Correlation between Aerosol Particulates, Carcass Dirtiness, and Hygiene Indicators of Bovine Carcasses in the Abattoir Environment: Results of a Study in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Microbiological Analysis
2.3. Visual Dirtiness Score
2.4. Slaughtered Animals per Day and Daily Average Distance
2.5. Aerosol Monitoring
2.6. Statistical Analysis
3. Results
3.1. Microbial Count and Detection
3.2. Visual Dirtiness Score
3.3. Aerosol Monitoring
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diyantoro; Wardhana, D.K. Risk Factors for Bacterial Contamination of Bovine Meat during Slaughter in Ten Indonesian Abattoirs. Vet. Med. Int. 2019, 2019, 2707064. [Google Scholar] [CrossRef] [PubMed]
- Grispoldi, L.; Karama, M.; Hadjicharalambous, C.; de Stefani, F.; Ventura, G.; Ceccarelli, M.; Revoltella, M.; Sechi, P.; Crotti, C.; D’Innocenzo, A.; et al. Bovine lymph nodes as a source of Escherichia coli contamination of the meat. Int. J. Food Microbiol. 2020, 331, 108715. [Google Scholar] [CrossRef] [PubMed]
- (EC) No 853/2004; The European Parliament and of the Council of 29 April 2004 Laying down Specific Hygiene Rules for on the Hygiene of Foodstuffs. European Parliament and of the Council: Strasbourg, France, 2004.
- CAC/RCP 58—2005; Code of Hygiene Practice for Meat. Codex Alimentarius: Rome, Italy, 2005.
- (EC) No 2073/2005; The European Parliament and of the Council of 15 November 2005 on Microbiological Criteria for Foodstuffs. European Parliament and of the Council: Strasbourg, France, 2005.
- Theisinger, S.M.; Smidt, O. Bioaerosols in the Food and Beverage Industry. In Ideas and Applications toward Sample Preparation for Food and Beverage Analysis; Mark, T.S., Ed.; IntechOpen: Rijeka, Croatia, 2017; Chapter 3. [Google Scholar]
- European Food Safety Authority. Opinion of the Scientific Panel on biological hazards (BIOHAZ) on Revision of Meat Inspection for Beef raised in Integrated Production Systems. EFSA J. 2005, 3, 141. [Google Scholar] [CrossRef]
- European Food Safety Authority. Technical specifications on harmonised epidemiological indicators for biological hazards to be covered by meat inspection of bovine animals. EFSA J. 2013, 11, 3276. [Google Scholar] [CrossRef]
- Anderson, B.D.; Lednicky, J.A.; Torremorell, M.; Gray, G.C. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review. Front. Vet. Sci. 2017, 4, 121. [Google Scholar] [CrossRef] [PubMed]
- Cundith, C.J.; Kerth, C.R.; Jones, W.R.; McCaskey, T.A.; Kuhlers, D.L. Air-cleaning Systems Effectiveness for Control of Airborne Microbes in a Meat-processing Plant. J. Food Sci. 2002, 67, 1170–1174. [Google Scholar] [CrossRef]
- Millner, P.D. Bioaerosols associated with animal production operations. Bioresour. Technol. 2009, 100, 5379–5385. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, M.; Leprini, E.; Sechi, P.; Iulietto, M.F.; Grispoldi, L.; Goretti, E.; Cenci-Goga, B.T. Analysis of the causes of the seizure and destruction of carcasses and organs in a slaughterhouse in central Italy in the 2010–2016 period. Ital. J. Food Saf. 2018, 7, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Guardone, L.; Vitali, A.; Fratini, F.; Pardini, S.; Goga, B.T.C.; Nucera, D.; Armani, A. A retrospective study after 10 years (2010–2019) of meat inspection activity in a domestic swine abattoir in tuscany: The slaughterhouse as an epidemiological observatory. Animals 2020, 10, 1907. [Google Scholar] [CrossRef] [PubMed]
- Chalias, A.; Grispoldi, L.; Cenci Goga, B. A risk assessment model for Salmonella spp. in swine carcasses. EFSA J. 2022, 20, e200405. [Google Scholar] [CrossRef] [PubMed]
- García-Díez, J.; Saraiva, S.; Moura, D.; Grispoldi, L.; Cenci-Goga, B.T.; Saraiva, C. The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review. Vet. Sci. 2023, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Sechi, P.; Cambiotti, V.; Parmegiani, S.; Baldinelli, C.; Iulietto, M.F.; Cenci Goga, B. Isolation of escherichia coli from lymph nodes of bovine carcasses and detection of hlyA gene with PCR. Ital. J. Food Saf. 2012, 1, 23–26. [Google Scholar] [CrossRef]
- Trevisani, M.; Rosamilia, A.; Micheli, M.R.; Guidi, E.; Cenci Goga, B. Perspectives in the implementation of risk-based meat safety assurance system (RB-MSAS) in broiler meat production. Food Control 2024, 160, 110308. [Google Scholar] [CrossRef]
- Hauge, S.J.; Nesbakken, T.; Moen, B.; Røtterud, O.J.; Dommersnes, S.; Nesteng, O.; Østensvik, Ø.; Alvseike, O. The significance of clean and dirty animals for bacterial dynamics along the beef chain. Int. J. Food Microbiol. 2015, 214, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Blagojevic, B.; Maurer, P.; Hengl, B.; Guldimann, C.; Mojsova, S.; Sakaridis, I.; Antunovic, B.; Gomes-Neves, E.; Zdolec, N.; et al. Risk based meat safety assurance system—An introduction to key concepts for future training of official veterinarians. Food Control 2023, 146, 109552. [Google Scholar] [CrossRef]
- ISO 17604:2015; Microbiology of the Food Chain—Carcass Sampling for Microbiological Analysis. International Standards Organisation: Geneva, Switzerland, 2015.
- Lederberg, J.; Lederberg, E.M. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 1952, 63, 399–406. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Scientific Opinion on the public health hazards to be covered by inspection of meat (poultry). EFSA J. 2012, 10, 2741. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals). EFSA J. 2013, 11, 3266. [Google Scholar] [CrossRef]
- Barco, L.; Belluco, S.; Roccato, A.; Ricci, A. A systematic review of studies on Escherichia coli and Enterobacteriaceae on beef carcasses at the slaughterhouse. Int. J. Food Microbiol. 2015, 207, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Cenci-Goga, B.T.; Miraglia, D.; Ranucci, D.; Branciari, R.; Budelli, L.; McCrindle, C.M.; Cioffi, A.; Mammoli, R. An in vitro system for the comparison of excision and wet-dry swabbing for microbiological sampling of beef carcasses. J. Food Prot. 2007, 70, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Ghafir, Y.; China, B.; Dierick, K.; De Zutter, L.; Daube, G. Hygiene indicator microorganisms for selected pathogens on beef, pork, and poultry meats in Belgium. J. Food Prot. 2008, 71, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Blagojevic, B.; Antic, D.; Ducic, M.; Buncic, S. Visual cleanliness scores of cattle at slaughter and microbial loads on the hides and the carcases. Vet. Rec. 2012, 170, 563. [Google Scholar] [CrossRef] [PubMed]
- Serraino, A.; Bardasi, L.; Riu, R.; Pizzamiglio, V.; Liuzzo, G.; Galletti, G.; Giacometti, F.; Merialdi, G. Visual evaluation of cattle cleanliness and correlation to carcass microbial contamination during slaughtering. Meat Sci. 2012, 90, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Barco, L.; Belluco, S.; Roccato, A.; Ricci, A. Escherichia coli and Enterobacteriaceae counts on pig and ruminant carcasses along the slaughterline, factors influencing the counts and relationship between visual faecal contamination of carcasses and counts: A review. EFSA Support. Publ. 2014, 11, 634E. [Google Scholar] [CrossRef]
- Gill, C.O.; Landers, C. Microbiological conditions of detained beef carcasses before and after removal of visible contamination. Meat Sci. 2004, 66, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Hauge, S.J.; Nafstad, O.; Røtterud, O.-J.; Nesbakken, T. The hygienic impact of categorisation of cattle by hide cleanliness in the abattoir. Food Control 2012, 27, 100–107. [Google Scholar] [CrossRef]
- McCleery, D.R.; Stirling, J.M.E.; McIvor, K.; Patterson, M.F. Effect of ante- and postmortem hide clipping on the microbiological quality and safety and ultimate pH value of beef carcasses in an EC-approved abattoir. J. Appl. Microbiol. 2008, 104, 1471–1479. [Google Scholar] [CrossRef]
- Cenci-goga, B.; Amicabile, A.; Karama, M.; El-ashram, S.; Saraiva, C.; García-díez, J.; Finotti, S.; Genna, V.; Moretti, G.; Murari, R.; et al. Effect of delayed refrigeration on the microbial carcass contamination of wild boars (Sus scrofa). Animals 2021, 11, 1434. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.H.; Castillo, A.; Kinney, K.A.; Zuniga, A.; Mohammad, Z.; Lacey, R.E.; King, M.D. Monitoring of Pathogenic Bioaerosols in Beef Slaughter Facilities Based on Air Sampling and Airflow Modeling. Appl. Eng. Agric. 2019, 35, 1015–1036. [Google Scholar] [CrossRef]
- Jericho, K.W.F.; Ho, J.; Kozub, G.C. Aerobiology of a High-Line Speed Cattle Abattoir. J. Food Prot. 2000, 63, 1523–1528. [Google Scholar] [CrossRef]
- Burfoot, D.; Whyte, R.; Tinker, D.; Howell, M.; Hall, K.; Holah, J.; Smith, D.; White, R.; Baker, D.; McIntosh, J. Importance of airborne contamination during dressing of beef and lamb carcasses. J. Food Prot. 2006, 69, 2828–2836. [Google Scholar] [CrossRef] [PubMed]
- Fournaud, J.; Bertaud, M. Air contamination in slaughter houses and bacteriological quality of the bovine carcasses. In Proceedings of the Europäischer Fleischforscher-Kongress, Wien, Austria, 24–28 August 1981; pp. 188–191. [Google Scholar]
- Rahkio, T.M.; Korkeala, H.J. Airborne bacteria and carcass contamination in slaughterhouses. J. Food Prot. 1997, 60, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Sirami, J. La contamination microbiologique de l’air dans le hall d’abattage: Facteurs de variation et influence sur la carcasse. Viande Prod. Carnés 1989, 10, 109–116. [Google Scholar]
- Williams, S.K.; Cosenza-Sutton, G.H. Enumeration and Identification of Microorganisms Present in Bioaerosols in a Bovine Harvesting Facility. Direct Res. J. Agric. Food Sci. 2020, 8, 198–207. [Google Scholar]
- Okraszewska-Lasica, W.; Bolton, D.J.; Sheridan, J.J.; McDowell, D.A. Comparison of aerial counts at different sites in beef and sheep abattoirs and the relationship between aerial and beef carcass contamination. Food Microbiol. 2012, 32, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, D.; Daly, D.; Sheridan, J.; McDowell, D.; Blair, I. The effect of abattoir design on aerial contamination levels and the relationship between aerial and carcass contamination levels in two Irish beef abattoirs. Food Microbiol. 2004, 21, 589–596. [Google Scholar] [CrossRef]
Visual Dirtiness Score | Slaughtered Animals Per Day | Carcasses Analyzed | Daily Average Distance (km) | Aerobic Colony Count (log cfu/cm2) | Total Coliforms (log cfu/cm2) | Daily Particulate Index | Slaughtering Hours Particulate Index | E. coli (n of Positive Carcasses) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mean | sd | mean | sd | mean | sd | mean | sd | ||||||
Day 1 | 10.89 | 6.89 | 110 | 19 | 125.70 | 156.57 | 1.49 | 0.45 | 0.12 | 0.25 | n.e. | n.e. | 1 |
Day 2 | 21.95 | 24.46 | 111 | 20 | 138.55 | 164.58 | 1.98 | 0.18 | 0.12 | 0.35 | n.e. | n.e. | 1 |
Day 3 | 20.89 | 16.59 | 120 | 18 | 115.22 | 150.72 | 2.03 | 0.15 | 0.06 | 0.18 | n.e. | n.e. | 1 |
Day 4 | 38.85 | 21.98 | 117 | 20 | 123.12 | 158.03 | 2.11 | 0.24 | 0.04 | 0.16 | n.e. | n.e. | 4 |
Day 5 | 13.53 | 7.34 | 100 | 15 | 145.90 | 177.52 | 2.14 | 0.24 | 0.28 | 0.31 | n.e. | n.e. | 9 |
Day 6 | 13.83 | 10.50 | 113 | 12 | 124.38 | 154.49 | 2.25 | 0.26 | 0.25 | 0.51 | n.e. | n.e. | 4 |
Day 7 | 8.50 | 4.63 | 95 | 10 | 145.68 | 169.99 | 2.09 | 0.44 | 0.00 | 0.00 | n.e. | n.e. | 0 |
Day 8 | 15.60 | 13.48 | 100 | 10 | 145.63 | 171.09 | 2.26 | 0.29 | 0.00 | 0.00 | n.e. | n.e. | 0 |
Day 9 | 13.10 | 8.13 | 104 | 10 | 152.70 | 166.27 | 1.73 | 0.71 | 0.00 | 0.00 | n.e. | n.e. | 0 |
Day 10 | 13.44 | 12.11 | 108 | 9 | 138.37 | 162.25 | 0.84 | 0.80 | 0.35 | 0.53 | n.e. | n.e. | 0 |
Day 11 | 9.33 | 8.08 | 47 | 9 | 34.17 | 44.99 | 1.46 | 0.72 | 0.12 | 0.19 | n.e. | n.e. | 0 |
Day 12 | 18.60 | 15.44 | 123 | 10 | 117.12 | 157.20 | 1.98 | 0.28 | 0.10 | 0.20 | n.e. | n.e. | 1 |
Day 13 | 14.35 | 13.12 | 101 | 17 | 186.39 | 165.17 | 2.40 | 0.38 | 0.20 | 0.32 | n.e. | n.e. | 8 |
Day 14 | 17.70 | 9.39 | 125 | 10 | 133.20 | 158.67 | 2.11 | 0.22 | 0.00 | 0.00 | n.e. | n.e. | 2 |
Day 15 | 8.20 | 4.64 | 82 | 10 | 133.75 | 172.76 | 1.96 | 0.64 | 0.73 | 0.52 | 602.98 | 198.87 | 5 |
Day 16 | 8.20 | 8.47 | 102 | 10 | 131.20 | 156.49 | 1.97 | 0.49 | 0.00 | 0.00 | 607.08 | 242.17 | 0 |
Day 17 | 16.70 | 8.83 | 80 | 10 | 156.79 | 176.48 | 1.99 | 0.63 | 0.48 | 0.87 | 779.46 | 251.50 | 2 |
Day 18 | 20.30 | 8.73 | 130 | 10 | 104.12 | 156.01 | 1.49 | 0.67 | 0.20 | 0.34 | 872.69 | 376.24 | 1 |
Day 19 | 7.20 | 4.44 | 102 | 10 | 119.51 | 165.60 | 1.56 | 0.82 | 0.37 | 0.62 | 890.01 | 378.82 | 1 |
Day 20 | 7.70 | 5.25 | 109 | 10 | 175.91 | 168.13 | 1.41 | 0.78 | 0.16 | 0.28 | 1061.42 | 364.18 | 0 |
Day 21 | 6.10 | 3.87 | 75 | 10 | 120.60 | 162.57 | 1.75 | 0.70 | 0.13 | 0.28 | 659.86 | 232.52 | 0 |
Day 22 | 8.70 | 5.64 | 114 | 10 | 155.30 | 159.25 | 1.70 | 0.92 | 0.56 | 0.74 | 553.99 | 101.18 | 3 |
Day 23 | 6.80 | 4.49 | 98 | 10 | 154.83 | 160.11 | 1.54 | 0.69 | 0.45 | 0.68 | 711.34 | 213.34 | 2 |
Factor | R (95% C.I.) | p |
---|---|---|
Visual dirtiness score | 1.001 (0.980–1.023) | 0.9232 |
Daily visual dirtiness score | 1.004 (0.966–1.044) | 0.8259 |
Aerobic colony count | 19.884 (5.644–70.058) | <0.0001 * |
Total coliforms | 32.409 (11.531–91.092) | <0.0001 * |
Daily particulate index | 0.998 (0.996–1.000) | 0.0358 * |
Slaughtering hours particulate index | 0.990 (0.982–0.999) | 0.0327 * |
Slaughtered animals per day | 0.998 (0.979–1.017) | 0.8252 |
Daily average distance | 1.010 (0.999–1.021) | 0.771 |
Number of Variables | 8 |
---|---|
Est. number of factors | 4 |
Number of factors | 4 |
Degrees of Freedom | 35 |
Barlett’s Chi Square | 481.458 |
p-value | <0.0001 |
Communality Summary | Oblique Solution Reference Structure | |||||
---|---|---|---|---|---|---|
SMC | Final Estimate | Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
Visual dirtiness score | 0.383 | 0.782 | −0.198 | −1.818 × 10−4 | 0.962 | −0.052 |
Daily visual dirtiness score | 0.857 | 0.803 | 0.062 | 0.142 | 0.851 | −0.075 |
Slaughtered animals per day | 0.791 | 0.500 | 0.288 | −0.122 | 0.451 | 0.344 |
Daily average distance | 0.464 | 0.878 | −0.001 | 0.019 | −0.040 | 0.878 |
Aerobic colony count | 0.344 | 0.776 | 0.026 | 0.883 | −0.010 | −0.135 |
Total coliforms | 0.348 | 0.764 | 0.021 | 0.873 | 0.110 | 0.151 |
Daily particulate index | 0.981 | 0.914 | 0.804 | 0.052 | −4.405 × 10−4 | −0.036 |
Slaughtering hours particulate index | 0.981 | 0.978 | 0.874 | 0.022 | −0.138 | −0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cenci-Goga, B.T.; Tedeschini, E.; Costanzi, E.; Maranesi, M.; Karama, M.; El-Ashram, S.; Saraiva, C.; García-Díez, J.; Zerani, M.; Al-Olayan, E.M.; et al. Correlation between Aerosol Particulates, Carcass Dirtiness, and Hygiene Indicators of Bovine Carcasses in the Abattoir Environment: Results of a Study in Italy. Microbiol. Res. 2024, 15, 598-613. https://doi.org/10.3390/microbiolres15020039
Cenci-Goga BT, Tedeschini E, Costanzi E, Maranesi M, Karama M, El-Ashram S, Saraiva C, García-Díez J, Zerani M, Al-Olayan EM, et al. Correlation between Aerosol Particulates, Carcass Dirtiness, and Hygiene Indicators of Bovine Carcasses in the Abattoir Environment: Results of a Study in Italy. Microbiology Research. 2024; 15(2):598-613. https://doi.org/10.3390/microbiolres15020039
Chicago/Turabian StyleCenci-Goga, Beniamino T., Emma Tedeschini, Egidia Costanzi, Margherita Maranesi, Musafiri Karama, Saeed El-Ashram, Cristina Saraiva, Juan García-Díez, Massimo Zerani, Ebtesam M. Al-Olayan, and et al. 2024. "Correlation between Aerosol Particulates, Carcass Dirtiness, and Hygiene Indicators of Bovine Carcasses in the Abattoir Environment: Results of a Study in Italy" Microbiology Research 15, no. 2: 598-613. https://doi.org/10.3390/microbiolres15020039
APA StyleCenci-Goga, B. T., Tedeschini, E., Costanzi, E., Maranesi, M., Karama, M., El-Ashram, S., Saraiva, C., García-Díez, J., Zerani, M., Al-Olayan, E. M., & Grispoldi, L. (2024). Correlation between Aerosol Particulates, Carcass Dirtiness, and Hygiene Indicators of Bovine Carcasses in the Abattoir Environment: Results of a Study in Italy. Microbiology Research, 15(2), 598-613. https://doi.org/10.3390/microbiolres15020039