Clustering Disease of Clostridioides Difficile Infection: Implication for the Management in Internal Medicine
Abstract
:1. Introduction
2. What Is the Meaning of Medicine Based on Clustering Disease?
- Disease Classification: Clustering can help in organizing diseases into meaningful groups based on similarities in symptoms, genetic factors, pathological features, or responses to treatments. This classification can aid in better understanding and management of diseases.
- Identification of Disease Subtypes: Clustering can help identify different subtypes or variants of the disease. This can be especially useful in complex diseases such as cancer, where different subtypes may require tailored treatment approaches.
- Predictive Analytics: Clustering can assist in predicting disease outcomes or patient responses to treatments based on similarities observed among different patients. This can enable personalized medicine and targeted interventions.
- Research and Drug Development: By clustering diseases, researchers can identify common molecular pathways or biological mechanisms underlying diseases within a cluster. This knowledge can guide the development of new drugs or repurposing existing ones.
- Public Health Planning: Clustering can aid in identifying disease hotspots, patterns of disease spread, or common risk factors across clusters. Such information is valuable for public health planning, resource allocation, and preventive measures.
3. Clostridioides Difficile Infection
3.1. General Characteristics
3.2. Diagnosis
3.3. Therapy
3.3.1. Mild and Moderate Disease
3.3.2. Severe Disease
4. Clostridioides Difficile Infection from the Perspective of Clustering Disease
- Epidemiological Clustering: Clustering CDI cases based on geographic location and time can help identify outbreaks or localized clusters of the infection. This information can be valuable for implementing targeted infection control measures and investigating potential sources of transmission.
- Strain Typing: Clustering CDI strains based on their genetic characteristics can provide insights into the diversity and relatedness of C. difficile isolates. Techniques such as polymerase chain reaction (PCR) ribotyping, pulsed-field gel electrophoresis (PFGE), and whole-genome sequencing (WGS) can be used to determine strain types and identify clusters of genetically similar strains. Strain typing can help understand the transmission dynamics, track outbreaks, and assess the effectiveness of infection control measures.
- Patient Demographics and Risk Factors: Clustering CDI cases based on patient demographics (age, sex, comorbidities) and risk factors (previous hospitalizations, antibiotic usage, immunosuppression) can help identify high-risk populations or specific factors contributing to CDI occurrence. This information can guide targeted prevention strategies and clinical management.
- Clinical Presentation and Disease Severity: Clustering CDI cases based on clinical presentation (mild, moderate, severe) and disease severity can aid in understanding the spectrum of disease and identifying factors associated with severe outcomes. This knowledge can inform treatment decisions and guide interventions for high-risk patients.
- Treatment Response: Clustering CDI cases based on response to different treatment modalities (e.g., antibiotics, fecal microbiota transplantation) can provide insights into the effectiveness of various treatment approaches. It can help identify factors associated with treatment failure or recurrence and guide the development of improved therapeutic strategies.
4.1. Epidemiological Consideration Approaching CDI with Clustering Disease Method
- Isolation of affections and contacts;
- Hygiene and attention in the care of affected individuals;
- Environmental disinfection;
- Management of risk factors;
- Antimicrobial management.
4.2. CD Strain Typing Considerations Approaching with Clustering Disease Method
4.3. Patient Demographics and Risk Factors Considerations with Clustering Disease Method
4.3.1. Changing in Physiological and Immune Status in the Elderly
4.3.2. Changing of Intestinal Microbiota in the Elderly
4.4. CDI Clinical and Disease Severity Consideration Approaching with Clustering Method
4.5. CDI Response Treatment Consideration Approaching with Clustering Method
5. Clostridioides Difficile Costs Analysis
6. Conclusions
- Antibiotic-Associated Infections: CDI is most commonly associated with antibiotic use. Broad-spectrum antibiotics can disrupt the balance of the gut microbiota, allowing the CD to overgrow and cause infection. This highlights the delicate relationship between our gut microbiome and overall health.
- Hospital-Acquired Infections: CDI is a significant concern in healthcare facilities, where vulnerable patients are at increased risk. The spores of CD can persist on surfaces, leading to transmission and outbreaks within hospital settings. Preventing and managing CDI is crucial for patient safety.
- Toxin-Mediated Pathogenesis: The toxins produced by C. difficile, TcdA, and TcdB play a central role in the pathogenesis of CDI. These toxins cause damage to the intestinal lining, leading to inflammation and diarrhea. Understanding the mechanisms of toxin action has paved the way for targeted treatments and research into new therapies.
- Recurrence and Challenges in Treatment: CDI can be challenging to treat, with a significant percentage of patients experiencing recurrence after initial therapy. This is partly due to the formation of spores by CD, which are highly resistant to environmental stressors and standard antimicrobial agents.
- Emergence of Hypervirulent Strains: Certain strains of CD, such as the BI/NAP1/027 strain, have been associated with more severe and recurrent infections. The emergence of hypervirulent strains adds complexity to CDI management and highlights the importance of surveillance and infection control measures.
- Biofilm Formation: CD’s ability to form biofilms and surface proteins contributes to its persistence and resilience, making it challenging to eradicate from both medical equipment and the gut mucosa. Biofilms represent an area of ongoing research with potential implications for treatment strategies.
- Prevention and Infection Control: Preventing CDI is of utmost importance. Proper hand hygiene, judicious use of antibiotics, and infection control measures in healthcare settings can reduce the incidence of CDI.
- Vaccines and Therapeutics: Research efforts have focused on developing vaccines and novel therapeutics targeting CD toxins or other virulence factors. These advancements offer hope for better prevention and treatment of CDI in the future.
- CD remains a significant public health concern, but ongoing research and efforts in infection control and therapeutics are making strides in managing this bacterium and its associated infections. Understanding the complexities of CD and its interactions with the host is essential for developing effective strategies to combat CDI and improve patient outcomes.
7. Future Direction
- Novel Antibiotics and Therapies: Researchers continue to explore and develop new antibiotics and antimicrobial therapies that specifically target CD. The goal is to find agents that effectively eliminate the bacterium while preserving the balance of the gut microbiota to reduce the risk of recurrence.
- Bacteriophage Therapy: Bacteriophage therapy involves the use of viruses (bacteriophages) that infect and destroy specific bacterial pathogens, including CD. As antibiotic resistance becomes a growing concern, bacteriophage therapy offers a potential alternative or adjunct treatment for CDI.
- Microbiota-Based Therapies: Fecal microbiota transplantation has shown promising results in treating recurrent CDI. In the future, more refined and targeted approaches may be developed, such as using defined microbial consortia or microbial-derived metabolites to restore a healthy gut microbiome and suppress CD overgrowth.
- Toxin-Targeted Therapies: Since CD toxins (TcdA and TcdB) are major virulence factors, therapeutics that neutralize or inhibit the toxins are under investigation. Monoclonal antibodies targeting toxins have shown potential in clinical trials and could become part of the treatment arsenal.
- Vaccines: The development of vaccines against CD toxins is ongoing. Vaccines can potentially prevent CDI or reduce disease severity by inducing an immune response against the toxins, thereby preventing toxin-mediated damage.
- Biofilm Disruption: As mentioned earlier, CD biofilms contribute to its persistence and resistance to treatment. Research focused on disrupting or preventing biofilm formation may enhance the efficacy of existing therapies.
- Antibiotic Stewardship: Improving antibiotic prescribing practices and promoting antibiotic stewardship is vital in preventing CDI. Reducing unnecessary antibiotic use can minimize the disruption of the gut microbiota and subsequently decrease the risk of CD colonization.
- Combination Therapies: The use of combination therapies, involving a combination of antibiotics, antimicrobials, or other treatment modalities, may prove effective in tackling CDI from multiple angles and minimizing the risk of resistance.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sandhu, B.K.; McBride, S.M. Clostridioides difficile. Trends Microbiol. 2018, 26, 1049–1050. [Google Scholar] [CrossRef] [PubMed]
- Nardi, R.; Scanelli, G.; Corrao, S.; Iori, I.; Mathieu, G.; Cataldi Amatrian, R. Co-morbidity does not reflect complexity in internal medicine patients. Eur. J. Intern. Med. 2007, 18, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, S.; Crelier, B.; Donzé, J.D.; Aubert, C.E. Definition of patient complexity in adults: A narrative review. J. Multimorb. Comorb. 2022, 12, 26335565221081288. [Google Scholar] [CrossRef] [PubMed]
- Perera, T.; Grewal, E.; Ghali, W.A.; Tang, K.L. Perceived discharge quality and associations with hospital readmissions and emergency department use: A prospective cohort study. BMJ Open Qual. 2022, 11, e001875. [Google Scholar] [CrossRef]
- Nobili, A.; Licata, G.; Salerno, F.; Pasina, L.; Tettamanti, M.; Franchi, C.; De Vittorio, L.; Marengoni, A.; Corrao, S.; Iorio, A.; et al. Polypharmacy, length of hospital stay, and in-hospital mortality among elderly patients in internal medicine wards. The REPOSI study. Eur. J. Clin. Pharmacol. 2011, 67, 507–519. [Google Scholar] [CrossRef]
- Mannucci, P.M.; Nobili, A.; REPOSI Investigators. Multimorbidity and polypharmacy in the elderly: Lessons from REPOSI. Intern. Emerg. Med. 2014, 9, 723–734. [Google Scholar] [CrossRef]
- Ticinesi, A.; Nouvenne, A.; Folesani, G.; Prati, B.; Morelli, I.; Guida, L.; Turroni, F.; Ventura, M.; Lauretani, F.; Maggio, M.; et al. Multimorbidity in elderly hospitalised patients and risk of Clostridium difficile infection: A retrospective study with the Cumulative Illness Rating Scale (CIRS). BMJ Open 2015, 5, e009316. [Google Scholar] [CrossRef]
- Mellace, L.; Consonni, D.; Jacchetti, G.; Del Medico, M.; Colombo, R.; Velati, M.; Formica, S.; Cappellini, M.D.; Castaldi, S.; Fabio, G. Epidemiology of Clostridium difficile-associated disease in internal medicine wards in northern Italy. Intern. Emerg. Med. 2013, 8, 717–723. [Google Scholar] [CrossRef]
- Faris, B.; Blackmore, A.; Haboubi, N. Review of medical and surgical management of Clostridium difficile infection. Tech. Coloproctol. 2010, 14, 97–105. [Google Scholar] [CrossRef]
- Keller, J.M.; Surawicz, C.M. Clostridium difficile infection in the elderly. Clin. Geriatr. Med. 2014, 30, 79. [Google Scholar] [CrossRef]
- Mizusawa, M.; Doron, S.; Gorbach, S. Clostridium difficile diarrhea in the elderly: Current issues and management options. Drugs Aging 2015, 32, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Yuille, S.; Mackay, W.G.; Morrison, D.J.; Tedford, M.C. Optimising gut colonisation resistance against Clostridium difficile infection. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 2161–2166. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.B.; Lee, M.; Suh, J.W.; Yang, K.-S.; Chung, Y.; Kim, J.Y.; Kim, S.B.; Sohn, J.W.; Yoon, Y.K. Clinical prediction rule for identifying older patients with toxigenic Clostridioides difficile at the time of hospital admission. BMC Geriatr. 2023, 23, 127. [Google Scholar] [CrossRef]
- Debast, S.B.; Bauer, M.P.; Kuijper, E.J.; European Society of Clinical Microbiology and Infectious Diseases. European Society of Clinical Microbiology and Infectious Diseases: Update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 2014, 20 (Suppl. S2), 1–26. [Google Scholar] [CrossRef] [PubMed]
- Boeriu, A.; Roman, A.; Dobru, D.; Stoian, M.; Voidăzan, S.; Fofiu, C. The Impact of Clostridioides difficile Infection in Hospitalized Patients: What Changed during the Pandemic? Diagnostics 2022, 12, 3196. [Google Scholar] [CrossRef] [PubMed]
- Gateau, C.; Couturier, J.; Coia, J.; Barbut, F. How to diagnose infection caused by Clostridium difficile. Clin. Microbiol. Infect. 2018, 24, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Raeisi, H.; Azimirad, M.; Asadzadeh Aghdaei, H.; Yadegar, A.; Zali, M.R. Rapid-format recombinant antibody-based methods for the diagnosis of Clostridioides difficile infection: Recent advances and perspectives. Front. Microbiol. 2022, 13, 1043214. [Google Scholar] [CrossRef]
- Lee, S.; Nanda, N.; Yamaguchi, K.; Lee, Y.; She, R.C. Clostridioides difficile Toxin B PCR Cycle Threshold as a Predictor of Toxin Testing in Stool Specimens from Hospitalized Adults. Antibiotics 2022, 11, 576. [Google Scholar] [CrossRef]
- Loderstädt, U.; Hagen, R.M.; Hahn, A.; Frickmann, H. New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections—ANarrative Mini-Review on Challenges in the Tropics. Trop. Med. Infect. Dis. 2021, 6, 96. [Google Scholar] [CrossRef]
- Larson, A.M.; Fung, A.M.; Fang, F.C. Evaluation of tcdB real-time PCR in a three-step diagnostic algorithm for detection of toxigenic Clostridium difficile. J. Clin. Microbiol. 2010, 48, 124–130. [Google Scholar] [CrossRef]
- O’Connor, D.; Hynes, P.; Cormican, M.; Collins, E.; Corbett-Feeney, G.; Cassidy, M. Evaluation of Methods for Detection of Toxins in Specimens of Feces Submitted for Diagnosis of Clostridium difficile-Associated Diarrhea. J. Clin. Microbiol. 2001, 39, 2846–2849. [Google Scholar] [CrossRef] [PubMed]
- Bocchetti, M.; Ferraro, M.G.; Melisi, F.; Grisolia, P.; Scrima, M.; Cossu, A.M.; Yau, T.O. Overview of current detection methods and microRNA potential in Clostridioides difficile infection screening. World J. Gastroenterol. 2023, 29, 3385–3399. [Google Scholar] [CrossRef] [PubMed]
- Crobach, M.J.; Planche, T.; Eckert, C.; Barbut, F.; Terveer, E.; Dekkers, O.; Wilcox, M.; Kuijper, E. European Society of Clinical Microbiology and Infectious Diseases: Update of the diagnostic guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 2016, 22 (Suppl. S4), S63–S81. [Google Scholar] [CrossRef]
- Gonzales-Luna, A.J.; Carlson, T.J.; Garey, K.W. Gut microbiota changes associated with Clostridioides difficile infection and its various treatment strategies. Gut Microbes 2023, 15, 2223345. [Google Scholar] [CrossRef] [PubMed]
- Herrera, G.; Paredes-Sabja, D.; Patarroyo, M.A.; Ramírez, J.D.; Muñoz, M. Updating changes in human gut microbial communities associated with Clostridioides difficile infection. Gut Microbes 2021, 13, 1966277. [Google Scholar] [CrossRef] [PubMed]
- Ooijevaar, R.E.; van Beurden, Y.H.; Terveer, E.M.; Goorhuis, A.; Bauer, M.P.; Keller, J.J.; Mulder, C.J.J.; Kuijper, E.J. Update of treatment algorithms for Clostridium difficile infection. Clin. Microbiol. Infect. 2018, 24, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Baines, S.D.; Saxton, K.; Wilcox, M.H. Effect of metronidazole on growth and toxin production by epidemic Clostridium difficile PCR ribotypes 001 and 027 in a human gut model. J. Antimicrob. Chemother. 2007, 60, 83–91. [Google Scholar] [CrossRef]
- Al-Nassir, W.N.; Sethi, A.K.; Nerandzic, M.M.; Bobulsky, G.S.; Jump, R.L.; Donskey, C.J. Comparison of clinical and microbiological response to treatment of Clostridium difficile-associated disease with metronidazole and vancomycin. Clin. Infect. Dis. 2008, 47, 56–62. [Google Scholar] [CrossRef]
- Gonzales-Luna, A.J.; Olaitan, A.O.; Shen, W.J.; Deshpande, A.; Carlson, T.J.; Dotson, K.M.; Lancaster, C.; Begum, K.; Alam, M.J.; Hurdle, J.G.; et al. Reduced Susceptibility to Metronidazole Is Associated with Initial Clinical Failure in Clostridioides difficile Infection. Open Forum Infect. Dis. 2021, 8, ofab365. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Howe, R. Diarrhoea caused by Clostridium difficile: Response time for treatment with metronidazole and vancomycin. J. Antimicrob. Chemother. 1995, 36, 673–679. [Google Scholar] [CrossRef]
- Tieu, J.D.; Schmidt, S.A.; Miller, J.L.; Kupiec, K.E.; Skrepnek, G.H.; Liu, C.; Smith, W.J. Clostridium difficile treatment in neutropenic patients: Clinical outcomes of metronidazole, vancomycin, combinations, and switch therapy. J. Oncol. Pharm. Pract. 2019, 25, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Korayem, G.B.; Eljaaly, K.; Matthias, K.R.; Zangeneh, T.T. Oral Vancomycin Monotherapy Versus Combination Therapy in Solid Organ Transplant Recipients with Uncomplicated Clostridium difficile Infection: A Retrospective Cohort Study. Transplant. Proc. 2018, 50, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lu, L.; Lin, Y.; Wang, M.; Liu, X. Efficacy and Safety of Metronidazole Monotherapy versus Vancomycin Monotherapy or Combination Therapy in Patients with Clostridium difficile Infection: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0137252. [Google Scholar] [CrossRef] [PubMed]
- Louie, T.J.; Cannon, K.; Byrne, B.; Emery, J.; Ward, L.; Eyben, M.; Krulicki, W. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S132–S142. [Google Scholar] [CrossRef] [PubMed]
- Warren, C.A.; van Opstal, E.J.; Riggins, M.S.; Li, Y.; Moore, J.H.; Kolling, G.L.; Guerrant, R.L.; Hoffman, P.S. Vancomycin treatment’s association with delayed intestinal tissue injury, clostridial overgrowth, and recurrence of Clostridium difficile infection in mice. Antimicrob. Agents Chemother. 2013, 57, 689–696. [Google Scholar] [CrossRef]
- Louie, T.J.; Miller, M.A.; Mullane, K.M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach, S.; Sears, P.; Shue, Y.-K. Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 2011, 364, 422–431. [Google Scholar] [CrossRef]
- Cornely, O.A.; Crook, D.W.; Esposito, R.; Poirier, A.; Somero, M.S.; Weiss, K.; Sears, P.; Gorbach, S. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: A double-blind, non-inferiority, randomised controlled trial. Lancet Infect. Dis. 2012, 12, 281–289. [Google Scholar] [CrossRef]
- Nelson, R.L.; Suda, K.J.; Evans, C.T. Antibiotic treatment for Clostridium difficile-associated diarrhoea in adults. Cochrane Database Syst. Rev. 2017, 3, CD004610. [Google Scholar] [CrossRef]
- Cornely, O.A.; Miller, M.A.; Louie, T.J.; Crook, D.W.; Gorbach, S.L. Treatment of first recurrence of Clostridium difficile infection: Fidaxomicin versus vancomycin. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S154–S161. [Google Scholar] [CrossRef]
- Figueroa, I.; Johnson, S.; Sambol, S.P.; Goldstein, E.J.; Citron, D.M.; Gerding, D.N. Relapse versus reinfection: Recurrent Clostridium difficile infection following treatment with fidaxomicin or vancomycin. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S104–S109. [Google Scholar] [CrossRef]
- Hempel, S.; Newberry, S.J.; Maher, A.R.; Wang, Z.; Miles, J.N.V.; Shanman, R.; Johnsen, B.; Shekelle, P.G. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA 2012, 307, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.L.; Kelsey, P.; Leeman, H.; Meardon, N.; Patel, H.; Paul, K.; Rees, R.; Taylor, B.; Wood, E.; Malakun, R. Antibiotic treatment for Clostridium difficile-associated diarrhea in adults. Cochrane Database Syst. Rev. 2011, 9, CD004610. [Google Scholar] [CrossRef]
- Markham, A. Bezlotoxumab: First Global Approval. Drugs 2016, 76, 1793–1798. [Google Scholar] [CrossRef]
- Gerding, D.N.; Kelly, C.P.; Rahav, G.; Lee, C.; Dubberke, E.R.; Kumar, P.N.; Yacyshyn, B.; Kao, D.; Eves, K.; Ellison, M.C.; et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection in Patients at Increased Risk for Recurrence. Clin. Infect. Dis. 2018, 67, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, M.H.; Gerding, D.N.; Poxton, I.R.; Kelly, C.; Nathan, R.; Birch, T.; Cornely, O.A.; Rahav, G.; Bouza, E.; Lee, C.; et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N. Engl. J. Med. 2017, 376, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Bouza, E.; Cornely, O.A.; Ramos-Martinez, A.; Plesniak, R.; Ellison, M.C.; Hanson, M.E.; Dorr, M.B. Analysis of C. difficile infection-related outcomes in European participants in the bezlotoxumab MODIFY I and II trials. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1933–1939. [Google Scholar] [CrossRef]
- Mikamo, H.; Aoyama, N.; Sawata, M.; Fujimoto, G.; Dorr, M.B.; Yoshinari, T. The effect of bezlotoxumab for prevention of recurrent Clostridium difficile infection (CDI) in Japanese patients. J. Infect. Chemother. 2018, 24, 123–129. [Google Scholar] [CrossRef]
- Ramsay, I.; Brown, N.M.; Enoch, D.A. Recent Progress for the Effective Prevention and Treatment of Recurrent Clostridium difficile Infection. Infect. Dis. (Auckl.) 2018, 11, 1178633718758023. [Google Scholar] [CrossRef]
- Escobar, G.J.; Baker, J.M.; Kipnis, P.; Greene, J.D.; Mast, T.C.; Gupta, S.B.; Cossrow, N.; Mehta, V.; Liu, V.; Dubberke, E.R. Prediction of Recurrent Clostridium Difficile Infection Using Comprehensive Electronic Medical Records in an Integrated Healthcare Delivery System. Infect. Control Hosp. Epidemiol. 2017, 38, 1196–1203. [Google Scholar] [CrossRef]
- Li, X.; Gao, X.; Hu, H.; Xiao, Y.; Li, D.; Yu, G.; Yu, D.; Zhang, T.; Wang, Y. Clinical Efficacy and Microbiome Changes Following Fecal Microbiota Transplantation in Children with Recurrent Clostridium Difficile Infection. Front. Microbiol. 2018, 9, 2622. [Google Scholar] [CrossRef]
- Shao, T.; Hsu, R.; Hacein-Bey, C.; Zhang, W.; Gao, L.; Kurth, M.J.; Zhao, H.; Shuai, Z.; Leung, P.S.C. The Evolving Landscape of Fecal Microbial Transplantation. Clin. Rev. Allergy Immunol. 2023, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.C.; Vatanen, T.; Cutfield, W.S.; O’Sullivan, J.M. The Super-Donor Phenomenon in Fecal Microbiota Transplantation. Front. Cell Infect. Microbiol. 2019, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Seekatz, A.M.; Safdar, N.; Khanna, S. The role of the gut microbiome in colonization resistance and recurrent Clostridioides difficile infection. Ther. Adv. Gastroenterol. 2022, 15, 17562848221134396. [Google Scholar] [CrossRef] [PubMed]
- Tijerina-Rodríguez, L.; Villarreal-Treviño, L.; Morfín-Otero, R.; Camacho-Ortíz, A.; Garza-González, E. Virulence Factors of Clostridioides (Clostridium) difficile Linked to Recurrent Infections. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 7127850. [Google Scholar] [CrossRef]
- Jain, N.; Umar, T.P.; Fahner, A.F.; Gibietis, V. Advancing therapeutics for recurrent Clostridioides difficile infections: An overview of vowst’s FDA approval and implications. Gut Microbes 2023, 15, 2232137. [Google Scholar] [CrossRef]
- van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; De Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.W.M.; Tijssen, J.G.P.; et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 407–415. [Google Scholar] [CrossRef]
- Song, L. Toward Understanding Microbial Ecology to Restore a Degraded Ecosystem. Int. J. Environ. Res. Public Health 2023, 20, 4647. [Google Scholar] [CrossRef]
- Surawicz, C.M.; Brandt, L.J.; Binion, D.G.; Ananthakrishnan, A.N.; Curry, S.R.; Gilligan, P.H.; McFarland, L.V.; Mellow, M.; Zuckerbraun, B.S. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 2013, 108, 478–499. [Google Scholar] [CrossRef]
- Eaton, S.R.; Mazuski, J.E. Overview of severe Clostridium difficile infection. Crit. Care Clin. 2013, 29, 827–839. [Google Scholar] [CrossRef]
- Lee, J.C.; Hung, Y.P.; Tsai, B.Y.; Tsai, P.J.; Ko, W.C. Severe Clostridium difficile infections in intensive care units: Diverse clinical presentations. J. Microbiol. Immunol. Infect. 2021, 54, 1111–1117. [Google Scholar] [CrossRef]
- Kaiser, A.M.; Hogen, R.; Bordeianou, L.; Alavi, K.; Wise, P.E.; Sudan, R. Clostridium Difficile Infection from a Surgical Perspective. J. Gastrointest. Surg. 2015, 19, 1363–1377. [Google Scholar] [CrossRef] [PubMed]
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Di Bella, S.; McFarland, L.V.; Khanna, S.; Furuya-Kanamori, L.; Abuzeid, N.; Abu-Zidan, F.M.; Ansaloni, L.; Augustin, G.; Bala, M.; et al. 2019 update of the WSES guidelines for management of Clostridioides (Clostridium) difficile infection in surgical patients. World J. Emerg. Surg. 2019, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Czepiel, J.; Biesiada, G.; Dróżdż, M.; Gdula-Argasińska, J.; Żurańska, J.; Marchewka, J.; Perucki, W.; Wołkow, P.; Garlicki, A. The presence of IL-8 +781 T/C polymorphism is associated with the parameters of severe Clostridium difficile infection. Microb. Pathog. 2018, 114, 281–285. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef]
- Vaishnavi, C. Clinical spectrum & pathogenesis of Clostridium difficile associated diseases. Indian J. Med. Res. 2010, 131, 487–499. [Google Scholar]
- Mullane, K.M.; Miller, M.A.; Weiss, K.; Lentnek, A.; Golan, Y.; Sears, P.S.; Shue, Y.-K.; Louie, T.J.; Gorbach, S.L. Efficacy of fidaxomicin versus vancomycin as therapy for Clostridium difficile infection in individuals taking concomitant antibiotics for other concurrent infections. Clin. Infect. Dis. 2011, 53, 440. [Google Scholar] [CrossRef]
- Hu, M.Y.; Katchar, K.; Kyne, L.; Maroo, S.; Tummala, S.; Dreisbach, V.; Xu, H.; Leffler, D.A.; Kelly, C.P. Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology 2009, 136, 1206–1214. [Google Scholar] [CrossRef]
- Czepiel, J.; Kędzierska, J.; Biesiada, G.; Birczyńska, M.; Perucki, W.; Nowak, P.; Garlicki, A. Epidemiology of Clostridium difficile infection: Results of a hospital-based study in Krakow, Poland. Epidemiol. Infect. 2015, 143, 3235–3243. [Google Scholar] [CrossRef]
- Mattana, M.; Tomasello, R.; Cammarata, C.; Di Carlo, P.; Fasciana, T.; Giordano, G.; Lucchesi, A.; Siragusa, S.; Napolitano, M. Clostridium difficile Induced Inflammasome Activation and Coagulation Derangements. Microorganisms 2022, 10, 1624. [Google Scholar] [CrossRef]
- Lu, A.; Wu, H. Structural mechanisms of inflammasome assembly. FEBS J. 2015, 282, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Yang, J.; Liu, W.; Wang, Y.; Shao, F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc. Natl. Acad. Sci. USA 2016, 113, E4857–E4866. [Google Scholar] [CrossRef] [PubMed]
- Kanneganti, A.; Malireddi, R.K.S.; Saavedra, P.H.V.; Vande Walle, L.; Van Gorp, H.; Kambara, H.; Tillman, H.; Vogel, P.; Luo, H.R.; Xavier, R.J.; et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J. Exp. Med. 2018, 215, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Yang, Y.; Wang, Q.I.; Li, M.; Tian, C.; Liu, Y.; Aung, L.H.H.; Li, P.F.; Yu, T.; Chu, X.M. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A. Live strong and prosper: The importance of skeletal muscle strength for healthy ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Owings, M.; Jernigan, D.B. Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. Emerg. Infect. Dis. 2006, 12, 409–415. [Google Scholar] [CrossRef]
- Smith, L.C.; Ratard, R. Clostridium difficile hospitalizations in Louisiana: A 10-year review. J. La. State Med. Soc. 2011, 163, 192–195. [Google Scholar]
- Soler, P.; Nogareda, F.; Cano, R. Rates of Clostridium difficile infection in patients discharged from Spanish hospitals, 1997–2005. Infect Control Hosp. Epidemiol. 2008, 29, 887–889. [Google Scholar] [CrossRef]
- Cioni, G.; Viale, P.; Frasson, S.; Cipollini, F.; Menichetti, F.; Petrosillo, N.; Brunati, S.; Spigaglia, P.; Vismara, C.; Bielli, A.; et al. Epidemiology and outcome of Clostridium difficile infections in patients hospitalized in Internal Medicine: Findings from the nationwide FADOI-PRACTICE study. BMC Infect. Dis. 2016, 16, 656. [Google Scholar] [CrossRef]
- Visconti, V.; Brunetti, G.; Cuomo, M.R.; Giordano, A.; Raponi, G. Nosocomial-acquired and community-onset Clostridium difficile infection at an academic hospital in Italy: Epidemiology, recurrences and toxin genes distribution. J. Infect. Chemother. 2017, 23, 763–768. [Google Scholar] [CrossRef]
- Granata, G.; Bartoloni, A.; Codeluppi, M.; Contadini, I.; Cristini, F.; Fantoni, M.; Ferraresi, A.; Fornabaio, C.; Grasselli, S.; Lagi, F.; et al. The Burden of Clostridioides difficile Infection during the COVID-19 Pandemic: A Retrospective Case-Control Study in Italian Hospitals (CloVid). J. Clin. Med. 2020, 9, 3855. [Google Scholar] [CrossRef] [PubMed]
- Justice, S.; Sewell, D.K.; Li, H.; Miller, A.C.; Polgreen, P.M. Evidence of within-facility patient-patient Clostridiodes difficile infection spread across diverse settings. Epidemiol. Infect. 2022, 151, e4. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Severe Clostridium difficile-associated disease in populations previously at low risk—Four states, 2005. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 1201–1205. [Google Scholar]
- Pituch, H. Clostridium difficile is no longer just a nosocomial infection or an infection of adults. Int. J. Antimicrob. Agents 2009, 33 (Suppl. S1), S42–S45. [Google Scholar] [CrossRef]
- Vonberg, R.P.; Kuijper, E.J.; Wilcox, M.H.; Barbut, F.; Tüll, P.; Gastmeier, P.; Broek, P.v.D.; Colville, A.; Coignard, B.; Daha, T.; et al. Infection control measures to limit the spread of Clostridium difficile. Clin. Microbiol. Infect. 2008, 14 (Suppl. S5), 2–20. [Google Scholar] [CrossRef]
- Ragusa, R.; Giorgianni, G.; Lupo, L.; Sciacca, A.; Rametta, S.; La Verde, M.; Mulè, S.; Marranzano, M. Healthcare-associated Clostridium difficile infection: Role of correct hand hygiene in cross-infection control. J. Prev. Med. Hyg. 2018, 59, E145–E152. [Google Scholar] [PubMed]
- al-Barrak, A.; Embil, J.; Dyck, B.; Olekson, K.; Nicoll, D.; Alfa, M.; Kabani, A. An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. Can. Commun. Dis. Rep. 1999, 25, 65–69. [Google Scholar] [PubMed]
- Mohan, S.S.; McDermott, B.P.; Parchuri, S.; Cunha, B.A. Lack of value of repeat stool testing for Clostridium difficile toxin. Am. J. Med. 2006, 119, 356.e7–356.e8. [Google Scholar] [CrossRef]
- Wright, J.R.; Ly, T.T.; Brislawn, C.J.; See, J.R.C.; Anderson, S.L.C.; Pellegrino, J.T.; Peachey, L.; Walls, C.Y.; Bess, J.A.; Bailey, A.L.; et al. cleanSURFACES® intervention reduces microbial activity on surfaces in a senior care facility. Front. Cell. Infect. Microbiol. 2022, 12, 1040047. [Google Scholar] [CrossRef]
- Pittet, D.; Allegranzi, B.; Sax, H.; Dharan, S.; Pessoa-Silva, C.L.; Donaldson, L.; Boyce, J.M. Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect. Dis. 2006, 6, 641–652. [Google Scholar] [CrossRef]
- Cartmill, T.D.; Panigrahi, H.; Worsley, M.A.; McCann, D.C.; Nice, C.N.; Keith, E. Management and control of a large outbreak of diarrhoea due to Clostridium difficile. J. Hosp. Infect. 1994, 27, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Lao, Y.; Qiu, X.; Liu, K.; Zhuang, Y.; Gong, X.; Wang, P. Effects of the Implementation of Intelligent Technology for Hand Hygiene in Hospitals: Systematic Review and Meta-analysis. J. Med. Internet Res. 2023, 25, e37249. [Google Scholar] [CrossRef]
- Khan, S.; Tsang, K.K.; Hu, Z.J.; Mostowiak, B.; El Helou, S.; Science, M.; Kaufman, D.; Pernica, J.; Thabane, L.; Mertz, D.; et al. GloveCare: A pilot study in preparation for a cluster crossover randomized controlled trial of non-sterile glove-based care in preventing late-onset infection in the NICU. Pilot Feasibility Stud. 2023, 9, 50. [Google Scholar] [CrossRef]
- Simecka, J.W.; Fulda, K.G.; Pulse, M.; Lee, J.-H.; Vitucci, J.; Nguyen, P.; Taylor, P.; Filipetto, F.; Espinoza, A.M.; Sharma, S. Primary care clinics can be a source of exposure to virulent Clostridium (now Clostridioides) difficile: An environmental screening study of hospitals and clinics in Dallas-Fort Worth region. PLoS ONE 2019, 14, e0220646. [Google Scholar] [CrossRef]
- Carling, P.C.; O’Hara, L.M.; Harris, A.D.; Olmsted, R. Mitigating hospital-onset Clostridioides difficile: The impact of an optimized environmental hygiene program in eight hospitals. Infect. Control Hosp. Epidemiol. 2023, 44, 440–446. [Google Scholar] [CrossRef]
- Turner, N.A.; Anderson, D.J. Hospital Infection Control: Clostridioides difficile. Clin. Colon. Rectal Surg. 2020, 33, 98–108. [Google Scholar] [CrossRef]
- Cofini, V.; Muselli, M.; Gentile, A.; Lucarelli, M.; Lepore, A.R.; Micolucci, G.; Necozione, S. Clostridium difficile outbreak: Epidemiological surveillance, infection prevention and control. J. Prev. Med. Hyg. 2021, 62, E514–E519. [Google Scholar] [CrossRef]
- Nadeau, E.; Mercier, A.; Perron, J.; Gilbert, M.; Nault, V.; Beaudoin, M.; Chakra, C.N.A.; Valiquette, L.; Carignan, A. Clinical impact of accepting or rejecting a recommendation from a clinical decision support system-assisted antibiotic stewardship program. J. Assoc. Med. Microbiol. Infect. Dis. Can. 2021, 6, 85–93. [Google Scholar] [CrossRef]
- Langford, B.J.; Nisenbaum, R.; Brown, K.A.; Chan, A.; Downing, M. Antibiotics: Easier to start than to stop? Predictors of antimicrobial stewardship recommendation acceptance. Clin. Microbiol. Infect. 2020, 26, 1638–1643. [Google Scholar] [CrossRef]
- Piacenti, F.J.; Leuthner, K.D. Antimicrobial stewardship and Clostridium difficile-associated diarrhea. J. Pharm. Pract. 2013, 26, 506–513. [Google Scholar] [CrossRef]
- Núñez-Núñez, M.; Perez-Galera, S.; Girón-Ortega, J.A.; Fernández-Del-Castillo, S.S.; Beltrán-García, M.; De Cueto, M.; Suárez-Barrenechea, A.I.; Palacios-Baena, Z.R.; Terol-Barrero, P.; Oltra-Hostalet, F.; et al. Predictors of inappropriate antimicrobial prescription: Eight-year point prevalence surveys experience in a third level hospital in Spain. Front. Pharmacol. 2022, 13, 1018158. [Google Scholar] [CrossRef]
- Yun, J.H.; Park, G.E.; Ki, H.K. Correlation between antibiotic consumption and the incidence of healthcare facility-onset Clostridioides difficile infection: A retrospective chart review and analysis. Antimicrob. Resist. Infect. Control. 2021, 10, 117. [Google Scholar] [CrossRef]
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018, 9, 1963. [Google Scholar] [CrossRef]
- Klugman, K.P.; Black, S. Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects. Proc. Natl. Acad. Sci. USA 2018, 115, 12896–12901. [Google Scholar] [CrossRef]
- Yemeke, T.; Chen, H.H.; Ozawa, S. Economic and cost-effectiveness aspects of vaccines in combating antibiotic resistance. Hum. Vaccin. Immunother. 2023, 19, 2215149. [Google Scholar] [CrossRef]
- Martin, J.S.; Monaghan, T.M.; Wilcox, M.H. Clostridium difficile infection: Epidemiology, diagnosis and understanding transmission. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 206–216. [Google Scholar] [CrossRef]
- Bolton, D.; Marcos, P. The Environment, Farm Animals and Foods as Sources of Clostridioides difficile Infection in Humans. Foods 2023, 12, 1094. [Google Scholar] [CrossRef]
- al Saif, N.; Brazier, J.S. The distribution of Clostridium difficile in the environment of South Wales. J. Med. Microbiol. 1996, 45, 133–137. [Google Scholar] [CrossRef]
- Blau, K.; Gallert, C. Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces. Antibiotics 2023, 12, 162. [Google Scholar] [CrossRef]
- Dubberke, E.R.; Han, Z.; Bobo, L.; Hink, T.; Lawrence, B.; Copper, S.; Hoppe-Bauer, J.; Burnham, C.-A.D.; Dunne, W.M. Impact of clinical symptoms on interpretation of diagnostic assays for Clostridium difficile infections. J. Clin. Microbiol. 2011, 49, 2887–2893. [Google Scholar] [CrossRef]
- Goldenberg, S.D.; French, G.L. Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile. J. Infect. 2011, 62, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Bacci, S.; Mølbak, K.; Kjeldsen, M.K.; Olsen, K.E. Binary toxin and death after Clostridium difficile infection. Emerg. Infect. Dis. 2011, 17, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Meléndez, A.; Cruz-López, F.; Morfin-Otero, R.; Maldonado-Garza, H.J.; Garza-González, E. An Update on Clostridioides difficile Binary Toxin. Toxins 2022, 14, 305. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.K.J.; Unnikrishnan, M. Clostridioides difficile infection: Traversing host-pathogen interactions in the gut. Microbiology 2023, 169, 001306. [Google Scholar] [CrossRef]
- Huang, H.; Fang, H.; Weintraub, A.; Nord, C.E. Distinct ribotypes and rates of antimicrobial drug resistance in Clostridium difficile from Shanghai and Stockholm. Clin. Microbiol. Infect. 2009, 15, 1170–1173. [Google Scholar] [CrossRef]
- Guerrero, D.M.; Chou, C.; Jury, L.A.; Nerandzic, M.M.; Cadnum, J.C.; Donskey, C.J. Clinical and infection control implications of Clostridium difficile infection with negative enzyme immunoassay for toxin. Clin. Infect. Dis. 2011, 53, 287–290. [Google Scholar] [CrossRef]
- Lim, S.K.; Stuart, R.L.; Mackin, K.E.; Carter, G.P.; Kotsanas, D.; Francis, M.J.; Easton, M.; Dimovski, K.; Elliott, B.; Riley, T.V.; et al. Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin. Infect. Dis. 2014, 58, 1723–1730. [Google Scholar] [CrossRef]
- Yip, C.; Phan, J.R.; Abel-Santos, E. Mechanism of germination inhibition of Clostridioides difficile spores by an aniline substituted cholate derivative (CaPA). J. Antibiot. 2023, 76, 335–345. [Google Scholar] [CrossRef]
- Janarthanan, S.; Ditah, I.; Adler, D.G.; Ehrinpreis, M.N. Clostridium difficile-associated diarrhea and proton pump inhibitor therapy: A meta-analysis. Am. J. Gastroenterol. 2012, 107, 1001–1010. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Zhang, Q.; Yu, L.; Chen, W.; Xue, Y.; Zhai, Q. Meta-analysis of the effects of proton pump inhibitors on the human gut microbiota. BMC Microbiol. 2023, 23, 171. [Google Scholar] [CrossRef]
- Tleyjeh, I.M.; Bin Abdulhak, A.A.; Riaz, M.; Alasmari, F.A.; Garbati, M.A.; AlGhamdi, M.; Khan, A.R.; Al Tannir, M.; Erwin, P.J.; Ibrahim, T.; et al. Association between proton pump inhibitor therapy and clostridium difficile infection: A contemporary systematic review and meta-analysis. PLoS ONE 2012, 7, e50836. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Martínez, R.; Cauli, O. Lymphocytes as a Biomarker of Frailty Syndrome: A Scoping Review. Diseases 2021, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Szaraz-Szeles, M.; Mezei, Z.; Barath, S.; Hevessy, Z. Age-dependent frequency of unconventional T cells in a healthy adult Caucasian population: A combinational study of invariant natural killer T cells, γδ T cells, and mucosa-associated invariant T cells. Geroscience 2022, 44, 2047–2060. [Google Scholar] [CrossRef] [PubMed]
- Pfister, G.; Savino, W. Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective. Neuroimmunomodulation 2008, 15, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Farber, D.L. The Role of the Thymus in the Immune Response. Thorac. Surg. Clin. 2019, 29, 123–131. [Google Scholar] [CrossRef]
- Budamagunta, V.; Foster, T.C.; Zhou, D. Cellular senescence in lymphoid organs and immunosenescence. Aging 2021, 13, 19920–19941. [Google Scholar] [CrossRef]
- Abd El-Kader, S.M.; Al-Shreef, F.M. Inflammatory cytokines and immune system modulation by aerobic versus resisted exercise training for elderly. Afr. Health Sci. 2018, 18, 120–131. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Yan, Y.; Yang, Y.; Shang, X.; Li, Y. Clinical Significance of Pro-inflammatory Cytokines and Their Correlation with Disease Severity and Blood Coagulation in Septic Patients with Bacterial Co-infection. Shock 2021, 56, 396–402. [Google Scholar] [CrossRef]
- Borrás, C. The Challenge of Unlocking the Biological Secrets of Aging. Front. Aging 2021, 2, 676573. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Salazar, N.; Valdés-Varela, L.; González, S.; Gueimonde, M.; de Los Reyes-Gavilán, C.G. Nutrition and the gut microbiome in the elderly. Gut Microbes 2017, 8, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Ciarambino, T.; Crispino, P.; Minervini, G.; Giordano, M. Vitamin D: Can Gender Medicine Have a Role? Biomedicines 2023, 11, 1762. [Google Scholar] [CrossRef] [PubMed]
- Untersmayr, E.; Brandt, A.; Koidl, L.; Bergheim, I. The Intestinal Barrier Dysfunction as Driving Factor of Inflammaging. Nutrients 2022, 14, 949. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D. Malnutrition in older adults—Urgent need for action: A plea for improving the nutritional situation of older adults. Gerontology 2013, 59, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Sella-Weiss, O. Association between swallowing function, malnutrition and frailty in community dwelling older people. Clin. Nutr. ESPEN 2021, 45, 476–485. [Google Scholar] [CrossRef]
- Seesen, M.; Sirikul, W.; Ruangsuriya, J.; Griffiths, J.; Siviroj, P. Cognitive Frailty in Thai Community-Dwelling Elderly: Prevalence and Its Association with Malnutrition. Nutrients 2021, 13, 4239. [Google Scholar] [CrossRef]
- Sugimoto, T.; Sakurai, T.; Ono, R.; Kimura, A.; Saji, N.; Niida, S.; Toba, K.; Chen, L.-K.; Arai, H. Epidemiological and clinical significance of cognitive frailty: A mini review. Ageing Res. Rev. 2018, 44, 1–7. [Google Scholar] [CrossRef]
- Verlaan, S.; Ligthart-Melis, G.C.; Wijers, S.L.J.; Cederholm, T.; Maier, A.B.; de van der Schueren, M.A.E. High Prevalence of Physical Frailty Among Community-Dwelling Malnourished Older Adults—ASystematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2017, 18, 374–382. [Google Scholar] [CrossRef]
- Amarya, S.; Sinhg, H.; Sabharwalh, M. Changes during ageind and their association with malnutrition. J. Clin. Gerontol. Geriatr. 2015, 6, 78–84. [Google Scholar] [CrossRef]
- Zhuang, H.; Karvinen, S.; Törmäkangas, T.; Zhang, X.; Ojanen, X.; Velagapudi, V.; Alen, M.; Britton, S.L.; Koch, L.G.; Kainulainen, H.; et al. Interactive effects of aging and aerobic capacity on energy metabolism-related metabolites of serum, skeletal muscle, and white adipose tissue. Geroscience 2021, 43, 2679–2691. [Google Scholar] [CrossRef]
- Crow, R.S.; Petersen, C.L.; Cook, S.B.; Stevens, C.J.; Titus, A.J.; Mackenzie, T.A.; Batsis, J.A. Reported Weight Change in Older Adults and Presence of Frailty. J. Frailty Aging 2020, 9, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Li, S.; Xu, F.; Han, D.; Wang, H.; Huang, T.; Yin, H.; Lyu, J. The relationship between hematocrit and serum albumin levels difference and mortality in elderly sepsis patients in intensive care units—Aretrospective study based on two large databases. BMC Infect. Dis. 2022, 22, 629. [Google Scholar] [CrossRef] [PubMed]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Si, H.; Du, H.; Guo, H.; Dai, H.; Xu, S.; Wan, J. Comparison of gut microbiota structure and Actinobacteria abundances in healthy young adults and elderly subjects: A pilot study. BMC Microbiol. 2021, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.B.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
- Salazar, N.; Arboleya, S.; Valdés, L.; Stanton, C.; Ross, P.; Ruiz, L.; Gueimonde, M.; de los Reyes-Gavilán, C.G. The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Front. Genet. 2014, 5, 406. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Woodmansey, E.J.; McMurdo, M.E.; Macfarlane, G.T.; Macfarlane, S. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl. Environ. Microbiol. 2004, 70, 6113–6122. [Google Scholar] [CrossRef]
- Jackson, M.A.; Jeffery, I.B.; Beaumont, M.; Bell, J.T.; Clark, A.G.; Ley, R.E.; O’Toole, P.W.; Spector, T.D.; Steves, C.J. Signatures of early frailty in the gut microbiota. Genome Med. 2016, 8, 8. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, J.; Chen, Q.; Chen, M.; Kuang, Y.; Chen, L.; He, W. Characterization of the gut microbiota in frail elderly patients. Aging Clin. Exp. Res. 2020, 32, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Kociolek, L.K.; Gerding, D.N. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Cai, H.F.; Wang, Z.H.; Xu, J.; Fang, J.Y. Systematic review with meta-analysis: Long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment. Pharmacol. Ther. 2016, 43, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Jin, D.; Kim, H.B.; Stratton, C.W.; Wu, B.; Tang, Y.-W.; Sun, X. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2017, 55, 1998–2008. [Google Scholar] [CrossRef]
- Buddle, J.E.; Fagan, R.P. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023, 14, 2150452. [Google Scholar] [CrossRef]
- Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 2016, 3, 23–42. [Google Scholar] [CrossRef]
- Lawley, T.D.; Clare, S.; Walker, A.W.; Goulding, D.; Stabler, R.A.; Croucher, N.; Mastroeni, P.; Scott, P.; Raisen, C.; Mottram, L.; et al. Antibiotic treatment of clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 2009, 77, 3661–3669. [Google Scholar] [CrossRef]
- Britton, R.A.; Young, V.B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 2014, 146, 1547–1553. [Google Scholar] [CrossRef]
- Ducarmon, Q.R.; Zwittink, R.D.; Hornung, B.V.H.; van Schaik, W.; Young, V.B.; Kuijper, E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019, 83, e00007–e00019. [Google Scholar] [CrossRef]
- Winston, J.A.; Theriot, C.M. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe 2016, 41, 44–50. [Google Scholar] [CrossRef]
- Webb, B.J.; Subramanian, A.; Lopansri, B.; Goodman, B.; Jones, P.B.; Ferraro, J.; Stenehjem, E.; Brown, S.M. Antibiotic Exposure and Risk for Hospital-Associated Clostridioides difficile Infection. Antimicrob. Agents Chemother. 2020, 64, e02169-19. [Google Scholar] [CrossRef] [PubMed]
- Buffie, C.G.; Jarchum, I.; Equinda, M.; Lipuma, L.; Gobourne, A.; Viale, A.; Ubeda, C.; Xavier, J.; Pamer, E.G. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 2012, 80, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, P.; Barth, H.; Minton, N.; Aktories, K. Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. Adv. Exp. Med. Biol. 2018, 1050, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Peniche, A.G.; Savidge, T.C.; Dann, S.M. Recent insights into Clostridium difficile pathogenesis. Curr. Opin. Infect. Dis. 2013, 26, 447–453. [Google Scholar] [CrossRef]
- Bassotti, G.; Marchegiani, A.; Marconi, P.; Fettucciari, K. The cytotoxic synergy between Clostridioides difficile toxin B and proinflammatory cytokines: An unholy alliance favoring the onset of Clostridioides difficile infection and relapses. Microbiologyopen 2020, 9, e1061. [Google Scholar] [CrossRef]
- Lyerly, D.M.; Saum, K.E.; MacDonald, D.K.; Wilkins, T.D. Effects of Clostridium difficile toxins given intragastrically to animals. Infect. Immun. 1985, 47, 349–352. [Google Scholar] [CrossRef]
- Chen, S.; Sun, C.; Wang, H.; Wang, J. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins. Toxins 2015, 7, 5254–5267. [Google Scholar] [CrossRef]
- Carter, G.P.; Chakravorty, A.; Pham Nguyen, T.A.; Mileto, S.; Schreiber, F.; Li, L.; Howarth, P.; Clare, S.; Cunningham, B.; Sambol, S.P.; et al. Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections. MBio 2015, 6, e00551. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Fiusa, M.M.; Carvalho-Filho, M.A.; Annichino-Bizzacchi, J.M.; De Paula, E.V. Causes and consequences of coagulation activation in sepsis: An evolutionary medicine perspective. BMC Med. 2015, 13, 105. [Google Scholar] [CrossRef]
- Bishop, E.J.; Tiruvoipati, R. Management of Clostridioides difficile infection in adults and challenges in clinical practice: Review and comparison of current IDSA/SHEA, ESCMID and ASID guidelines. J. Antimicrob. Chemother. 2022, 78, 21–30. [Google Scholar] [CrossRef]
- Markovska, R.; Dimitrov, G.; Gergova, R.; Boyanova, L. Clostridioides difficile, a New “Superbug”. Microorganisms 2023, 11, 845. [Google Scholar] [CrossRef]
- Oliveira Paiva, A.M.; de Jong, L.; Friggen, A.H.; Smits, W.K.; Corver, J. The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface. J. Bacteriol. 2020, 202, e00771-19. [Google Scholar] [CrossRef]
- Rafey, A.; Jahan, S.; Farooq, U.; Akhtar, F.; Irshad, M.; Nizamuddin, S.; Parveen, A. Antibiotics Associated with Clostridium difficile Infection. Cureus 2023, 15, e39029. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, I.; Jakob, J.; Scheibel, J.; Hofmann, J.D.; Klawonn, F.; Neumann-Schaal, M.; Gerhard, R.; Bruder, D.; Jänsch, L. Clostridioides difficile Toxin CDT Induces Cytotoxic Responses in Human Mucosal-Associated Invariant T (MAIT) Cells. Front. Microbiol. 2021, 12, 752549. [Google Scholar] [CrossRef] [PubMed]
- Cowardin, C.A.; Buonomo, E.L.; Saleh, M.M.; Wilson, M.G.; Burgess, S.L.; Kuehne, S.A.; Schwan, C.; Eichhoff, A.M.; Koch-Nolte, F.; Lyras, D.; et al. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat. Microbiol. 2016, 1, 16108. [Google Scholar] [CrossRef] [PubMed]
- Soavelomandroso, A.P.; Gaudin, F.; Hoys, S.; Nicolas, V.; Vedantam, G.; Janoir, C.; Bouttier, S. Biofilm Structures in a Mono-Associated Mouse Model of Clostridium difficile Infection. Front. Microbiol. 2017, 8, 2086. [Google Scholar] [CrossRef] [PubMed]
- Taggart, M.G.; Snelling, W.J.; Naughton, P.J.; La Ragione, R.M.; Dooley, J.S.G.; Ternan, N.G. Biofilm regulation in Clostridioides difficile: Novel systems linked to hypervirulence. PLoS Pathog. 2021, 17, e1009817. [Google Scholar] [CrossRef]
- Frost, L.R.; Cheng, J.K.J.; Unnikrishnan, M. Clostridioides difficile biofilms: A mechanism of persistence in the gut? PLoS Pathog. 2021, 17, e1009348. [Google Scholar] [CrossRef]
- Arato, V.; Gasperini, G.; Giusti, F.; Ferlenghi, I.; Scarselli, M.; Leuzzi, R. Dual role of the colonization factor CD2831 in Clostridium difficile pathogenesis. Sci. Rep. 2019, 9, 5554. [Google Scholar] [CrossRef]
- Tulli, L.; Marchi, S.; Petracca, R.; Shaw, H.A.; Fairweather, N.F.; Scarselli, M.; Soriani, M.; Leuzzi, R. CbpA: A novel surface exposed adhesin of Clostridium difficile targeting human collagen. Cell. Microbiol. 2013, 15, 1674–1687. [Google Scholar] [CrossRef] [PubMed]
- Fagan, R.P.; Fairweather, N.F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 2014, 12, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.A.; Gebhart, D.; Buckley, A.M.; Lok, S.; Scholl, D.; Douce, G.R.; Govoni, G.R.; Fagan, R.P. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci. Transl. Med. 2017, 9, eaah6813. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.R.; Szabo, S.M.; Lozano-Ortega, G.; Lloyd-Smith, E.; Leung, V.; Lawrence, R.; Romney, M.G. Incidence and Costs of Clostridium difficile Infections in Canada. Open Forum Infect. Dis. 2015, 2, ofv076. [Google Scholar] [CrossRef]
- Food and Drug Administration. FDA Drug Safety Communication: Clostridium difficile-Associated Diarrhea Can Be Associated with Stomach Acid Drugs Known as Proton Pump Inhibitors PPIs. 2013. Available online: http://www.fda.gov/Drugs/DrugSafety/ucm290510.htm (accessed on 7 October 2013).
- Valiquette, L.; Cossette, B.; Garant, M.P.; Diab, H.; Pépin, J. Impact of a reduction in the use of high-risk antibiotics on the course of an epidemic of Clostridium difficile-associated disease caused by the hypervirulent NAP1/027 strain. Clin. Infect. Dis. 2007, 45 (Suppl. S2), S112–S121. [Google Scholar] [CrossRef]
- Zhang, S.; Palazuelos-Munoz, S.; Balsells, E.M.; Nair, H.; Chit, A.; Kyaw, M.H. Cost of hospital management of Clostridium difficile infection in United States—Ameta-analysis and modelling study. BMC Infect. Dis. 2016, 16, 447. [Google Scholar] [CrossRef]
- Foglia, G.; Shah, S.; Luxemburger, C.; Pietrobon, P.J. Clostridium difficile: Development of a novel candidate vaccine. Vaccine 2012, 30, 4307–4309. [Google Scholar] [CrossRef]
- Heimann, S.M.; Cruz Aguilar, M.R.; Mellinghof, S.; Vehreschild, M.J.G.T. Economic burden and cost-effective management of Clostridium difficile infections. Med. Mal. Infect. 2018, 48, 23–29. [Google Scholar] [CrossRef]
- Heimann, S.M.; Vehreschild, J.J.; Cornely, O.A.; Wisplinghoff, H.; Hallek, M.; Goldbrunner, R.; Böttiger, B.W.; Goeser, T.; Hölscher, A.; Baldus, S.; et al. Economic burden of Clostridium difficile associated diarrhoea: A cost-of-illness study from a German tertiary care hospital. Infection 2015, 43, 707–714. [Google Scholar] [CrossRef]
- Khadem, T.; Nguyen, M.; Bariola, J. Evaluation of fidaxomicin use in community hospitals after a clinical guideline change at a large health system and opportunities for stewardship. Infect. Control Hosp. Epidemiol. 2023, 44, 312–314. [Google Scholar] [CrossRef]
- Watt, M.; McCrea, C.; Johal, S.; Posnett, J.; Nazir, J. A cost-effectiveness and budget impact analysis of first-line fidaxomicin for patients with Clostridium difficile infection (CDI) in Germany. Infection 2016, 44, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, D.; Cornely, O.A.; Van Engen, A.K.; Odufowora-Sita, O.; Retsa, P.; Odeyemi, I.A. Cost-effectiveness analysis of fidaxomicin versus vancomycin in Clostridium difficile infection. J. Antimicrob. Chemother. 2014, 69, 2901–2912. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Lavoie, L.; Goetghebeur, M. Clinical and economic consequences of vancomycin and fidaxomicin for the treatment of Clostridium difficile infection in Canada. Can. J. Infect. Dis. Med. Microbiol. = J. Can. Mal. Infect. Microbiol. Medicale 2014, 25, 87–94. [Google Scholar] [CrossRef]
- Varier, R.U.; Biltaji, E.; Smith, K.J.; Roberts, M.S.; Jensen, M.K.; LaFleur, J.; Nelson, R.E. Cost-effectiveness analysis of treatment strategies for initial Clostridium difficile infection. Clin. Microbiol. Infect. 2014, 20, 1343–1351. [Google Scholar] [CrossRef]
- Varier, R.; Biltaji, E.; Smith, K.; Roberts, M.; Kyle Jensen, M.; LaFleur, J.; Nelson, R. Cost-Effectiveness Analysis of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Infect. Control Hosp. Epidemiol. 2015, 36, 438–444. [Google Scholar] [CrossRef]
- Merlo, G.; Graves, N.; Brain, D.; Connelly, L.B. Economic evaluation of fecal microbiota transplantation for the treatment of recurrent Clostridium difficile infection in Australia. J. Gastroenterol. Hepatol. 2016, 31, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Konijeti, G.G.; Sauk, J.; Shrime, M.G.; Gupta, M.; Ananthakrishnan, A.N. Cost-effectiveness of competing strategies for management of recurrent Clostridium difficile infection: A decision analysis. Clin. Infect. Dis. 2014, 58, 1507–1514. [Google Scholar] [CrossRef]
- Lapointe-Shaw, L.; Tran, K.L.; Coyte, P.C.; Hancock-Howard, R.L.; Powis, J.; Poutanen, S.M.; Hota, S. Cost-effectiveness analysis of six strategies to treat recurrent Clostridium difficile infection. PLoS ONE 2016, 11, e0149521. [Google Scholar] [CrossRef]
- Baro, E.; Galperine, T.; Denies, F.; Lannoy, D.; Lenne, X.; Odou, P.; Guery, B.; Dervaux, B. Cost-effectiveness analysis of five competing strategies for the management of multiple recurrent community-onset Clostridium difficile infection in France. PLoS ONE 2017, 12, e0170258. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crispino, P. Clustering Disease of Clostridioides Difficile Infection: Implication for the Management in Internal Medicine. Microbiol. Res. 2023, 14, 1376-1397. https://doi.org/10.3390/microbiolres14030094
Crispino P. Clustering Disease of Clostridioides Difficile Infection: Implication for the Management in Internal Medicine. Microbiology Research. 2023; 14(3):1376-1397. https://doi.org/10.3390/microbiolres14030094
Chicago/Turabian StyleCrispino, Pietro. 2023. "Clustering Disease of Clostridioides Difficile Infection: Implication for the Management in Internal Medicine" Microbiology Research 14, no. 3: 1376-1397. https://doi.org/10.3390/microbiolres14030094
APA StyleCrispino, P. (2023). Clustering Disease of Clostridioides Difficile Infection: Implication for the Management in Internal Medicine. Microbiology Research, 14(3), 1376-1397. https://doi.org/10.3390/microbiolres14030094