Semi-Synthetic Ecdysteroid 6-Oxime Derivatives of 20-Hydroxyecdysone Possess Anti-Cryptococcal Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cultivation Conditions
2.2. Solvents, Chemicals and Chromatographic Conditions
2.3. Structure Elucidation
2.4. Availability and Semi-Synthesis of the Tested Compounds
2.5. Antifungal Activity Assay
2.6. Yeast Viability Assay
2.7. Combined Treatment of C. neoformans with 20E-EOx, 20E-ZOx and Transporter Inhibitors
2.8. Data Analysis
3. Results
3.1. Semi-Synthetic Modification of 20E and Its Derivatives
3.2. Anti-Cryptococcal Activity of 20-Hydroxyecdysone and Its Derivatives
3.3. 20E-ZOx Reduces the Viability of C. neoformans IFM 5844 Cells
3.4. In Vitro Interaction between Ecdysteroids on C. neoformans IFM 5844 Cells
3.5. Combined Treatment of C. neoformans IFM 5844 Cells with 20E-ZOx and Efflux Pump Inhibitors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, R.C.; Stone, N.R.; Wiesner, D.L.; Bicanic, T.; Nielsen, K. Cryptococcus: From environmental saprophyte to global pathogen. Nat. Rev. Microbiol. 2016, 14, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Kohler, J.R.; Casadevall, A.; Perfect, J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2014, 5, a019273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firacative, C.; Trilles, L.; Meyer, W. Recent advances in Cryptococcus and cryptococcosis. Microorganisms 2021, 10, 13. [Google Scholar] [CrossRef]
- Maziarz, E.K.; Perfect, J.R. Cryptococcosis. Infect. Dis. Clin. N. Am. 2016, 30, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Spadari, C.C.; Wirth, F.; Lopes, L.B.; Ishida, K. New approaches for cryptococcosis treatment. Microorganisms 2020, 8, 613. [Google Scholar] [CrossRef]
- Iyer, K.R.; Revie, N.M.; Fu, C.; Robbins, N.; Cowen, L.E. Treatment strategies for cryptococcal infection: Challenges, advances and future outlook. Nat. Rev. Microbiol. 2021, 19, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Dinan, L. Phytoecdysteroids: Biological aspects. Phytochemistry 2001, 57, 325–339. [Google Scholar] [CrossRef]
- Dinan, L.; Savchenko, T.; Whiting, P. On the distribution of phytoecdysteroids in plants. Cell Mol. Life Sci. 2001, 58, 1121–1132. [Google Scholar] [CrossRef]
- Das, N.; Mishra, S.K.; Bishayee, A.; Ali, E.S.; Bishayee, A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharm. Sin. B 2021, 11, 1740–1766. [Google Scholar] [CrossRef]
- Isenmann, E.; Ambrosio, G.; Joseph, J.F.; Mazzarino, M.; de la Torre, X.; Zimmer, P.; Kazlauskas, R.; Goebel, C.; Botre, F.; Diel, P.; et al. Ecdysteroids as non-conventional anabolic agent: Performance enhancement by ecdysterone supplementation in humans. Arch. Toxicol. 2019, 93, 1807–1816. [Google Scholar] [CrossRef]
- Parr, M.K.; Botre, F.; Nass, A.; Hengevoss, J.; Diel, P.; Wolber, G. Ecdysteroids: A novel class of anabolic agents? Biol. Sport 2015, 32, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bathori, M.; Toth, N.; Hunyadi, A.; Marki, A.; Zador, E. Phytoecdysteroids and anabolic-androgenic steroids--structure and effects on humans. Curr. Med. Chem. 2008, 15, 75–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinan, L.; Dioh, W.; Veillet, S.; Lafont, R. 20-Hydroxyecdysone, from plant extracts to clinical Use: Therapeutic potential for the treatment of neuromuscular, cardio-metabolic and respiratory diseases. Biomedicines 2021, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Lafont, R.; Serova, M.; Didry-Barca, B.; Raynal, S.; Guibout, L.; Dinan, L.; Veillet, S.; Latil, M.; Dioh, W.; Dilda, P.J. 20-Hydroxyecdysone activates the protective arm of the RAAS via the MAS receptor. J. Mol. Endocrinol. 2021, 68, 77–87. [Google Scholar] [CrossRef]
- Dioh, W.; Chabane, M.; Tourette, C.; Azbekyan, A.; Morelot-Panzini, C.; Hajjar, L.A.; Lins, M.; Nair, G.B.; Whitehouse, T.; Mariani, J.; et al. Testing the efficacy and safety of BIO101, for the prevention of respiratory deterioration, in patients with COVID-19 pneumonia (COVA study): A structured summary of a study protocol for a randomised controlled trial. Trials 2021, 22, 42. [Google Scholar] [CrossRef] [PubMed]
- Kizelsztein, P.; Govorko, D.; Komarnytsky, S.; Evans, A.; Wang, Z.; Cefalu, W.T.; Raskin, I. 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E433–E439. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.J.; Jin, H.; Zheng, S.L.; Xia, P.; Cai, Y.; Ni, X.J. Phytoecdysteroids from Ajuga iva act as potential antidiabetic agent against alloxan-induced diabetic male albino rats. Biomed. Pharmacother. 2017, 96, 480–488. [Google Scholar] [CrossRef]
- Laekeman, G.; Vlietinck, A. Phytoecdysteroids: Phytochemistry and pharmacological activity. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3827–3849. [Google Scholar] [CrossRef]
- Martins, A.; Toth, N.; Vanyolos, A.; Beni, Z.; Zupko, I.; Molnar, J.; Bathori, M.; Hunyadi, A. Significant activity of ecdysteroids on the resistance to doxorubicin in mammalian cancer cells expressing the human ABCB1 transporter. J. Med. Chem. 2012, 55, 5034–5043. [Google Scholar] [CrossRef]
- Vagvolgyi, M.; Martins, A.; Kulmany, A.; Zupko, I.; Gati, T.; Simon, A.; Toth, G.; Hunyadi, A. Nitrogen-containing ecdysteroid derivatives vs. multi-drug resistance in cancer: Preparation and antitumor activity of oximes, oxime ethers and a lactam. Eur. J. Med. Chem. 2018, 144, 730–739. [Google Scholar] [CrossRef]
- Hunyadi, A.; Csabi, J.; Martins, A.; Molnar, J.; Balazs, A.; Toth, G. Backstabbing P-gp: Side-chain cleaved ecdysteroid 2,3-dioxolanes hyper-sensitize MDR cancer cells to doxorubicin without efflux inhibition. Molecules 2017, 22, 199. [Google Scholar] [CrossRef] [Green Version]
- Aliouche, L.; Habiba, L.; Amrani, A.; León, F.; Brouard, I.; Samir, B.; Zama, D.; Zahia, M.; Benayache, F. Isolation, antioxidant and antimicrobial activities of ecdysteroids from Serratula cichoracea. Curr. Bioact. Compd. 2018, 14, 60–66. [Google Scholar] [CrossRef]
- Shirshova, T.I.; Politova, N.K.; Burtseva, S.A.; Beshlei, I.V.; Volodin, V.V. Antimicrobial activity of natural ecdysteroids from Serratula coronata L. and their acyl derivatives. Pharm. Chem. J. 2006, 40, 268–271. [Google Scholar] [CrossRef]
- Toth, G.; Herke, I.; Gati, T.; Vagvolgyi, M.; Berkecz, R.; Parfenova, L.V.; Ueno, M.; Yokoi, T.; Nakagawa, Y.; Hunyadi, A. A commercial extract of Cyanotis arachnoidea roots as a source of unusual ecdysteroid derivatives with insect hormone receptor binding activity. J. Nat. Prod. 2021, 84, 1870–1881. [Google Scholar] [CrossRef]
- Galgoczy, L.; Lukacs, G.; Nyilasi, I.; Papp, T.; Vagvolgyi, C. Antifungal activity of statins and their interaction with amphotericin B against clinically important Zygomycetes. Acta Biol. Hung. 2010, 61, 356–365. [Google Scholar] [CrossRef]
- Galyautdinov, I.V.; Ves’kina, N.A.; Afon’kina, S.R.; Khalilov, L.M.; Odinokov, V.N. Synthesis of 20-hydroxyecdysone oxime, its diacetonide, and their 14,15-anhydro derivatives. Russ. J. Org. Chem. 2006, 42, 1333–1339. [Google Scholar] [CrossRef]
- Shafikov, R.V.; Urazaeva, Y.R.; Afon’kina, S.R.; Savchenko, R.G.; Khalilov, L.M.; Odinokov, V.N. 20-hydroxyecdysone oximes and their rearrangement into lactams. Russ. J. Org. Chem. 2009, 45, 1456. [Google Scholar] [CrossRef]
- Morehead, M.S.; Scarbrough, C. Emergence of global antibiotic resistance. Prim. Care 2018, 45, 467–484. [Google Scholar] [CrossRef]
- Dinan, L.; Lafont, R. Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. J. Endocrinol. 2006, 191, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bongomin, F.; Oladele, R.O.; Gago, S.; Moore, C.B.; Richardson, M.D. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses 2018, 61, 290–297. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein. Arch. Biochem. Biophys. 2020, 696, 108675. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Z.; Wu, S.; Kuang, X.; Wang, X.; Yan, G.; Tang, R. Chemosensitizing micelles self-assembled from amphiphilic TPGS-indomethacin twin drug for significantly synergetic multidrug resistance reversal. J. Biomater. Appl. 2021, 35, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Qadri, H.; Shah, A.H.; Mir, M.A.; Qureshi, M.F.; Prasad, R. Quinidine drug resistance transporter knockout Candida cells modulate glucose transporter expression and accumulate metabolites leading to enhanced azole drug resistance. Fungal Genet. Biol. 2022, 161, 103713. [Google Scholar] [CrossRef] [PubMed]
Species | Strain Number |
---|---|
Cryptococcus neoformans | IFM 5844 |
Cryptococcus neoformans | IFO 410 |
Strains | Minimum Inhibitory Concentration (mg/mL) | |||
---|---|---|---|---|
20E | 20EL | 20E-EOx | 20E-ZOx | |
IFM 5844 | ˃2.00 | ˃2.00 | 2.00 | 1.00 |
IFO 410 | ˃2.00 | ˃2.00 | 2.00 | 1.00 |
20E (mg/mL) | I0 (%) | Ie (%) | IR | Type of Interaction | Growth Inhibition Rate (%) |
---|---|---|---|---|---|
2.00 | 37 | 92 | 0.80 | Additive | 100 |
1.00 | 28 | 91 | 0.88 | Additive | 100 |
0.50 | 26 | 30 | 0.89 | Additive | 100 |
0.25 | 4 | 27 | 1.11 | Additive | 100 |
20E-EOx (mg/mL) | I0 (%) | Ie (%) | IR | Type of Interaction | Growth Inhibition Rate (%) |
2.00 | 98 | 30 | 0.77 | Additive | 98 |
1.00 | 13 | 30 | 0.56 | Additive | 24 |
0.50 | 10 | 30 | 0.50 | Additive | 20 |
0.25 | 9 | 30 | 0.45 | Additive | 17 |
20E-ZOx (mg/mL) | I0 (%) | Ie (%) | IR | Type of Interaction | Growth Inhibition Rate (%) |
2.00 | 89 | 30 | 0.83 | Additive | 99 |
1.00 | 79 | 30 | 0.88 | Additive | 96 |
0.50 | 40 | 30 | 0.71 | Additive | 49 |
0.25 | 36 | 30 | 0.68 | Additive | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szerencsés, B.; Vörös, M.; Bagi, K.; Háznagy, M.B.; Hunyadi, A.; Vágvölgyi, C.; Pfeiffer, I.; Vágvölgyi, M. Semi-Synthetic Ecdysteroid 6-Oxime Derivatives of 20-Hydroxyecdysone Possess Anti-Cryptococcal Activity. Microbiol. Res. 2022, 13, 985-994. https://doi.org/10.3390/microbiolres13040071
Szerencsés B, Vörös M, Bagi K, Háznagy MB, Hunyadi A, Vágvölgyi C, Pfeiffer I, Vágvölgyi M. Semi-Synthetic Ecdysteroid 6-Oxime Derivatives of 20-Hydroxyecdysone Possess Anti-Cryptococcal Activity. Microbiology Research. 2022; 13(4):985-994. https://doi.org/10.3390/microbiolres13040071
Chicago/Turabian StyleSzerencsés, Bettina, Mónika Vörös, Kristóf Bagi, Márton B. Háznagy, Attila Hunyadi, Csaba Vágvölgyi, Ilona Pfeiffer, and Máté Vágvölgyi. 2022. "Semi-Synthetic Ecdysteroid 6-Oxime Derivatives of 20-Hydroxyecdysone Possess Anti-Cryptococcal Activity" Microbiology Research 13, no. 4: 985-994. https://doi.org/10.3390/microbiolres13040071
APA StyleSzerencsés, B., Vörös, M., Bagi, K., Háznagy, M. B., Hunyadi, A., Vágvölgyi, C., Pfeiffer, I., & Vágvölgyi, M. (2022). Semi-Synthetic Ecdysteroid 6-Oxime Derivatives of 20-Hydroxyecdysone Possess Anti-Cryptococcal Activity. Microbiology Research, 13(4), 985-994. https://doi.org/10.3390/microbiolres13040071