered history of smallpox vaccination—No. (%) | 3 (7.3) | 3 (12.0) | 0 (0.0) |
HIV-Positive Patients (n = 25) | |
---|---|
Last TCD4+ cell count before monkeypox diagnosis—cells/mm3 | |
Mean (SD) | 776 (377.5) |
Median (IQR) | 702 (385.0) |
Minimum–maximum | 244–1728 |
Last HIV viral load before monkeypox diagnosis—copies/mL (%) | |
<50 | 22 (88.0) |
≥50 | 3 (12.0) |
Reported adherence to ART—No. (%) | 25 (100.0) |
ART backbone—No. (%) | |
ABC-based three-drug regimen | 10 (40.0) |
TDF-based three-drug regimen | 6 (24.0) |
TAF-based three-drug regimen | 6 (24.0) |
Two-drug regimen | 2 (8.0) |
Other a | 1 (4.0) |
ART third agent—No. (%) | |
INSTI | 17 (68.0) |
NNRTI | 6 (24.0) |
Boosted PI + INSTI | 1 (4.0) |
Boosted PI | 1 (4.0) |
All Patients (N = 41) | HIV-Positive Patients (n = 25) | HIV-Negative Patients (n = 16) | p-Value a | |
---|---|---|---|---|
Time between symptom onset and medical observation—days | ||||
Mean (SD) | 6.6 (6.4) | 3.8 (5.1) | 7.1 (7.8) | 0.131 |
Median (IQR) | 4.0 (4.0) | 3.0 (4.0) | 6.0 (9.0) | |
Minimum–maximum | 0–28 | |||
Clinical features—No. (%) | ||||
Skin lesions | 41 (100.0) | 25 (100.0) | 16 (100.0) | |
Fever | 21 (51.2) | 13 (52.0) | 8 (50.0) | 0.901 |
Adenopathy | 19 (46.3) | 13 (52.0) | 6 (37.5) | 0.364 |
Odynophagia | 11 (26.8) | 8 (32.0) | 3 (18.8) | 0.350 |
Asthenia | 9 (22.0) | 7 (28.0) | 2 (12.5) | 0.242 |
Myalgia | 9 (22.0) | 7 (28.0) | 2 (12.5) | 0.242 |
Headache | 6 (14.6) | 5 (20.0) | 1 (6.3) | 0.224 |
Proctitis | 2 (4.9) | 1 (4.0) | 1 (6.3) | 0.744 |
Type of skin—No. (%) | ||||
Vesicular, macular, or pustular rash | 32 (78.0) | 17 (68.0) | 15 (93.8) | |
Single ulcer | 6 (14.6) | 5 (20.0) | 1 (6.3) | 0.052 |
Multiple ulcers | 3 (7.3) | 3 (12.0) | 0 (0.0) | |
Location of skin lesions—No. (%) | ||||
Anogenital | 25 (61.0) | 16 (64.0) | 9 (56.3) | 0.620 |
Trunk and/or limbs | 23 (56.1) | 13 (53.0) | 10 (62.5) | 0.510 |
Face and/or mouth | 13 (31.7) | 7 (28.0) | 6 (37.5) | 0.524 |
Number of skin lesions—No. (%) | ||||
<5 | 19 (46.3) | 13 (53.0) | 6 (37.5) | 0.364 |
5–10 | 10 (24.4) | 7 (28.0) | 3 (18.8) | 0.501 |
11–20 | 9 (22.0) | 3 (12.0) | 6 (37.5) | 0.054 |
>20 | 3 (7.3) | 2 (8.0) | 1 (6.3) | 0.834 |
MPXV NAAT performed by anatomic region—n (%) | ||||
Skin or mucosal lesions exudate | 41 (100.0) | 25 (100.0) | 16 (100.0) | |
Oropharyngeal exudate | 30 (73.2) | 19 (76.0) | 11 (68.8) | 0.456 |
Urine | 5 (12.2) | 1 (4.0) | 4 (25.0) | |
Positive MPXV NAAT—No. (%; relative to total tests performed) | ||||
Skin or mucosal lesions exudate | 41 (100.0) | 25 (100.0) | 16 (100.0) | |
Oropharyngeal exudate | 14 (46.7) | 8 (42.1) | 6 (54.5) | 0.087 |
Urine | 1 (20) | 1 (100.0) | 0 (0.0) | |
Medical care follow-up—No. (%) | ||||
Outpatient | 37 (90.2) | 23 (92.0) | 14 (87.5) | 0.877 |
Inpatient | 4 (9.8) | 2 (8.0) | 2 (12.5) |
Patient | Demographic Data | Epidemiology | Clinical Features | Diagnosis | Treatment and Outcome |
---|---|---|---|---|---|
A | 42-years-old, Colombian man | MSM; sex contact with confirmed case six days before symptom onset; HIV-negative; unvaccinated for smallpox | Onset of face rash six days after sexual contact. Clinical evolution with the onset of proctitis (proctalgia, anal ulcers, rectorragia, and anal purulent exudate) and generalized macular-vesicular rash. Admitted in the inpatient setting 10 days after symptom onset for pain management. | Positive NAAT result in lesion fluid (no more samples collected) | Support treatment; discharged after eight days, recovered from pain with no complications |
B | 37-years-old, Brazilian man | MSM; sex contact and needle sharing for drug injection with confirmed case four days before symptom onset; HIV-positive under ART with preserved immune status | Started with macular-vesicular lesions nearby the venopuncture sites and proctitis (anal pain, tenesmus, and exudation) four days after contact with a positive case. Admitted to an inpatient setting for anal pain management. After the first week of inpatient, while having multiple body and anal lesions in the cicatrization phase, develops new trunk and limb macular-vesicular lesions. | Positive NAAT results in lesion fluid in the admission moment and later in new lesion testing | Antibiotic treatment for bacterial superinfection (isolation of MRSA) of arm venopunction lesion sites; discharged with anal pain control |
C | 41-years-old, Brazilian man | MSM; sex worker; no known contact with MPX case; HIV-negative; PrEP use | Started with macular-vesicular trunk rash two weeks before admission to the inpatient unit. In the second week of disease, developed multiple perianal lesions, with a crusted appearance. On admission day starts fever and pain in the lower-right region of the thorax. In the emergency department, it is documented fever, hypoxemia, and thorax radiography with lower-right lobar condensation infiltrate suggesting bacterial pneumonia. Lab work reveals leucocytosis with neutrophilia and C-reactive protein of 270 mg/L. Admitted as an inpatient for pneumonia antibiotic treatment. | Positive NAAT results both in lesion fluid and oropharyngeal secretions | Antibiotic treatment for presumptive bacterial pneumonia with no agent identification (haemocultures, viral multiplex and S. pneumonia, and Legionella spp. urinary antigen tests were negative); discharged after four days of inpatient with good clinical and radiological evolution. Monkeypox lesions were all crusted |
D | 44-years-old, Brazilian man | MSM; no known contact with MPX case; HIV-positive under ART with preserved immune status | Presented to the emergency department due to psychiatric symptoms related to acute methamphetamine consumption. Presence of three suggestive vesicular lesions confined to the right arm with no further MPX symptoms. Admitted as an inpatient for monitoring of mental clinical evolution and contact avoidance. | Positive NAAT results both in lesion fluid and oropharyngeal secretions | Antipsychotic treatment for psychiatric symptoms with good clinical evolution. Discharged after four days as an inpatient with all three monkeypox lesions crusted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caria, J.; Pinto, R.; Leal, E.; Almeida, V.; Cristóvão, G.; Gonçalves, A.C.; Torres, M.; Santos, M.B.; Pinheiro, H.; Póvoas, D.; et al. Clinical and Epidemiological Features of Hospitalized and Ambulatory Patients with Human Monkeypox Infection: A Retrospective Observational Study in Portugal. Infect. Dis. Rep. 2022, 14, 810-823. https://doi.org/10.3390/idr14060083
Caria J, Pinto R, Leal E, Almeida V, Cristóvão G, Gonçalves AC, Torres M, Santos MB, Pinheiro H, Póvoas D, et al. Clinical and Epidemiological Features of Hospitalized and Ambulatory Patients with Human Monkeypox Infection: A Retrospective Observational Study in Portugal. Infectious Disease Reports. 2022; 14(6):810-823. https://doi.org/10.3390/idr14060083
Chicago/Turabian StyleCaria, João, Raquel Pinto, Ema Leal, Vasco Almeida, Gonçalo Cristóvão, Ana Catarina Gonçalves, Margarida Torres, Maria Beatriz Santos, Hélder Pinheiro, Diana Póvoas, and et al. 2022. "Clinical and Epidemiological Features of Hospitalized and Ambulatory Patients with Human Monkeypox Infection: A Retrospective Observational Study in Portugal" Infectious Disease Reports 14, no. 6: 810-823. https://doi.org/10.3390/idr14060083
APA StyleCaria, J., Pinto, R., Leal, E., Almeida, V., Cristóvão, G., Gonçalves, A. C., Torres, M., Santos, M. B., Pinheiro, H., Póvoas, D., Seixas, D., Lino, S., Cardoso, O., Manata, M. J., Virgolino, A., & Maltez, F. (2022). Clinical and Epidemiological Features of Hospitalized and Ambulatory Patients with Human Monkeypox Infection: A Retrospective Observational Study in Portugal. Infectious Disease Reports, 14(6), 810-823. https://doi.org/10.3390/idr14060083