Automated Protocol for Monitoring Droplets and Fomites on Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Manual DNA Extraction
2.3. Automated DNA Extraction
2.4. DNA Yield and Purity
2.5. Analysis of mfDNA by Multiplex Real-Time PCR and Data Interpretation
2.6. 16S rDNA Amplicon Sequencing Analysis
2.7. Bioinformatic Analysis
2.8. Statistical Analysis
3. Results
3.1. Protocol Aims and Main Steps
3.2. Interlaboratory Validation of the qPCR Approach
3.3. Comparison Manual and Automated Protocol
3.3.1. Yield and Quality of Extracted Nucleic Acids
3.3.2. Comparison by Real-Time PCR between the Two Extraction Methods
3.3.3. Comparison of 16S rRNA Amplicon Sequencing between Two DNA Extraction Methods
3.3.4. Beta-Diversity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation (WHO). Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations. 2020. Available online: https://www.who.int/news-room/commentaries/detail/modes-oftransmission-of-virus-causing-covid-19-implications-foripcprecaution-recommendations (accessed on 25 October 2023).
- Piana, A.; Colucci, M.E.; Valeriani, F.; Marcolongo, A.; Sotgiu, G.; Pasquarella, C.; Margarucci, L.M.; Petrucca, A.; Gianfranceschi, G.; Babudieri, S.; et al. Monitoring COVID-19 Transmission Risks by Quantitative Real-Time PCR Tracing of Droplets in Hospital and Living Environments. mSphere 2021, 6, e01070-20. [Google Scholar] [CrossRef] [PubMed]
- Iorio-Morin, C.; Hodaie, M.; Sarica, C.; Dea, N.; Westwick, H.J.; Christie, S.D.; McDonald, P.J.; Labidi, M.; Farmer, J.-P.; Brisebois, S.; et al. Letter: The risk of COVID-19 infection during neurosurgical procedures: A review of severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) modes of transmission and proposed neurosurgery-specific measures for mitigation. Neurosurgery 2020, 87, E178–E185. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Sun, W.; Huang, J.; Gamber, M.; Wu, J.; He, G. Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1343–1345. [Google Scholar] [CrossRef] [PubMed]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Chia, P.Y.; Coleman, K.K.; Tan, Y.K.; Ong, S.W.X.; Gum, M.; Lau, S.K.; Lim, X.F.; Lim, A.S.; Sutjipto, S.; Lee, P.H.; et al. Singapore 2019 Novel Coronavirus Outbreak Research Team. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 2020, 11, 2800. [Google Scholar] [CrossRef]
- Guo, Z.D.; Wang, Z.Y.; Zhang, S.F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.B.; Dong, Y.Z.; Chi, X.Y.; et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg. Infect. Dis. 2020, 26, 1583–1591. [Google Scholar] [CrossRef]
- Cheng, V.C.; Wong, S.C.; Chan, V.W.; So, S.Y.; Chen, J.H.; Yip, C.C.; Chan, K.H.; Chu, H.; Chung, T.W.; Sridhar, S.; et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect. Control. Hosp. Epidemiol. 2020, 41, 1258–1265. [Google Scholar] [CrossRef]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a Symptomatic Patient. JAMA 2020, 323, 1610–1612. [Google Scholar] [CrossRef]
- Lv, J.; Yang, J.; Xue, J.; Zhu, P.; Liu, L.; Li, S. Detection of SARS-CoV-2 RNA residue on object surfaces in nucleic acid testing laboratory using droplet digital PCR. Sci. Total Environ. 2020, 742, 140370. [Google Scholar] [CrossRef]
- Razzini, K.; Castrica, M.; Menchetti, L.; Maggi, L.; Negroni, L.; Orfeo, N.V.; Pizzoccheri, A.; Stocco, M.; Muttini, S.; Balzaretti, C.M. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci. Total Environ. 2020, 742, 140540. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Deng, Q.; Zhang, G.; Wu, K.; Ni, L.; Yang, Y.; Liu, B.; Wang, W.; Wei, C.; et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J. Med. Virol. 2020, 92, 833–840. [Google Scholar] [CrossRef]
- Foladori, P.; Cutrupi, F.; Segata, N.; Manara, S.; Pinto, F.; Malpei, F.; Bruni, L.; La Rosa, G. SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Sci. Total Environ. 2020, 743, 140444. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Fan, Y.Z.; Jiang, L.; Wang, H.B. Aerosol and environmental surface monitoring for SARS-Cov-2 RNA in a designated hospital for severe COVID-19 patients. Epidemiol. Infect. 2020, 148, e154. [Google Scholar] [CrossRef] [PubMed]
- Fusco, G.; Picazio, G.; Cardillo, L.; Pucciarelli, A.; Marati, L.; Di Maggio, F.; Nunziato, M.; Brandi, S.; De Carlo, E.; de Martinis, C.; et al. A comparative study on the persistence and viability of SARS-CoV-2 wild-type and omicron variant on artificially contaminated surfaces: The role of fomites. Emerg. Microbes Infect. 2023, 12, 2239941. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Infection Prevention and Control of Epidemic- and Pandemic-Prone Acute Respiratory Infections in Health Care. WHO Guidelines; World Health Organization: Geneva, Switzerland, 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/112656/9789241507134_eng.pdf;jsessionid=41AA684FB64571CE8D8A453C4F2B2096?sequence=1 (accessed on 25 October 2023).
- Wei, L.; Lin, J.; Duan, X.; Huang, W.; Lu, X.; Zhou, J.; Zong, Z. Asymptomatic COVID-19 patients can contaminate their surroundings: An environment sampling study. mSphere 2020, 5, e00442-20. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 2016, 92, 235–250. [Google Scholar] [CrossRef]
- Al Huraimel, K.; Alhosani, M.; Kunhabdulla, S.; Stietiya, M.H. SARS-CoV-2 in the environment: Modes of transmission, early detection and potential role of pollutions. Sci. Total Environ. 2020, 744, 140946. [Google Scholar] [CrossRef] [PubMed]
- Eslami, H.; Jalili, M. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). AMB Express 2020, 10, 92. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef]
- Hung, I.F.; Cheng, V.C.; Li, X.; Tam, A.R.; Hung, D.L.; Chiu, K.H.; Yip, C.C.; Cai, J.P.; Ho, D.T.; Wong, S.C.; et al. SARS-CoV-2 shedding and seroconversion among passengers quarantined after disembarking a cruise ship: A case series. Lancet Infect. Dis. 2020, 20, 1051–1060. [Google Scholar] [CrossRef]
- Chu, D.T.; Singh, V.; Vu Ngoc, S.M.; Nguyen, T.L.; Barceló, D. Transmission of SARS-CoV-2 infections and exposure in surfaces, points and wastewaters: A global one health perspective. Case Stud. Chem. Environ. Eng. 2022, 5, 100184. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.D.; Garba, N.A.; Barbieri, M.A.; Acuna, L.; Baum, M.; Rodriguez, M.S.; Frias, H.; Saldarriaga, P.; Stefano, T.; Mathee, K.; et al. Detection of SARS-CoV-2 in high-efficiency particulate air (HEPA) filters of low-cost air purifiers in community-based organizations. Environ. Monit. Assess. 2023, 195, 1320. [Google Scholar] [CrossRef] [PubMed]
- Arienzo, A.; Gallo, V.; Tomassetti, F.; Pitaro, N.; Pitaro, M.; Antonini, G. A narrative review of alternative transmission routes of COVID 19: What we know so far. Pathog. Glob. Health 2023, 117, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sun, D.; Xia, T.; Shi, S.; Suo, J.; Kuang, H.; Sun, N.; Hu, H.; Zheng, Z.; Zhou, Y.; et al. Monitoring Prevalence and Persistence of Environmental Contamination by SARS-CoV-2 RNA in a Makeshift Hospital for Asymptomatic and Very Mild COVID-19 Patients. Int. J. Public Health 2023, 68, 1605994. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.; Iaconelli, M.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020, 736, 139652. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef]
- Zhao, L.; Atoni, E.; Nyaruaba, R.; Du, Y.; Zhang, H.; Donde, O.; Huang, D.; Xiao, S.; Ren, N.; Ma, T. Environmental surveillance of SARS-CoV-2 RNA in wastewater systems and related environments in Wuhan: April to May of 2020. J. Environ. Sci. 2022, 112, 115–120. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, A.K.; Shah, A.V.; Raval, J.; Rajpara, N.; Joshi, M.; Joshi, C.G. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci. Total Environ. 2020, 746, 141326. [Google Scholar] [CrossRef]
- Sherchan, S.P.; Shahin, S.; Ward, L.M.; Tandukar, S.; Aw, T.G.; Schmitz, B.; Ahmed, W.; Kitajima, M. First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Sci. Total Environ. 2020, 743, 140621. [Google Scholar] [CrossRef]
- Prado, T.; Fumian, T.M.; Mannarino, C.F.; Resende, P.C.; Motta, F.C.; Eppinghaus, A.L.F.; Chagas do Vale, V.H.; Braz, R.M.S.; de Andrade, J.D.S.R.; Maranhão, A.G.; et al. Wastewaterbased epidemiology as a useful tool to track SARS-CoV-2 and support public health policies at municipal level in Brazil. Water Res. 2021, 191, 116810. [Google Scholar] [CrossRef]
- Thompson, J.R.; Nancharaiah, Y.V.; Gu, X.; Lee, W.L.; Rajal, V.B.; Haines, M.B.; Girones, R.; Ng, L.C.; Alm, E.J.; Wuertz, S. Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Res. 2020, 184, 116181. [Google Scholar] [CrossRef] [PubMed]
- Marshall, D.L.; Bois, F.; Jensen, S.K.; Linde, S.A.; Higby, R.; Rémy-McCort, Y.; Murray, S.; Dieckelman, B.; Sudradjat, F.; Martin, G.G. Sentinel Coronavirus environmental monitoring can contribute to detecting asymptomatic SARS-CoV-2 virus spreaders and can verify effectiveness of workplace COVID-19 controls. Microb. Risk Anal. 2020, 16, 100137. [Google Scholar] [CrossRef] [PubMed]
- Vo, V.; Tillett, R.L.; Chang, C.L.; Gerrity, D.; Betancourt, W.Q.; Oh, E.C. SARS-CoV-2 variant detection at a university dormitory using wastewater genomic tools. Sci. Total Environ. 2021, 805, 149930. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, W.Q.; Schmitz, B.W.; Innes, G.K.; Prasek, S.M.; Brown, K.M.P.; Stark, E.R.; Foster, A.R.; Sprissler, R.S.; Harris, D.T.; Sherchan, S.P.; et al. COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Sci. Total Environ. 2021, 779, 146408. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Strengthening Population Health Surveillance: A Tool for Selecting Indicators to Signal and Monitor the Wider Effects of the COVID-19 Pandemic. Available online: https://apps.who.int/iris/bitstream/handle/10665/340720/WHO-EURO-2021-2297-42052-57877-eng.pdf (accessed on 25 October 2023).
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.C.; Egetenmeyer, N.; Schulz, W. Coupling of In Vitro Bioassays with Planar Chromatography in Effect-Directed Analysis. Adv. Biochem. Eng. Biotechnol. 2017, 157, 187–224. [Google Scholar] [PubMed]
- Harvey, A.P.; Fuhrmeister, E.R.; Cantrell, M.E.; Pitol, A.K.; Swarthout, J.M.; Powers, J.E.; Nadimpalli, M.L.; Julian, T.R.; Pickering, A.J. Longitudinal Monitoring of SARS-CoV-2 RNA on High-Touch Surfaces in a Community Setting. Environ. Sci. Technol. Lett. 2021, 8, 168–175. [Google Scholar] [CrossRef]
- ISO 20395:2019(en); Biotechnology—Requirements for Evaluating the Performance of Quantification Methods for Nucleic Acid Target Sequences—qPCR and dPCR. International Organization for Standardization (ISO): Geneva, Switzerland, 2019. Available online: https://www.iso.org/obp/ui#iso:std:iso:20395:ed-1:v1:en (accessed on 25 October 2023).
- Valeriani, F.; Protano, C.; Gianfranceschi, G.; Cozza, P.; Campanella, V.; Liguori, G.; Vitali, M.; Divizia, M.; Romano Spica, V. Infection control in healthcare settings: Perspectives for mfDNA analysis in monitoring sanitation procedures. BMC Infect. Dis. 2016, 16, 394. [Google Scholar] [CrossRef]
- Liao, L.; Sun, Y.; Huang, L.; Ye, L.; Chen, L.; Shen, M. A novel approach for exploring the regional features of vaginal fluids based on microbial relative abundance and alpha diversity. J. Forensic Leg. Med. 2023, 100, 102615. [Google Scholar] [CrossRef]
- Giampaoli, S.; Berti, A.; Valeriani, F.; Gianfranceschi, G.; Piccolella, A.; Buggiotti, L.; Rapone, C.; Valentini, A.; Ripani, L.; Romano Spica, V. Molecular identification of vaginal fluid by microbial signature. Forensic Sci. Int. Genet. 2012, 6, 559–564. [Google Scholar] [CrossRef]
- Taylor, S.C.; Nadeau, K.; Abbasi, M.; Lachance, C.; Nguyen, M.; Fenrich, J. The ultimate qPCR experiment: Producing publication quality, reproducible data the first time. Trends Biotechnol. 2019, 37, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel Services; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. Available online: https://www.fda.gov/media/134922/download (accessed on 25 October 2023).
- Farfour, E.; Lesprit, P.; Visseaux, B.; Pascreau, T.; Jolly, E.; Houhou, N.; Mazaux, L.; Asso-Bonnet, M.; Vasse, M.; SARS-CoV-2 Foch Hospital study group. The Allplex 2019-nCoV (Seegene) assay: Which performances are for SARS-CoV-2 infection diagnosis? Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1997–2000. [Google Scholar] [CrossRef] [PubMed]
- Eishi, Y.; Suga, M.; Ishige, I.; Kobayashi, D.; Yamada, T.; Takemura, T.; Takizawa, T.; Koike, M.; Kudoh, S.; Costabel, U.; et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J. Clin. Microbiol. 2002, 40, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Valeriani, F.; Agodi, A.; Casini, B.; Cristina, M.L.; D’Errico, M.M.; Gianfranceschi, G.; Liguori, G.; Liguori, R.; Mucci, N.; Mura, I.; et al. Potential testing of reprocessing procedures by real-time polymerase chain reaction: A multicenter study of colonoscopy devices. Am. J. Infect. Control. 2018, 46, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Brauge, T.; Barre, L.; Leleu, G.; André, S.; Denis, C.; Hanin, A.; Frémaux, B.; Guilbaud, M.; Herry, J.M.; Oulahal, N.; et al. European survey and evaluation of sampling methods recommended by the standard EN ISO 18593 for the detection of Listeria monocytogenes and Pseudomonas fluorescens on industrial surfaces. FEMS Microbiol. Lett. 2020, 367, fnaa057. [Google Scholar] [CrossRef]
- Human Forensic Biology Subcommitted. Biology SAC. Organization of Scientific Area Committees (OSAC) for Forensic Science OSAC 2022-S-0041. Best Practice Recommendations for Internal Validation of DNA Extraction Methods. Available online: https://www.nist.gov/system/files/documents/2022/12/05/OSAC%202022-S-0041-BPR%20for%20Internal%20Validation%20of%20DNA%20Extraction%20Methods.OPEN%20COMMENT_STR%20VERSION.pdf (accessed on 25 October 2023).
- Valeriani, F.; Cianfanelli, C.; Gianfranceschi, G.; Santucci, S.; Romano Spica, V.; Mucci, N. Monitoring biodiversity in libraries: A pilot study and perspectives for indoor air quality. J. Prev. Med. Hyg. 2017, 58, E238–E251. [Google Scholar] [PubMed]
- Shreffler, J.; Huecker, M.R. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios; StatPearls: St. Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557491/ (accessed on 25 October 2023).
- Bogožalec Košir, A.; Lužnik, D.; Tomič, V.; Milavec, M. Evaluation of DNA Extraction Methods for Reliable Quantification of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Biosensor 2023, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.D.; Cho, Y.U.; Lee, W.; Chun, S.; Min, W.K. An efficient genomic DNA extraction from whole blood using Nextractor. Clin. Chim. Acta 2014, 435, 14–17. [Google Scholar] [CrossRef]
- Kittelmann, S.; Seedorf, H.; Walters, W.A.; Clemente, J.C.; Knight, R.; Gordon, J.I.; Janssen, P.H. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 2013, 8, e47879. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.-Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Wiley-Blackwell: Oxford, UK, 2008. [Google Scholar]
- Langlois, V.S.; Allison, M.J.; Bergman, L.C.; To, T.A.; Helbing, C.C. The need for robust qPCR-based eDNA detection assays in environmental monitoring and species inventories. Environ. DNA 2021, 3, 519–527. [Google Scholar] [CrossRef]
- Yuan, X.; Sui, G.; Zhang, D.; Chen, M.; Zhao, W. Recent developments and trends of automatic nucleic acid detection systems. J. Biosaf. Biosecur. 2022, 4, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.V.; Hemalatha, M.; Kopperi, H.; Ranjith, I.; Kumar, A.K. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. Chem. Eng. J. 2021, 405, 126893. [Google Scholar] [CrossRef]
- Wilhelm, A.; Schoth, J.; Meinert-Berning, C.; Bastian, D.; Blum, H.; Elsinga, G.; Graf, A.; Heijnen, L.; Ho, J.; Kluge, M.; et al. Interlaboratory comparison using inactivated SARS-CoV-2 variants as a feasible tool for quality control in COVID-19 wastewater monitoring. Sci. Total Environ. 2023, 903, 166540. [Google Scholar] [CrossRef]
- Chung, Y.; Kim, T.S.; Min, Y.G.; Hong, Y.J.; Park, J.S.; Hwang, S.M.; Song, K.H.; Kim, E.S.; Park, K.U.; Kim, H.B.; et al. Usefulness of Multiplex Real-Time PCR for Simultaneous Pathogen Detection and Resistance Profiling of Staphylococcal Bacteremia. Biomed. Res. Int. 2016, 2016, 6913860. [Google Scholar] [CrossRef]
Type of Biological Fluids | N | Description of Spiked Samples |
---|---|---|
Nasopharyngeal high concentration (A) | 2 | Nasopharyngeal mix |
Nasopharyngeal low concentration (B) | 2 | Nasopharyngeal mix (Diluted 1-fold) |
Saliva high concentration (A) | 2 | Saliva traces mix |
Saliva low concentration (B) | 2 | Saliva traces mix (Diluted 1-fold) |
Skin high concentration (A) | 2 | Skin traces mix |
Skin low concentration (B) | 2 | Skin traces mix (Diluted 1-fold) |
Feces high concentration (A) | 2 | Feces traces mix |
Feces low concentration (B) | 2 | Feces traces mix (Diluted 1-fold) |
Mixed 1 | 2 | Nasopharyngeal, Saliva, Skin, Feces |
Mixed 2 | 2 | Nasopharyngeal, Saliva, Feces |
Mixed 3 | 2 | Nasopharyngeal, Saliva |
Mixed 4 | 2 | Saliva, Skin |
Negatives | 6 | Buffer solution |
Environmental samples Type Skin | 6 | Surfaces from: handlebars of bicycles or exercise bikes, gymnastic rings, keyboard |
Environmental samples Type Saliva | 6 | Surfaces from: microphone, headphones, table cutlery |
Environmental samples Type Nose | 6 | Surfaces from: used napkins, headphones, phone screen |
Type of Biological Fluids | Number of Samples | LAB 1 | LAB2 | ∆cT Probe A | ∆cT Probe B | Accuracy |
---|---|---|---|---|---|---|
Nasopharyngeal | 4 | 4/4 | 4/4 | 0.8 | 2.9 | 99.9% |
Saliva | 4 | 4/4 | 2/4 | 3.4 | 3.3 | 75% |
Skin sebum | 4 | 4/4 | 4/4 | 1.2 | 1.2 | 99.9% |
Feces | 4 | 4/4 | 4/4 | 0.4 | 2.8 | 99.9% |
Mixed 1 | 2 | 4/4 | 4/4 | 2 | 2 | 99.9% |
Mixed 2 | 2 | 4/4 | 4/4 | 4.1 | 4.1 | 99.9% |
Mixed 3 | 2 | 4/4 | 4/4 | 3 | 3 | 99.9% |
Mixed 4 | 2 | 4/4 | 4/4 | 1 | 1 | 99.9% |
Negatives | 6 | 6/6 | 6/6 | 0 | 0 | 100% |
Type of Biological Fluids ** | Manual Protocol | Automated Protocol | ∆CT * | Correlation |
---|---|---|---|---|
Saliva A—probe 1 | 31 ± 0.2 | 27 ± 0.2 | 4 | 0.99 |
Saliva A—probe 2 | 27 ± 0.2 | 25 ± 0.2 | 2 | 0.99 |
Saliva B—probe 1 | 33.2 ± 0.2 | 38 ± 0.2 | 5 | 0.99 |
Saliva B—probe 2 | 28 ± 0.1 | 27 ± 0.1 | 1 | 0.99 |
Nasopharyngeal A—probe 1 | 30 ± 0.1 | 30 ± 0.5 | 0.4 | 0.99 |
Nasopharyngeal A—probe 2 | 34 ± 0.2 | 32 ± 0.2 | 2 | 0.99 |
Nasopharyngeal B—probe 1 | 35 ± 0.1 | 32 ± 0.5 | 2 | 0.99 |
Nasopharyngeal B—probe 2 | 33 ± 0.5 | 31 ± 0.2 | 2 | 0.99 |
Skin Sebum A—probe 1 | 17 ± 0.2 | 16 ± 0.8 | 1 | 0.99 |
Skin A—probe 2 | 17 ± 0.6 | 16 ± 0.6 | 1 | 0.99 |
Skin B—probe 1 | 17 ± 0.5 | 18 ± 0.5 | 1 | 0.99 |
Skin B—probe 2 | 18 ± 0.4 | 18 ± 0.6 | 0.2 | 0.99 |
Feces A—probe 1 | 21 ± 0.2 | 19 ± 0.2 | 2 | 0.99 |
Feces A—probe 2 | 21 ± 0.2 | 19 ± 0.2 | 2 | 0.99 |
Feces B—probe 1 | 24 ± 0.2 | 26 ± 0.2 | 2 | 0.99 |
Feces B—probe 2 | 24 ± 0.4 | 23 ± 0.4 | 1 | 0.99 |
Type of Environmental Samples ** | Manual Protocol | Automated Protocol | ∆CT * | Correlation |
Environmental samples Type Saliva—probe 1 | 32 ± 0.1 | 30 ± 0.2 | 2 | 0.99 |
Environmental samples Type Saliva—probe 2 | 30 ± 0.2 | 29 ± 0.3 | 1 | 0.99 |
Environmental samples Type Nose -probe 1 | 33 ± 0.1 | 34 ± 0.2 | 1 | 0.99 |
Environmental samples Type Nose—probe 2 | 30 ± 0.2 | 29 ± 0.3 | 1 | 0.99 |
Environmental samples Type Skin—probe 1 | 32 ± 0.1 | 30 ± 0.2 | 1 | 0.99 |
Environmental samples Type Skin—probe 2 | 30 ± 0.2 | 29 ± 0.3 | 1 | 0.99 |
Number Reads Pf | % Reads Pf Classified to Genus | Shannon (H) | Otus | Evenness | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ID | Manual | Automatic | Manual | Automatic | Manual | Automatic | Manual | Automatic | Manual | Automatic |
Saliva A | 17,513 | 18,954 | 98.12% | 98.00% | 0.798 | 0.751 | 136 | 138 | 0.28 | 0.30 |
Saliva B | 148,172 | 152,661 | 99.56% | 99.60% | 0.771 | 0.753 | 442 | 450 | 0.27 | 0.27 |
Nasopharyngeal A | 130,009 | 130,588 | 99.50% | 99.50% | 1.028 | 1.025 | 475 | 480 | 0.37 | 0.37 |
Nasopharyngeal B | 99,065 | 99,068 | 99.41% | 99.35% | 2.242 | 2.242 | 547 | 554 | 0.82 | 0.82 |
Skin A | 153,825 | 152,208 | 99.32% | 99.40% | 2.300 | 2.300 | 544 | 550 | 0.82 | 0.82 |
Skin B | 152,201 | 155,529 | 99.19% | 99.20% | 2.414 | 2.398 | 672 | 680 | 0.82 | 0.81 |
Feces A | 157,776 | 157,805 | 98.77% | 98.78% | 2.522 | 2.522 | 739 | 740 | 0.83 | 0.83 |
Feces B | 121,322 | 121,343 | 99.41% | 99.45% | 1.697 | 1.698 | 491 | 500 | 0.65 | 0.65 |
Mixed 1 | 75,481 | 53,501 | 98.84% | 98.83% | 2.055 | 1.703 | 456 | 382 | 0.77 | 0.63 |
Mixed 2 | 129,933 | 103,949 | 90.96% | 91.06% | 2.625 | 2.555 | 658 | 515 | 0.79 | 0.80 |
Mixed 3 | 119,846 | 110,912 | 99.58% | 99.57% | 0.077 | 0.099 | 252 | 294 | 0.02 | 0.02 |
Mixed 4 | 132,566 | 107,778 | 99.02% | 99.01% | 2.454 | 2.251 | 617 | 666 | 0.82 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valeriani, F.; Margarucci, L.M.; Ubaldi, F.; Gianfranceschi, G.; Romano Spica, V. Automated Protocol for Monitoring Droplets and Fomites on Surfaces. Microbiol. Res. 2024, 15, 120-136. https://doi.org/10.3390/microbiolres15010008
Valeriani F, Margarucci LM, Ubaldi F, Gianfranceschi G, Romano Spica V. Automated Protocol for Monitoring Droplets and Fomites on Surfaces. Microbiology Research. 2024; 15(1):120-136. https://doi.org/10.3390/microbiolres15010008
Chicago/Turabian StyleValeriani, Federica, Lory Marika Margarucci, Francesca Ubaldi, Gianluca Gianfranceschi, and Vincenzo Romano Spica. 2024. "Automated Protocol for Monitoring Droplets and Fomites on Surfaces" Microbiology Research 15, no. 1: 120-136. https://doi.org/10.3390/microbiolres15010008
APA StyleValeriani, F., Margarucci, L. M., Ubaldi, F., Gianfranceschi, G., & Romano Spica, V. (2024). Automated Protocol for Monitoring Droplets and Fomites on Surfaces. Microbiology Research, 15(1), 120-136. https://doi.org/10.3390/microbiolres15010008