Heat Inactivation of Influenza Viruses—Analysis of Published Data and Estimations for Required Decimal Reduction Times for Different Temperatures and Media
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
Correction Statement
References
- Coronavirus Resource Center. COVID-19 Dashboard: (Global Map). Available online: https://coronavirus.jhu.edu/map.html (accessed on 9 August 2022).
- Rahman, H.S.; Aziz, M.S.; Hussein, R.H.; Othman, H.H.; Salih Omer, S.H.; Khalid, E.S.; Abdulrahman, N.A.; Amin, K.; Abdullah, R. The transmission modes and sources of COVID-19: A systematic review. Int. J. Surg. Open 2020, 26, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Karia, R.; Gupta, I.; Khandait, H.; Yadav, A.; Yadav, A. COVID-19 and its Modes of Transmission. SN Compr. Clin. Med. 2020, 2, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Goldman, E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect. Dis. 2020, 20, 892–893. [Google Scholar] [CrossRef]
- Weber, T.P.; Stilianakis, N.I. Inactivation of influenza A viruses in the environment and modes of transmission: A critical review. J. Infect. 2008, 57, 361–373. [Google Scholar] [CrossRef]
- Cowling, B.J.; Ip, D.K.M.; Fang, V.J.; Suntarattiwong, P.; Olsen, S.J.; Levy, J.; Uyeki, T.M.; Leung, G.M.; Malik Peiris, J.S.; Chotpitayasunondh, T.; et al. Aerosol transmission is an important mode of influenza A virus spread. Nat. Commun. 2013, 4, 1935. [Google Scholar] [CrossRef] [PubMed]
- Killingley, B.; Nguyen-Van-Tam, J. Routes of influenza transmission. Influenza Other Respir. Viruses 2013, 7 (Suppl. 2), 42–51. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Hultin, J.V.; Morens, D.M. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir. Ther. 2007, 12, 581–591. [Google Scholar] [CrossRef]
- Donatelli, I.; Castrucci, M.R.; de Marco, M.A.; Delogu, M.; Webster, R.G. Human-Animal Interface: The Case for Influenza Interspecies Transmission. Adv. Exp. Med. Biol. 2017, 972, 17–33. [Google Scholar] [CrossRef]
- Hirneisen, K.A.; Black, E.P.; Cascarino, J.L.; Fino, V.R.; Hoover, D.G.; Kniel, K.E. Viral Inactivation in Foods: A Review of Traditional and Novel Food-Processing Technologies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 3–20. [Google Scholar] [CrossRef]
- Chu, C.M. Inactivation of haemagglutinin and infectivity of influenza and Newcastle disease viruses by heat and by formalin. J. Hyg. 1948, 46, 247–251. [Google Scholar] [CrossRef] [PubMed]
- de Flora, S.; Badolati, G. Thermal inactivation of untreated and gamma-irradiated A2-Aichi-2-68 influenza virus. J. Gen. Virol. 1973, 20, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.; Ahl, R.; Böhm, R.; Strauch, D. Inactivation of viruses in liquid manure. Rev. Sci. Tech. 1995, 14, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.K.; Bae, J.E.; Kim, I.S. Inactivation of influenza A virus H1N1 by disinfection process. Am. J. Infect. Control 2010, 38, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Isbarn, S.; Buckow, R.; Himmelreich, A.; Lehmacher, A.; Heinz, V. Inactivation of avian influenza virus by heat and high hydrostatic pressure. J. Food Prot. 2007, 70, 667–673. [Google Scholar] [CrossRef]
- Firquet, S.; Beaujard, S.; Lobert, P.-E.; Sané, F.; Caloone, D.; Izard, D.; Hober, D. Viruses contained in droplets applied on warmed surface are rapidly inactivated. Microbes Environ. 2014, 29, 408–412. [Google Scholar] [CrossRef]
- Zou, S.; Guo, J.; Gao, R.; Dong, L.; Zhou, J.; Zhang, Y.; Dong, J.; Bo, H.; Qin, K.; Shu, Y. Inactivation of the novel avian influenza A (H7N9) virus under physical conditions or chemical agents treatment. Virol. J. 2013, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, R.; Day, M.; Spatz, S.; Yu, Q.; Gast, R.; Zsak, L.; Swayne, D. Thermal Inactivation of Avian Viral and Bacterial Pathogens in an Effluent Treatment System within a Biosafety Level 2 and 3 Enhanced Facility. Appl. Biosaf. 2011, 16, 206–217. [Google Scholar] [CrossRef]
- Chmielewski, R.A.; Beck, J.R.; Swayne, D.E. Evaluation of the U.S. Department of Agriculture’s egg pasteurization processes on the inactivation of high-pathogenicity avian influenza virus and velogenic Newcastle disease virus in processed egg products. J. Food Prot. 2013, 76, 640–645. [Google Scholar] [CrossRef]
- Chmielewski, R.A.; Beck, J.R.; Juneja, V.K.; Swayne, D.E. Inactivation of low pathogenicity notifiable avian influenza virus and lentogenic Newcastle disease virus following pasteurization in liquid egg products. LWT—Food Sci. Technol. 2013, 52, 27–30. [Google Scholar] [CrossRef]
- Swayne, D.E.; Beck, J.R. Heat inactivation of avian influenza and Newcastle disease viruses in egg products. Avian Pathol. 2004, 33, 512–518. [Google Scholar] [CrossRef]
- Heimbuch, B.K.; Wallace, W.H.; Kinney, K.; Lumley, A.E.; Wu, C.-Y.; Woo, M.-H.; Wander, J.D. A pandemic influenza preparedness study: Use of energetic methods to decontaminate filtering facepiece respirators contaminated with H1N1 aerosols and droplets. Am. J. Infect. Control 2011, 39, e1–e9. [Google Scholar] [CrossRef]
- Hiatt, C.W. Kinetics of the inactivation of viruses. Bacteriol. Rev. 1964, 28, 150–163. [Google Scholar] [CrossRef]
- Lauffer, M.A.; Wheatley, M. Destruction and denaturation of influenza A virus. Arch. Biochem. Biophys. 1951, 32, 436–447. [Google Scholar] [CrossRef]
- Hahon, N.; Kozikowski, E. Thermal inactivation studies with variola virus. J. Bacteriol. 1961, 81, 609–613. [Google Scholar] [CrossRef]
- Turner, G.S.; Kaplan, C. Some properties of fixed rabies virus. J. Gen. Virol. 1967, 1, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Arita, M.; Matsumoto, M. Heat inactivation of measles virus. Jpn. J. Microbiol. 1968, 12, 121–122. [Google Scholar] [CrossRef] [PubMed]
- Madani, T.A.; Abuelzein, E.-T.M.E.; Azhar, E.I.; Al-Bar, H.M.S. Thermal inactivation of Alkhumra hemorrhagic fever virus. Arch. Virol. 2014, 159, 2687–2691. [Google Scholar] [CrossRef] [PubMed]
- Rowell, C.E.R.; Dobrovolny, H.M. Energy Requirements for Loss of Viral Infectivity. Food Environ. Virol. 2020, 12, 281–294. [Google Scholar] [CrossRef]
- Hessling, M.; Hoenes, K.; Lingenfelder, C. Selection of parameters for thermal coronavirus inactivation—A data-based recommendation. GMS Hygiene and Infection Control; 15:Doc16/GMS Hygiene and Infection Control; 15:Doc16. GMS Hyg. Infect. Control 2020, 15. [Google Scholar] [CrossRef]
- Yap, T.F.; Liu, Z.; Shveda, R.A.; Preston, D.J. A predictive model of the temperature-dependent inactivation of coronaviruses. Appl. Phys. Lett. 2020, 117, 60601. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Siegert, R.; Braune, P. The pyrogens of myxoviruses II. Resistance of influenza a pyrogens to heat, ultraviolet, and chemical treatment. Virology 1964, 24, 218–224. [Google Scholar] [CrossRef]
- Abad, X.; Majó, N.; Rosell, R.; Busquets, N. Assay of Several Inactivation Steps on West Nile Virus and H7N1 Highly Pathogenic Avian Influenza Virus Suspensions. Biosafety 2012, 1. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, S.; Haque, E.; Rahman, M.; Uddin, A.; Khasruzzaman, A.K.M.; Sharif, M.; Rahman, R.; Amin, M.R.; Ali, M. Thermal and pH sensitivity of avian corona and influenza viruses: A model study for inactivation of SARS-CoV-2 (COVID-19) and other flu viruses. Int. Res. J. Med. Med. Sci. 2020, 8, 42–56. [Google Scholar] [CrossRef]
- Nian, Q.-G.; Jiang, T.; Zhang, Y.; Deng, Y.-Q.; Li, J.; Qin, E.-D.; Qin, C.-F. High thermostability of the newly emerged influenza A (H7N9) virus. J. Infect. 2016, 72, 393–394. [Google Scholar] [CrossRef]
- Ikizler, M.R.; Wright, P.F. Thermostabilization of egg grown influenza viruses. Vaccine 2002, 20, 1393–1399. [Google Scholar] [CrossRef]
- Gotlieb, T.; Hirst, G.K. The experimental production of combination forms of virus. Virology 1956, 2, 235–248. [Google Scholar] [CrossRef]
- Wanaratana, S.; Tantilertcharoen, R.; Sasipreeyajan, J.; Pakpinyo, S. The inactivation of avian influenza virus subtype H5N1 isolated from chickens in Thailand by chemical and physical treatments. Vet. Microbiol. 2010, 140, 43–48. [Google Scholar] [CrossRef]
- Lang, G.; Rouse, B.T.; Narayan, O.; Ferguson, A.E.; Connell, M.C. A new influenza virus infection in turkeys. I. Isolation and characterization of virus 6213. Can. Vet. J. 1968, 9, 22–29. [Google Scholar]
- Homme, P.J.; Easterday, B.C. Avian Influenza Virus Infections. I. Characteristics of Influenza A/Turkey/Wisconsin/1966 Virus. Avian Dis. 1970, 14, 66. [Google Scholar] [CrossRef]
- Scholtissek, C. Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine 1985, 3, 215–218. [Google Scholar] [CrossRef]
- Tuladhar, E.; Bouwknegt, M.; Zwietering, M.H.; Koopmans, M.; Duizer, E. Thermal stability of structurally different viruses with proven or potential relevance to food safety. J. Appl. Microbiol. 2012, 112, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, J.; Strom, S.; Deason, H.; Vanmoorlehem, E.; Berube, N.; Hauta, S.; Fernando, C.; Hill, J.; Fonstad, T.; Gerdts, V. Time and temperature requirements for improved heat killing of pathogens in swine transport trailers. J. Swine Health Prod. 2021, 29, 19–28. [Google Scholar] [CrossRef]
- Kontarov, N.A.; Dolgova, E.I.; Pogarskaya, I.V.; Kontarova, E.O.; Yuminova, N.V. Kinetics of Influenza A/BANGKOK/1/1979(H3N2) Virus Thermal Inactivation in the Presence of Polyallylamine. Mosc. Univ. Biol. Sci. Bull. 2021, 76, 34–38. [Google Scholar] [CrossRef]
- Jonges, M.; Liu, W.M.; van der Vries, E.; Jacobi, R.; Pronk, I.; Boog, C.; Koopmans, M.; Meijer, A.; Soethout, E. Influenza virus inactivation for studies of antigenicity and phenotypic neuraminidase inhibitor resistance profiling. J. Clin. Microbiol. 2010, 48, 928–940. [Google Scholar] [CrossRef]
- Jeong, E.K.; Sung, H.M.; Kim, I.S. Inactivation and removal of influenza A virus H1N1 during the manufacture of plasma derivatives. Biologicals 2010, 38, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Kreil, T.R.; Unger, U.; Orth, S.M.; Petutschnig, G.; Kistner, O.; Poelsler, G.; Berting, A. H5N1 influenza virus and the safety of plasma products. Transfusion 2007, 47, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.A.; Abubakar, M.; Hameed, S.; Hassan, S. Avian influenza virus (H5N1); effects of physico-chemical factors on its survival. Virol. J. 2009, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- King, D.J. Evaluation of Different Methods of Inactivation of Newcastle Disease Virus and Avian Influenza Virus in Egg Fluids and Serum. Avian Dis. 1991, 35, 505. [Google Scholar] [CrossRef]
- Khushi, M.; Das, P.; Yaqoob, T.; Riaz, A.; Manzoor, R. Effect of Physico-chemical factors on survival of Avian Influenza (H-7 type) Virus. Int. J. Agric. Biol. 2001, 2001, 416–418. [Google Scholar]
- McDevitt, J.; Rudnick, S.; First, M.; Spengler, J. Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures. Appl. Environ. Microbiol. 2010, 76, 3943–3947. [Google Scholar] [CrossRef]
- Marchesi, I.; Sala, A.; Frezza, G.; Paduano, S.; Turchi, S.; Bargellini, A.; Borella, P.; Cermelli, C. In vitro virucidal efficacy of a dry steam disinfection system against Human Coronavirus, Human Influenza Virus, and Echovirus. J. Occup. Environ. Hyg. 2021, 18, 541–546. [Google Scholar] [CrossRef]
- Rockey, N.; Arts, P.J.; Li, L.; Harrison, K.R.; Langenfeld, K.; Fitzsimmons, W.J.; Lauring, A.S.; Love, N.G.; Kaye, K.S.; Raskin, L.; et al. Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators. mSphere 2020, 5, e00588-20. [Google Scholar] [CrossRef]
- Wigginton, K.R.; Arts, P.J.; Clack, H.L.; Fitzsimmons, W.J.; Gamba, M.; Harrison, K.R.; LeBar, W.; Lauring, A.S.; Li, L.; Roberts, W.W.; et al. Validation of N95 Filtering Facepiece Respirator Decontamination Methods Available at a Large University Hospital. Open Forum Infect. Dis. 2021, 8, ofaa610. [Google Scholar] [CrossRef]
- Lore, M.B.; Heimbuch, B.K.; Brown, T.L.; Wander, J.D.; Hinrichs, S.H. Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators. Ann. Occup. Hyg. 2012, 56, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Swayne, D.E. Thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat. J. Food Prot. 2007, 70, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; King, D.J.; Swayne, D.E. Thermal inactivation of avian influenza and Newcastle disease viruses in chicken meat. J. Food Prot. 2008, 71, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E. Microassay for measuring thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat. Int. J. Food Microbiol. 2006, 108, 268–271. [Google Scholar] [CrossRef]
- Thomas, C.; Swayne, D.E. Thermal inactivation of H5N2 high-pathogenicity avian influenza virus in dried egg white with 7.5% moisture. J. Food Prot. 2009, 72, 1997–2000. [Google Scholar] [CrossRef]
- Chmielewski, R.A.; Beck, J.R.; Swayne, D.E. Thermal inactivation of avian influenza virus and Newcastle disease virus in a fat-free egg product. J. Food Prot. 2011, 74, 1161–1168. [Google Scholar] [CrossRef]
- Chumpolbanchorn, K.; Suemanotham, N.; Siripara, N.; Puyati, B.; Chaichoune, K. The effect of temperature and UV light on infectivity of avian influenza virus (H5N1, Thai field strain) in chicken fecal manure. Southeast Asian J. Trop. Med. Public Health 2006, 37, 102–105. [Google Scholar]
- Kurmi, B.; Murugkar, H.V.; Nagarajan, S.; Tosh, C.; Dubey, S.C.; Kumar, M. Survivability of Highly Pathogenic Avian Influenza H5N1 Virus in Poultry Faeces at Different Temperatures. Indian J. Virol. 2013, 24, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Stephens, C.B.; Spackman, E. Thermal Inactivation of avian influenza virus in poultry litter as a method to decontaminate poultry houses. Prev. Vet. Med. 2017, 145, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Kaoud, H.A.; Ismail, T.F.; Khalf, M.A. The effect of some physical and chemical agents on the infectivity of the highly pathogenic avian influenza virus in Egypt. Eur. J. Acad. Essays 2016, 2016, 267–271. [Google Scholar]
- Lu, H.; Castro, A.E.; Pennick, K.; Liu, J.; Yang, Q.; Dunn, P.; Weinstock, D.; Henzler, D. Survival of avian influenza virus H7N2 in SPF chickens and their environments. Avian Dis. 2003, 47, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Senne, D.A.; Panigrahy, B.; Morgan, R.L. Effect of composting poultry carcasses on survival of exotic avian viruses: Highly pathogenic avian influenza (HPAI) virus and adenovirus of egg drop syndrome-76. Avian Dis. 1994, 38, 733–737. [Google Scholar] [CrossRef]
- Guan, J.; Chan, M.; Grenier, C.; Wilkie, D.C.; Brooks, B.W.; Spencer, J.L. Survival of avian influenza and Newcastle disease viruses in compost and at ambient temperatures based on virus isolation and real-time reverse transcriptase PCR. Avian Dis. 2009, 53, 26–33. [Google Scholar] [CrossRef]
- Elving, J.; Emmoth, E.; Albihin, A.; Vinneras, B.; Ottoson, J. Inactivation of avian flu and model virus in animal by-product composts. In Proceedings of the 2010 14th Ramiran International Conference Proceedings, Lisboa, Portugal, 13–15 September 2010. [Google Scholar]
- Elving, J.; Emmoth, E.; Albihn, A.; Vinnerås, B.; Ottoson, J. Composting for avian influenza virus elimination. Appl. Environ. Microbiol. 2012, 78, 3280–3285. [Google Scholar] [CrossRef]
- Fiszon, B.; Hannoun, C.; Garcia-Sastre, A.; Villar, E.; Cabezas, J.A. Comparison of biological and physical properties of human and animal A(H1N1) influenza viruses. Res. Virol. 1989, 140, 395–404. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Schwebke, I.; Blümel, J.; Eggers, M.; Glebe, D.; Rapp, I.; Sauerbrei, A.; Steinmann, E.; Steinmann, J.; Willkommen, H.; et al. Leitlinie der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten (DVV) e. V. und des Robert Koch-Instituts (RKI) zur Prüfung von chemischen Desinfektionsmitteln auf Wirksamkeit gegen Viren in der Humanmedizin: Fassung vom 1. Dezember 2014. Bundesgesundheitsblatt Gesundh. Gesundh. 2015, 58, 493–504. [Google Scholar] [CrossRef]
- DIN EN 14476:2019-10; Chemische Desinfektionsmittel und Antiseptika_—Quantitativer Suspensionsversuch zur Bestimmung der Viruziden Wirkung im Humanmedizinischen Bereich_—Prüfverfahren und Anforderungen (Phase_2, Stufe_1). Beuth Verlag GmbH: Berlin, Germany, 2019.
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- Johnson, N.P.A.S.; Mueller, J. Updating the accounts: Global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 2002, 76, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Taubenberger, J.K.; Morens, D.M. 1918 Influenza: The mother of all pandemics. Emerg. Infect. Dis. 2006, 12, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.W. A history of influenza. J. Appl. Microbiol. 2001, 91, 572–579. [Google Scholar] [CrossRef]
Virus | Temperature [°C] | D [min] | Sample Medium | Remark | Reference |
---|---|---|---|---|---|
in PBS | |||||
H1N1, A/Puerto Rico/8/34, human | 56 | PBS | successful inactivation but no quantification possible * | [33] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 55 | 12.0 | PBS | [18] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57 | 4.80 | PBS | [18] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 58 | 2.30 | PBS | [18] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 59 | 1.30 | PBS | [18] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 61 | 1.00 | PBS | [18] | |
H7N1, A, avian (HPAI) | 70 | <1.05 | PBS | lower detection limit reached; no quantification possible * | [34] |
H7N1, A, avian (HPAI) | 100 | <1.53 | PBS | lower detection limit reached; no quantification possible * | [34] |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 53 | 21.7 | PBS | [18] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 55 | 2.80 | PBS | [18] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 57 | 2.30 | PBS | [18] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 58 | 1.20 | PBS | [18] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 59 | 1.10 | PBS | [18] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 61 | 0.80 | PBS | [18] | |
H9N2, A, avian (LPAI) | 60 | PBS | successful inactivation but no quantification possible * | [35] | |
in allantoic fluid | |||||
H1N1, A/California/07/2009, human | 50 | 38.46 | allantoic fluid (assumed) | [36] | |
H1N1, A/Beijing/HZ01/2013, human | 50 | 25.00 | allantoic fluid (assumed) | [36] | |
H1N1, A/Puerto Rico/8/34, human | 50 | 27.78 | allantoic fluid (assumed) | [36] | |
H1N1, A/Texas/1/85, human | 54 | 2.31 | allantoic fluid (assumed) | [37] | |
A/Mel (prob. H1N1, A/Melbourne/35), human | 56 | allantoic fluid | successful inactivation but no quantification possible * | [38] | |
A/WSN (prob. H1N1, A/WSN/33), human | 56 | allantoic fluid | successful inactivation but no quantification possible * | [38] | |
H3N2, A/Aichi/2/84, human | 56 | 4.40 | allantoic fluid | [12] | |
H5N1, A/chicken/Chonburi/Thailand/CU-7/04, avian | 55 | 6.74 | allantoic fluid (assumed) | [39] | |
H5N1, A/chicken/Chonburi/Thailand/CU-7/04, avian | 60 | 6.29 | allantoic fluid (assumed) | [39] | |
H5N1, A/chicken/NakornPatom/Thailand/CU-K2/2004 | 60 | 5.15 | allantoic fluid (assumed) | [39] | |
H5N1, A/chicken/NakornPatom/Thailand/CU-K2/2004, avian | 65 | 2.34 | allantoic fluid (assumed) | [39] | |
H5N1, A/chicken/Ratchaburi/Thailand/CU-68/04, avian | 55 | 4.55 | allantoic fluid (assumed) | [39] | |
H5N1, A/chicken/Ratchaburi/Thailand/CU-68/04, avian | 60 | 1.89 | allantoic fluid (assumed) | [39] | |
fowl plaque virus (probably H5N1, A/turkey/Ontario/6213/1966), avian | 56 | 3.57 | allantoic fluid | [40] | |
H7N9, A/Anhui/1/2013, avian | 56 | 1.69 | allantoic fluid | [17] | |
H7N9, A/Anhui/1/2013, avian | 65 | 0.97 | allantoic fluid | [17] | |
H7N9, A/Shanghai/1/2013, avian | 56 | 1.95 | allantoic fluid | [17] | |
H7N9, A/Shanghai/1/2013, avian | 65 | 0.97 | allantoic fluid | [17] | |
H7N9, A/Anhui/1/2013, (human) | 50 | 45.45 | allantoic fluid (assumed) | [36] | |
H9N2, A/chicken/Nanjing/1/2013, avian | 50 | 26.32 | allantoic fluid (assumed) | [36] | |
H9N2, A/turkey/Wisconsin/1966, avian | 56 | <81.8 | allantoic fluid | lower detection limit reached; no quantification possible * | [41] |
different influenza A strains | 54 | allantoic fluid/PBS | successful inactivation but no quantification possible * | [42] | |
B/Lee, human | 50 | 15.00 | allantoic fluid | rough estimation | [11] |
B/Lee, human | 52 | 7.50 | allantoic fluid | rough estimation | [11] |
B/Lee, human | 54 | 3.75 | allantoic fluid | rough estimation | [11] |
in cell culture medium | |||||
H1N1, A/Netherlands/266/2008, human | 56 | 13.10 | DMEM | [43] | |
H1N1, A/Netherlands/266/2008, human | 73 | 0.53 | DMEM | [43] | |
H1N1, A/NWS/33 (ATCC VR-219), human | 70 | 0.82 | DMEM | [14] | |
H1N1, A/NWS/33 (ATCC VR-219), human | 80 | 0.73 | DMEM | [14] | |
H1N1, A/NWS/33 (ATCC VR-219), human | 90 | <0.162 | DMEM | lower detection limit reached; no quantification possible * | [14] |
H1N1, A/Puerto Rico/8/34, human | 70 | 3.33 | MEM droplets | [16] | |
H1N1, A/Puerto Rico/8/34, human | 80 | 1.23 | MEM droplets | [16] | |
H1N1, A/Puerto Rico/8/34, human | 90 | 0.69 | MEM droplets | [16] | |
H1N1, A/Puerto Rico/8/34, human | 100 | 0.50 | MEM droplets | [16] | |
H1N1, A/Puerto Rico/8/34, human | 110 | 0.25 | MEM droplets | [16] | |
H1N1, A/SW/Sk/02, swine | 55 | MEM | successful inactivation but no quantification possible * | [44] | |
H3N2, A/Bangkok/1/1979/, human | 45 | 32894.74 | DMEM (assumed) | results orders of magnitude above typical results; not included in analysis * | [45] |
H3N2, A/Bangkok/1/1979/, human | 50 | 13419.22 | DMEM (assumed) | results orders of magnitude above typical results; not included in analysis * | [45] |
H3N2, A/Bangkok/1/1979/, human | 55 | 9661.84 | DMEM (assumed) | results orders of magnitude above typical results; not included in analysis * | [45] |
H3N2, A/Bangkok/1/1979/, human | 60 | 3344.48 | DMEM (assumed) | results orders of magnitude above typical results; not included in analysis * | [45] |
H3N2, A/Wisconsin/67/2005, human | 70 | DMEM | successful inactivation but no quantification possible * | [46] | |
H7N3, A/Mallard/NL/12/00, avian (LPAI) | 70 | DMEM | successful inactivation but no quantification possible * | [46] | |
H7N7, A/FPV/Bratislava/79, avian | 50 | 8.33 | MEM | [15] | |
H7N7, A/FPV/Bratislava/79, avian | 55 | 3.70 | MEM | [15] | |
H7N7, A/FPV/Bratislava/79, avian | 58 | 0.75 | MEM | [15] | |
H7N7, A/FPV/Bratislava/79, avian | 60 | 0.53 | MEM | [15] | |
H7N7, A/FPV/Bratislava/79, avian | 63 | 0.38 | MEM | [15] | |
in other liquids | |||||
H1N1, A/NWS/33, human | 58 | 6.71 | liquid (blood plasma) | [47] | |
H5N1, A/NIBRG-14, human | 58 | liquid (blood plasma) | successful inactivation but no quantification possible * | [48] | |
H5N1, A, avian (HPAI) | 56 | peptone water | successful inactivation but no quantification possible * | [49] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 56 | different media | successful inactivation but no quantification possible * | [50] | |
H5N9, A/turkey/Wisconsin/68, avian (LPAI) | 56 | different media | successful inactivation but no quantification possible * | [50] | |
H7N3, A, avian | 56 | peptone water | successful inactivation but no quantification possible * | [51] | |
H9N2, A/turkey/Wisconsin/66, avian (LPAI) | 56 | different media | successful inactivation but no quantification possible * | [50] | |
on surfaces | |||||
H1N1, A/Puerto Rico/8/34, human | 55 | 16.67 | stainless steel (surface) RH 25% | [52] | |
H1N1, A/Puerto Rico/8/34, human | 55 | 5.17 | stainless steel (surface) RH 50% | [52] | |
H1N1, A/Puerto Rico/8/34, human | 55 | <3.41 | stainless steel (surface) RH 75% | successful inactivation but no quantification possible * | [52] |
H1N1, A/Puerto Rico/8/34, human | 60 | 12.50 | stainless steel (surface) RH 25% | [52] | |
H1N1, A/Puerto Rico/8/34, human | 60 | 3.66 | stainless steel (surface) RH 50% | [52] | |
H1N1, A/Puerto Rico/8/34, human | 60 | <2.88 | stainless steel (surface) RH 75% | successful inactivation but no quantification possible * | [52] |
H1N1, A/Puerto Rico/8/34, human | 65 | 8.33 | stainless steel (surface) RH 25% | [52] | |
H1N1, A/Puerto Rico/8/34, human | 65 | <2.94 | stainless steel (surface) RH 50% | successful inactivation but no quantification possible * | [52] |
H1N1, A/Puerto Rico/8/34, human | 65 | <6.12 | different filtering facepiece materials (RH 85%) | lower detection limit reached; no quantification possible * | [22] |
H1N1, A/WSN/33 | 105 | 0.02 | surface (steel, polypropylen, cotton) | [53] | |
H3N2, A/Wisconsin/67/2005 (recombinant), human (?) | 72 | 7.50 | droplets on filter material | [54] | |
H3N2, A/Wisconsin/67/2005 (recombinant), human (?) | 82 | <6.98 | droplets on filter material | successful inactivation but no quantification possible * | [54] |
H3N2, A/recombinant strain, human (?) | 81 | <7.7 | towel/filtering facepiece material | lower detection limit reached; no quantification possible * | [55] |
H5N1, A, avian (LPAI) | 65 | <4.31 | 6 different filtering facepiece materials (RH > 60%) | lower detection limit reached; no quantification possible * | [56] |
in chicken meat | |||||
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 57 | 3.98 | chicken thigh meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 57 | 4.48 | chicken breast meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 58 | 2.17 | chicken thigh meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 58 | 2.56 | chicken breast meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 59 | 1.35 | chicken thigh meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 59 | 1.27 | chicken breast meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 60 | 0.99 | chicken thigh meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 60 | 1.18 | chicken breast meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 61 | 0.48 | chicken thigh meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 61 | 0.57 | chicken breast meat | [57] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 57 | 2.31 | breast meat | [58] | |
H5N1, A/chicken/Korea/ES/2003, avian (HPAI) | 30-70 | thigh and breast meat | successful inactivation but no quantification possible * | [59] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57 | 2.92 | breast meat | [58] | |
H5N2, A/chicken/Texas/298313/2004, avian (LPAI) | 57 | 2.39 | breast meat | [58] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57 | 4.46 | chicken meat | [58] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 58 | 2.36 | chicken meat | [58] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 59 | 1.36 | chicken meat | [58] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 60 | 1.06 | chicken meat | [58] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 61 | 0.39 | chicken meat | [58] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 65 | thigh and breast meat | successful inactivation but no quantification possible * | [59] | |
H7N7, A/FPV/Bratislava/79, avian | 50 | 10.71 | chicken meat suspension | [15] | |
H7N7, A/FPV/Bratislava/79, avian | 55 | 3.33 | chicken meat suspension | [15] | |
H7N7, A/FPV/Bratislava/79, avian | 58 | 1.30 | chicken meat suspension | [15] | |
H7N7, A/FPV/Bratislava/79, avian | 60 | 0.48 | chicken meat suspension | [15] | |
H7N7, A/FPV/Bratislava/79, avian | 63 | 0.32 | chicken meat suspension | [15] | |
in egg products | |||||
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 55 | 10.73 | homogenized whole egg | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57 | 4.48 | homogenized whole egg | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 59 | 0.37 | homogenized whole egg | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 60 | 0.56 | homogenized whole egg | [19] | |
H7N2, A/chicken/New York/13142-5/94, avian (LPAI) | 55 | 6.69 | homogenized whole egg | [21] | |
H7N2, A/chicken/New York/13142-5/94, avian (LPAI) | 57 | 2.25 | homogenized whole egg | [21] | |
H7N2, A/chicken/New York/13142-5/94, avian (LPAI) | 59 | 0.36 | homogenized whole egg | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 55 | 4.28 | liquid egg white | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57 | 0.38 | liquid egg white | [21] | |
H7N2, A/chicken/New York/13142-5/94, avian (LPAI) | 55 | 6.60 | liquid egg white | [21] | |
H7N2, A/chicken/New York/13142-5/94, avian (LPAI) | 57 | 0.36 | liquid egg white | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 55 | 3168.00 | dried egg white | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57 | 2016.00 | dried egg white | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 59 | 1872.00 | dried egg white | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 61 | 1440.00 | dried egg white | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 63 | 288.00 | dried egg white | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 54.4 | 400.60 | dried egg white | [60] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 60 | 160.70 | dried egg white | [60] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 65.5 | 109.40 | dried egg white | [60] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 71.1 | 43.70 | dried egg white | [60] | |
H7N2, A/chicken/New York/13142-5/94, avian (LPAI) | 55 | 720.00 | dried egg white | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 62.2 | 0.05 | sugared egg yolk | [19] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 63.3 | 0.02 | sugared egg yolk | [19] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 56 | 1.10 | sugared egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 57 | 0.53 | sugared egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 58 | 0.44 | sugared egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 59 | 0.39 | sugared egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 60 | 0.33 | sugared egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 61 | 0.31 | sugared egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 62.2 | 0.23 | sugared egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 63.3 | 0.13 | sugared egg yolk | [20] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 61.1 | 0.23 | fortified egg yolk | [19] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 62.2 | 0.14 | fortified egg yolk | [19] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 57 | 0.91 | fortified egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 58 | 0.61 | fortified egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 59 | 0.47 | fortified egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 60 | 0.38 | fortified egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 61.1 | 0.13 | fortified egg yolk | [20] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 55 | 0.34 | salted egg yolk | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 62.2 | 0.06 | salted egg yolk | [19] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 63.3 | 0.04 | salted egg yolk | [19] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 58 | 0.86 | salted egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 59 | 0.66 | salted egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 60 | 0.60 | salted egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 61 | 0.58 | salted egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 62.2 | 0.50 | salted egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 63.3 | 0.38 | salted egg yolk | [20] | |
H7N2, A/chicken/New York/13142-5/94, avian (LPAI) | 55 | 0.68 | salted egg yolk | [21] | |
H7N2, A/chicken/New York/13142-5/94, avian (LPAI) | 57 | 0.37 | salted egg yolk | [21] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 60 | 0.06 | plain egg yolk | [19] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 61.1 | 0.03 | plain egg yolk | [19] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 57 | 1.52 | plain egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 58 | 1.32 | plain egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 59 | 1.28 | plain egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 60 | 0.73 | plain egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 61.1 | 0.67 | plain egg yolk | [20] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 62 | 0.59 | plain egg yolk | [20] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 55 | 18.60 | fat free egg product | [61] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 56 | 8.50 | fat free egg product | [61] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 56.7 | 3.60 | fat free egg product | [61] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57 | 2.50 | fat free egg product | [61] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57.7 | 1.10 | fat free egg product | [61] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 58 | 0.40 | fat free egg product | [61] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 59 | 0.40 | fat free egg product | [61] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 55 | 2.90 | fat free egg product | [61] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 56.7 | 1.00 | fat free egg product | [61] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 57 | 0.80 | fat free egg product | [61] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 57.7 | 0.72 | fat free egg product | [61] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 58 | 0.60 | fat free egg product | [61] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 59 | 0.50 | fat free egg product | [61] | |
H7N2, A/chicken/New York/13142/94, avian (LPAI) | 61 | 0.40 | fat free egg product | [61] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 56.7 | 5.60 | egg substitute | [19] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 57.7 | 2.30 | egg substitute | [19] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | 59 | 0.75 | egg substitute | [19] | |
in waste | |||||
H5N1, A/Thai field strain, avian | 40 | chicken manure | successful inactivation but no quantification possible * | [62] | |
H5N1, A/chicken/Sikkim/151466/2008, avian (HPAI) | 42 | 1363.64 | dry poultry faeces | [63] | |
H5N1, A/chicken/Sikkim/151466/2008, avian (HPAI) | 42 | 1333.33 | wet poultry faeces | [63] | |
H5N1, rgA/gyrfalcon/WA/41088/2014xPR8, avian (LPAI) | 43.3 | litter | successful inactivation but no quantification possible * | [64] | |
H5N1, A/duck/Egypt/VRLCU-R28/2012, avian (HPAI) | 56 | litter | successful inactivation but no quantification possible * | [65] | |
H7N1, A/turkey/Italy/4580/1999, avian (HPAI) | 43.3 | litter | successful inactivation but no quantification possible * | [64] | |
H7N2, A/chicken/PA/3972-1/97, avian | 56 | 5.15 | chicken manure | [66] | |
H7N2, A/chicken/PA/3972-1/97, avian | 60 | 0.61 | chicken manure | [66] | |
H7N2, A/chicken/PA/3972-2/97, avian | 56 | 8.06 | chicken manure | [66] | |
H7N2, A/chicken/PA/3972-2/97, avian | 60 | 1.48 | chicken manure | [66] | |
H7N2, A/chicken/PA/3779-1/97, avian | 56 | 8.06 | chicken manure | [66] | |
H7N2, A/chicken/PA/3779-1/97, avian | 60 | 1.48 | chicken manure | [66] | |
H7N2, A/chicken/PA/3779-2/97, avian | 56 | 8.63 | chicken manure | [66] | |
H7N2, A/chicken/PA/3779-2/97, avian | 60 | 1.79 | chicken manure | [66] | |
swine influenza | 50 | 29.41 | liquid manure | [13] | |
swine influenza | 55 | 11.76 | liquid manure | [13] | |
H5N2, A/chicken/Pennsylvania/1370/83, avian (HPAI) | >40 | compost | successful inactivation but no quantification possible * | [67] | |
H6N2, A/turkey/Mass/3740/65 | 50–65 | compost (different consistence) | successful inactivation but no quantification possible * | [68] | |
H7N1, A/turkey/Italy/1387/00, avian (HPAI) | 45 | 8.33 | compost | [69] | |
H7N1, A/turkey/Italy/1387/00, avian (HPAI) | 45 | 4.20 | compost (different consistence) | [70] | |
H7N1, A/turkey/Italy/1387/00, avian (HPAI) | 45 | 7.20 | compost (different consistence) | [70] | |
H7N1, A/turkey/Italy/1387/00, avian (HPAI) | 55 | 2.40 | compost (different consistence) | [70] | |
H7N1, A/turkey/Italy/1387/00, avian (HPAI) | 55 | 2.50 | compost (different consistence) | [70] |
Medium | Temperature [°C] | ||||||
---|---|---|---|---|---|---|---|
50 | 55 | 60 | 65 | 70 | 75 | 80 | |
“all liquids” | 6.4 | 4.3 | 2.85 | 1.93 | 1.32 | 0.91 | 0.64 |
PBS | 49.9 | 6.9 | 1.02 | 0.158 | 0.026 | 0.005 | 0.001 |
allantoic fluid | 17.2 | 6.5 | 2.52 | 1.007 | 0.414 | 0.174 | 0.075 |
cell culture medium | 3.2 | 2.5 | 1.96 | 1.554 | 1.241 | 0.997 | 0.806 |
surfaces | 35.1 | 16.9 | 8.31 | 4.175 | 2.141 | 1.119 | 0.596 |
chicken meat | 22.7 | 4.6 | 0.98 | 0.217 | 0.050 | 0.012 | 0.003 |
homog. whole egg | 318.3 | 9.8 | 0.34 | 0.013 | 0.001 | <0.001 | <0.001 |
dried egg white | 4212 | 1454 | 518 | 190.5 | 72.07 | 28.04 | 11.21 |
egg yolk | 5.5 | 1.3 | 0.33 | 0.087 | 0.024 | 0.007 | 0.002 |
fat free egg | 166.0 | 7.0 | 0.33 | 0.017 | 0.001 | <0.001 | <0.001 |
manure/litter | 58.5 | 9.0 | 1.47 | 0.251 | 0.045 | 0.009 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hessling, M.; Fehler, N.; Gierke, A.-M.; Sicks, B.; Vatter, P. Heat Inactivation of Influenza Viruses—Analysis of Published Data and Estimations for Required Decimal Reduction Times for Different Temperatures and Media. Microbiol. Res. 2022, 13, 853-871. https://doi.org/10.3390/microbiolres13040060
Hessling M, Fehler N, Gierke A-M, Sicks B, Vatter P. Heat Inactivation of Influenza Viruses—Analysis of Published Data and Estimations for Required Decimal Reduction Times for Different Temperatures and Media. Microbiology Research. 2022; 13(4):853-871. https://doi.org/10.3390/microbiolres13040060
Chicago/Turabian StyleHessling, Martin, Nicole Fehler, Anna-Maria Gierke, Ben Sicks, and Petra Vatter. 2022. "Heat Inactivation of Influenza Viruses—Analysis of Published Data and Estimations for Required Decimal Reduction Times for Different Temperatures and Media" Microbiology Research 13, no. 4: 853-871. https://doi.org/10.3390/microbiolres13040060
APA StyleHessling, M., Fehler, N., Gierke, A. -M., Sicks, B., & Vatter, P. (2022). Heat Inactivation of Influenza Viruses—Analysis of Published Data and Estimations for Required Decimal Reduction Times for Different Temperatures and Media. Microbiology Research, 13(4), 853-871. https://doi.org/10.3390/microbiolres13040060