In Vitro Evaluation of Gastrointestinal Stability of Pediococcus pentosaceus Isolated from Fermented Maize and Pearl Millet for Possible Novel Chicken Probiotic Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Pediococcus spp.
Collection of Samples
2.2. Identification of Pedoicoccus spp.
2.2.1. Phenotypic Characterization of LAB
Colonial Morphology
Gram Reaction
Catalase Reaction
2.2.2. Molecular Identification of Pediococcus Strain
Extraction of Deoxyribonucleic Acid (DNA)
16S rRNA Gene Sequencing
Agarose Gel Electrophoresis
Sanger Sequencing
Phylogenetic Analysis
2.3. Resistance Tests of Pediococcus spp.
2.3.1. Acid Tolerance
2.3.2. Bile Salt Tolerance
2.3.3. Artificial Gastric Juice for Gastric Juice Tolerance Testing
2.3.4. Intestinal Fluid Tolerance
2.3.5. Antibiotics Resistance Testing
2.3.6. Antimicrobial Activity against Three Selected Pathogens
2.4. Statistical Analysis
3. Results
3.1. Isolation of Probiotic Potential LAB from Fermented Cereal Gruel
3.2. Phenotypic Characterization and Grouping of the LAB Isolates
3.3. Identification of Each LAB Isolate Group Using MALDI-TOF SM
3.4. Technological Properties Assay of LAB Isolates In Vitro
3.4.1. Acid Tolerance
3.4.2. Percentage Survival Rate of Isolates in Varying Levels of pH
3.4.3. Gastric Juice Tolerance
3.4.4. Percentage Survival of Isolates against Gastric Juice
3.4.5. Bile Salt Toreance
3.4.6. Percentage Survival of the Isolates in the Varying Bile Salt Concentrations
3.4.7. Intestinal Fluid
3.4.8. Percentage Survival of the Isolates against Intestinal Fluid
3.4.9. Antimicrobial Resistance Patterns of the Test LABs
3.4.10. Antimicrobial Activities against Pathogens
3.5. Identification by 16S rRNA Sequencing
4. Discussion
4.1. Isolation and Identification of the Test LAB Isolates
4.2. Acid and Gastric Juice Tolerance
4.3. Bile Salt Tolerance
4.4. Intestinal Fluid Tolerance
4.5. Antibiotic Tolerance and Properties of the Test LABs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Antimicrobial Resistance Surveillance System (GLASS) Report Early Implementation; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ohene Larbi, R.; Aurelia Ofori, L.; Sylverken, A.A.; Ayim-Akonor, M.; Obiri-Danso, K. Antimicrobial Resistance of Escherichia coli from Broilers, Pigs, and Cattle in the Greater Kumasi Metropolis, Ghana. Int. J. Microbiol. 2021, 2021, 5158185. [Google Scholar] [CrossRef]
- Caillard, R.; Lapointe, N. In vitro gastric survival of commercially available probiotic strains and oral dosage forms. Int. J. Pharm. 2017, 519, 125–127. [Google Scholar] [CrossRef]
- Verruck, S.; Carvalho, M.W.; Liz, G.R.; Amante, E.R.; Vieira, C.R.W.; Amboni, R.D.M.C.; Prudencio, E.S. Survival of Bifidobacterium BB-12 microencapsulated with fullfat goat’s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Rumin. Res. 2017, 153, 48–56. [Google Scholar] [CrossRef]
- Novik, G.; Savich, V. Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microb. Infect. 2020, 22, 8–18. [Google Scholar] [CrossRef]
- Sampath, V.; Koo, D.H.; Lim, C.B.; Kim, I.H. Supplemental Effect of Lactobacillus Plantarum on the Growth Performance, Nutrient Digestibility, Gas Emission, Excreta Microbiota, and Meat Quality in Broilers. Braz. J. Poult. Sci. 2021, 23, 1–8. [Google Scholar] [CrossRef]
- Jiang, S.; Cai, L.; Lv, L.; Li, L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb. Cell Fact. 2021, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; He, H.; Li, D.; Cao, L.; Khan, T.A.; Li, Y. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps. Front. Microbiol. 2019, 10, 1384. [Google Scholar] [CrossRef]
- Damodharan, K.; Lee, Y.S.; Palaniyandi, S.A.; Yang, S.H.; Suh, J.-W. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front. Microbiol. 2015, 6, 147138. [Google Scholar] [CrossRef]
- Danielsen, M.; Wind, A. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 2003, 82, 1–11. [Google Scholar] [CrossRef]
- de Man, J.C.; Rogosa, M.; Sharpe, M.E. Medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Damayanti, E.; Julendra, H.; Sofyan, A.; Hayati, S.N. Bile Salt and Acid Tolerant of Lactic Acid Bacteria Isolated from Proventriculus of Broiler Chicken E. Media Peternak. 2014, 37, 80–86. [Google Scholar] [CrossRef]
- Guesh, M.; Tesfaye, S.T.; Diriba, M.; Anteneh, T. In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products. Int. J. Microbiol. 2019, 2019, 7179514. [Google Scholar] [CrossRef]
- Torshizi, M.A.K.; Rahimi, S.H.; Mojgani, N.; Esmaeilkhanian, S.; Grimes, J.L. Screening of indigenous strains of lactic acid bacteria for development of a probiotic for poultry. Asian-Aus. J. Anim. Sci. 2008, 21, 1495–1500. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standard single disk method. Am. J. Clin. Pathol. 1966, 36, 493–496. [Google Scholar] [CrossRef]
- Ayeni, F.A.; Adeniyi, B.A.; Ogunbanwo, S.T.; Torsten Paarup, T.; Peláez, C.; Requena, T. Inhibition of uropathogens by lactic acid bacteria isolated from dairy foods and cow’s intestine in western Nigeria. Arch. Microbiol. 2009, 191, 639–648. [Google Scholar] [CrossRef]
- De Vries, M.C.; Vaughan, E.E.; Kleerebezem, M.; de Vosa, W.M. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 2006, 16, 1018–1028. [Google Scholar] [CrossRef]
- Ozaslan, K.M.; Kilic, I.H.; Bayil-Oguzkan, S.; Kurt, B.S.; Erdogan, N. Identification by using MALDI-TOF mass spectrometry of lactic acid bacteria isolated from non-commercial yogurts in southern Anatolia, Turkey. Int. Microbiol. 2017, 20, 25–30. [Google Scholar]
- Nacef, M.; Chevalier, M.; Chollet, S.; Drider, D.; Flahaut, C. MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles. Int. J. Food Microbiol. 2017, 247, 2–8. [Google Scholar] [CrossRef]
- Ronka, E.; Malinen, E.; Saarela, M.; Rinta-Koski, M.; Aarnikunnas, J.; Palva, A. Probiotic and milk technological properties of Lactobacillus brevis. Int. J. Food Microbiol. 2003, 83, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. Microencapsulation improved probiotics survival during gastric transit. J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- FAO; WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Takanashi, S.; Miura, A.; Abe, K.; Uchida, J.; Itoi, S.; Sugita, H. Variations in bile tolerance among Lactococcus lactis strains derived from different sources. Folia Microbiol. 2014, 59, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Succi, M.; Tremonte, P.; Reale, A.; Sorrentino, E.; Grazia, L.; Pacifico, S.; Coppola, R. Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 2005, 244, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Prasad, J.; Gill, H.; Smart, J. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 1998, 8, 993–1002. [Google Scholar] [CrossRef]
- Adeniyi, B.A.; Adetoye, A.; Ayeni, F.A. Antibacterial activities of lactic acid bacteria isolated from cow faeces against potential enteric pathogens. Afr. Health Sci. 2015, 15, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Ryu, E.H.; Chang, H.C. In vitro study of potentially probiotic lactic acid bacteria strains isolated from kimchi. Ann. Microbiol. 2013, 63, 1387–1395. [Google Scholar] [CrossRef]
- Jacobsen, C.N.; Rosenfeldt, V.; Hayford, A.E.; Møller, P.L.; Michaelsen, K.; Paerregaard, A.; Sandström, B.; Michael, T.; Jakobsen, M. Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus spp. by In Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans. Appl. Environ. Microbiol. 1999, 65, 4949–4956. [Google Scholar] [CrossRef]
- Adefisoye, M.A.; Green, E.; Njobeh, P.B.; Oyedeji, A.B.; Adebo, O.A. Quality control of probiotic beverages and organisms. In Probiotic Beverages; Chapter 18; Academic Press: Cambridge, MA, USA, 2021; pp. 389–402. [Google Scholar]
- Boke, H.; Aslim, B.; Alp, G. The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria. Arch. Biol. Sci. 2010, 62, 323–328. [Google Scholar] [CrossRef]
- Mishra, V.; Prasad, D.N. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 2005, 103, 109–115. [Google Scholar] [CrossRef]
- Liong, M.T.; Shah, N.P. Acid and bile tolerance and cholesterol removal ability of lactobacilli strain. J. Dairy Sci. 2005, 88, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.; Gahan, C.G.M.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. 2005, 29, 625–651. [Google Scholar] [CrossRef]
- Turpin, W.; Humblot, C.; Guyot, J.P. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl. Environ. Microbiol. 2011, 77, 8722–8734. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.O.; Seppo, S. In vitro adhesion assays for probiotics and their in vivo relevance: A review. Microb. Ecol. Health Dis. 2003, 15, 175–184. [Google Scholar] [CrossRef]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.A.G. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Perdigón, G.; Fuller, R.; Raya, R. Lactic Acid Bacteria and their Effect on the Immune System. Curr. Issues Intest. Microbiol. 2001, 2, 27–42. [Google Scholar] [PubMed]
- Cao, Z.; Pan, H.; Tong, H.; Gu, D.; Li, S.; Xu, Y.; Ge, C.; Lin, Q. In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—A Chinese fermented vegetable. Ann. Microbiol. 2016, 66, 963–971. [Google Scholar] [CrossRef]
- Ammor, M.S.; Flórez, A.B.; Mayo, B. Antibiotic resistance in non enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 2007, 24, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Mobarez, A.M.; Doust, R.H.; Sattari, M.; Mantheghi, N. Antimicrobial effects of bacteriocin like substance produced by L. acidophilus from traditional yoghurt on P. aeruginosa and S. aureus. J. Biol. Sci. 2008, 8, 221–224. [Google Scholar]
Isolate’s Group ID | Colonial Morphology | Catalase Test | Gram Staining | Cell Morphology |
---|---|---|---|---|
MZ 1 | Small, white and smooth | − | + | Cocci in clusters |
MZ 2 | Medium and off-white | − | + | Cocci in pairs |
MZ 3 | Off-white and smooth | − | + | Cocci in pairs |
MZ 4 | Medium white and shiny | − | + | Short chains cocci |
MLT 8 | White, small and shiny | − | + | Cocci, pairs and tetrad |
MLT5 | Off-white and small | − | + | Cocci in clusters |
MLT6 | White and mucoid | − | + | Cocci, single and pairs |
MLT 7 | White and smooth | − | + | Cocci in clusters |
pH 1 | MZ1 | MZ2 | MZ3 | MZ4 | MLT5 | MLT7 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
0 h | 0.04 bc | 0.03 c | 0.04 bc | 0.06 a | 0.04 bc | 0.05 ab | 0.003 | <0.01 |
1 h | 0.00002 | 0.00003 | 0.00002 | 0.00003 | 0.00004 | 0.00003 | 0.00001 | 0.126 |
2 h | 0.000008 | 0.000003 | 0.00001 | 0.00002 | 0.000013 | 0.000003 | 0.00001 | 0.074 |
3 h | 0.000001 | 0.000001 | 0.000001 | 0.000002 | 0.000001 | 0.000002 | 0.00000 | 0.653 |
pH 2 | ||||||||
0 h | 0.23 | 0.09 | 0.11 | 0.18 | 0.18 | 0.23 | 0.06 | 0.519 |
1 h | 0.130 | 0.44 | 0.14 | 0.20 | 0.16 | 0.15 | 0.14 | 0.613 |
2 h | 0.02 d | 0.04 c | 0.05 b | 0.10 a | 0.05 b | 0.03 d | 0.0018 | <0.01 |
3 h | 0.0003 d | 0.01 c | 0.0006 d | 0.04 a | 0.01 c | 0.02 b | 0.0005 | <0.01 |
pH 3 | ||||||||
0 h | 0.07 b | 11.47 a | 0.670 b | 0.89 b | 2.44 b | 1.33 b | 0.66 | <0.01 |
1 h | 0.07 b | 0.06 b | 0.16 b | 0.67 a | 0.44 a | 0.53 a | 0.05 | <0.01 |
2 h | 0.07 c | 0.05 c | 0.07 c | 0.67 a | 0.11 c | 0.24 b | 0.02 | <0.01 |
3 h | 0.01 b | 0.03 b | 0.07 b | 0.41 a | 0.05 b | 0.16 b | 0.03 | <0.01 |
pH 4 | ||||||||
0 h | 60.00 b | 28.76 b | 46.67 b | 28.89 b | 53.34 b | 117.78 a | 8.17 | <0.01 |
1 h | 25.74 c | 32.22 bc | 34.22 bc | 28.45 bc | 45.78 a | 37.11 ab | 1.98 | <0.01 |
2 h | 16.00 c | 28.44 b | 26.22 b | 23.78 bc | 43.56 a | 29.78 b | 1.98 | <0.01 |
3 h | 8.00 d | 19.78 ab | 22.67 ab | 16.00 bc | 11.56 cd | 24.86 a | 1.45 | <0.01 |
MZ1 | MZ2 | MZ3 | MZ4 | MLT5 | MLT7 | SEM | p-Value | |
---|---|---|---|---|---|---|---|---|
Gastric Juice (%) | ||||||||
0 h | 8.89 | 13.33 | 11.11 | 13.33 | 8.89 | 17.78 | 2.87 | 0.299 |
1 h | 0.067 | 0.089 | 0.1333 | 0.067 | 0.089 | 0.067 | 0.0202 | 0.223 |
2 h | 0.009 a | 0.008 b | 0.0007 b | 0.009 b | 0.0007 b | 0.0007 a | 0.0008 | <0.01 |
3 h | 0.000008 c | 0.000007 c | 0.000007 c | 0.00001 b | 0.000007 c | 0.00007 a | 0.000000 | <0.01 |
Bile Salt Concentration (%) | MZ1 | MZ2 | MZ3 | MZ4 | MLT5 | MLT7 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
0 | 28.9 | 44.4 | 35.6 | 37.8 | 24.4 | 33.3 | 10.1 | 0.789 |
0.3 | 20.0 | 40.0 | 28.9 | 33.3 | 37.8 | 33.3 | 10.8 | 0.818 |
0.5 | 22.22 | 35.56 | 28.89 | 22.22 | 26.67 | 31.11 | 8.11 | 0.831 |
1.0 | 17.78 | 31.11 | 26.67 | 11.11 | 20.00 | 26.67 | 6.48 | 0.338 |
1.5 | 17.78 | 17.78 | 20.00 | 6.67 | 13.33 | 26.67 | 3.39 | 0.025 |
2.0 | 13.33 | 15.55 | 15.55 | 6.67 | 15.55 | 20.00 | 2.27 | 0.082 |
2.5 | 6.67 | 6.67 | 8.89 | 6.67 | 13.33 | 17.78 | 2.03 | 0.009 |
MZ1 | MZ2 | MZ3 | MZ4 | MLT5 | MLT7 | SEM | p-Value | |
---|---|---|---|---|---|---|---|---|
Intestinal Fluid (%) | ||||||||
0 h | 16.15 b | 1.44 c | 1.56 c | 17.19 b | 7.67 bc | 42.30 a | 2.20 | <0.01 |
2 h | 0.067 | 1.003 | 0.310 | 0.244 | 1.023 | 1.030 | 0.393 | 0.319 |
4 h | 0.089 b | 1.557 ab | 2.667 a | 0.410 b | 2.447 a | 0.890 ab | 0.386 | <0.01 |
6 h | 0.154 b | 1.957 a | 1.110 ab | 0.491 ab | 1.777 ab | 0.447 ab | 0.364 | 0.019 |
8 h | 0.102 b | 0.931 ab | 1.110 ab | 0.670 b | 2.0 a | 0.423 b | 0.246 | <0.01 |
10 h | 0.0603 c | 0.321 bc | 0.3 bc | 0.4010 bc | 1.33 a | 0.4867 b | 0.0808 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumbie, G.Z.; Abormegah, L.; Asiedu, P.; Oduro-Owusu, A.D.; Amoah, K.O.; Danso, F.; Bortieh, B.B.; Nkrumah, T.; Mohamed, T.M.; Tang, Z. In Vitro Evaluation of Gastrointestinal Stability of Pediococcus pentosaceus Isolated from Fermented Maize and Pearl Millet for Possible Novel Chicken Probiotic Development. Microbiol. Res. 2024, 15, 787-805. https://doi.org/10.3390/microbiolres15020051
Bumbie GZ, Abormegah L, Asiedu P, Oduro-Owusu AD, Amoah KO, Danso F, Bortieh BB, Nkrumah T, Mohamed TM, Tang Z. In Vitro Evaluation of Gastrointestinal Stability of Pediococcus pentosaceus Isolated from Fermented Maize and Pearl Millet for Possible Novel Chicken Probiotic Development. Microbiology Research. 2024; 15(2):787-805. https://doi.org/10.3390/microbiolres15020051
Chicago/Turabian StyleBumbie, Gifty Ziema, Leonardo Abormegah, Peter Asiedu, Akua Durowaa Oduro-Owusu, Kwame Owusu Amoah, Frederick Danso, Bernard Bortei Bortieh, Theresah Nkrumah, Taha Mohamed Mohamed, and Zhiru Tang. 2024. "In Vitro Evaluation of Gastrointestinal Stability of Pediococcus pentosaceus Isolated from Fermented Maize and Pearl Millet for Possible Novel Chicken Probiotic Development" Microbiology Research 15, no. 2: 787-805. https://doi.org/10.3390/microbiolres15020051
APA StyleBumbie, G. Z., Abormegah, L., Asiedu, P., Oduro-Owusu, A. D., Amoah, K. O., Danso, F., Bortieh, B. B., Nkrumah, T., Mohamed, T. M., & Tang, Z. (2024). In Vitro Evaluation of Gastrointestinal Stability of Pediococcus pentosaceus Isolated from Fermented Maize and Pearl Millet for Possible Novel Chicken Probiotic Development. Microbiology Research, 15(2), 787-805. https://doi.org/10.3390/microbiolres15020051