Biochemical and Molecular Analysis of Gut Microbial Changes in Spodoptera littoralis (Lepidoptera: Noctuidae) to Counteract Cry1c Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Bt Cry1C Toxin Preparation
2.3. Toxicological Bioassay of Bt Cry1C
2.4. Isolation and Identification of Bacterial Isolates
2.5. Statistical Analysis
3. Results
3.1. Toxicological Bioassay
3.2. Identification of Bacterial Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sannino, L. Spodoptera littoralis in Italia: Possibili ragioni della crescente diffusione e mezzi di lotta. Inf. Fitopatol. 2003, 53, 28–31. [Google Scholar]
- Hatem, A.E.; Abdel-Samad, S.S.M.; Saleh, H.A.; Soliman, M.H.A.; Hussien, A.I. Toxicological and physiological activity of plant extracts against Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) larvae. Boletín Sanid. Veg. Plagas 2009, 35, 517–531. [Google Scholar]
- EFSA Panel on Plant Health (PLH). Scientific Opinion on the pest categorisation of Spodoptera littoralis. EFSA J. 2015, 13, 3987. [Google Scholar] [CrossRef]
- Martins, T.; Oliveira, L.; Garcia, P. Larval mortality factors of Spodoptera littoralis in the Azores. Biocontrol 2005, 50, 761–770. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Wessels, F.J. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification—A tool for tolerance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef]
- Valicente, F.H. Entomopathogenic viruses. In Natural Enemies of Insect Pests in Neotropical Agroecosystems: Biological Control and Functional Biodiversity; Springer: Cham, Switzerland, 2019; pp. 137–150. [Google Scholar]
- Fernández-Grandon, G.M.; Harte, S.J.; Ewany, J.; Bray, D.; Stevenson, P.C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 2020, 9, 173. [Google Scholar] [CrossRef]
- Rajagopal, R.; Mohen, S.; Bhatnagar, R.K. Direct infection of Spodoptera litura by photohabdus luminescens encapsulation in alginate beads. J. Invertebr. Pathol. 2006, 93, 50–53. [Google Scholar] [CrossRef]
- Charles, J.F.; Silva-Filha, M.H.; Nielsen-LeRoux, C. Mode of action of Bacillus sphaericus on mosquito larvae: Incidence on tolerance. In Entomopathogenic Bacteria: From Laboratory to Field Application; Springer: Dordrecht, The Netherlands, 2000; pp. 237–252. [Google Scholar]
- Stahly, D.P.; Andrews, R.E.; Yousten, A.A. The genus Bacillus-insect pathogens. Prokaryotes 2006, 4, 563–608. [Google Scholar]
- Shao, Y.; Chen, B.; Sun, C.; Ishida, K.; Hertweck, C.; Boland, W. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem. Biol. 2017, 24, 66–75. [Google Scholar] [CrossRef]
- Domínguez-Arrizabalaga, M.; Villanueva, M.; Escriche, B.; Ancín-Azpilicueta, C.; Caballero, P. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins 2020, 12, 430. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnol. J. 2011, 9, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Vachon, V.; Laprade, R.; Schwartz, J.L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol. 2012, 111, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Griko, N.; Junker, M.; Bulla, L.A. Bacillus thuringiensis: A genomics and proteomics perspective. Bioeng. Bugs 2010, 1, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Combe, B.E.; Defaye, A.; Bozonnet, N.; Puthier, D.; Royet, J.; Leulier, F. Drosophila microbiota modulates host metabolic gene expression via IMD/NF-κB signaling. PLoS ONE 2014, 9, e94729. [Google Scholar] [CrossRef] [PubMed]
- Chomwong, S.; Charoensapsri, W.; Amparyup, P.; Tassanakajon, A. Two host gut-derived lactic acid bacteria activate the proPO system and increase tolerance to an AHPND-causing strain of Vibrio parahaemolyticus in the shrimp Litopenaeus vannamei. Dev. Comp. Immunol. 2018, 89, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Lan, B.; Tao, X.; Lin, J.; You, M. Characterization of Spodoptera litura gut bacteria and their role in feeding and growth of the host. Front. Microbiol. 2020, 11, 1492. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yang, L.; Pang, X.; Zhang, R.; Zhu, Y.; Wang, P.; Cheng, G. A Mesh–Duox pathway regulates homeostasis in the insect gut. Nat. Microbiol. 2017, 2, 17020. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.J.; Lowe-Power, T.M.; Rubert-Nason, K.F.; Lindroth, R.L.; Raffa, K.F. Interactions between bacteria and aspen defense chemicals at the phyllosphere–herbivore interface. J. Chem. Ecol. 2016, 42, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, G.; Elbourne, L.D.H.; Kinjo, Y.; Saitoh, S.; Sabree, Z.; Hojo, M.; Yamada, A.; Hayashi, Y.; Shigenobu, S.; Bandi, C.; et al. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biol. Lett. 2013, 9, 20121153. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, J.P.; Moran, N.A. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc. Natl. Acad. Sci. USA 2007, 104, 19392–19397. [Google Scholar] [CrossRef]
- Flórez, L.V.; Biedermann, P.H.; Engl, T.; Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 2015, 32, 904–936. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, N.; Xie, S.; Zhang, X.; He, J.; Muhammad, A.; Sun, C.; Lu, X.; Shao, Y. Gut bacteria of the silkworm Bombyx mori facilitate host tolerance against the toxic effects of organophosphate insecticides. Environ. Int. 2020, 143, 105886. [Google Scholar] [CrossRef]
- Schmidt, K.; Engel, P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Biol. 2021, 224, jeb207696. [Google Scholar] [CrossRef]
- Wang, G.H.; Dittmer, J.; Douglas, B.; Huang, L.; Brucker, R.M. Coadaptation between host genome and microbiome under long-term xenobiotic-induced selection. Sci. Adv. 2021, 7, eabd4473. [Google Scholar] [CrossRef]
- Xiang, H.; Wei, G.F.; Jia, S.; Huang, J.; Miao, X.X.; Zhou, Z.; Huang, Y.P. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 2006, 52, 1085–1092. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, J.; Zhang, R.; Huang, Z.; Wan, Q.; Zhang, Z. Comparative analysis of gut bacterial communities in housefly larvae fed different diets using a high-throughput sequencing approach. FEMS Microbiol. Lett. 2019, 366, fnz126. [Google Scholar] [CrossRef]
- Adams, A.S.; Currie, C.R.; Cardoza, Y.; Klepzig, K.D.; Raffa, K.F. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 2009, 39, 1133–1147. [Google Scholar] [CrossRef]
- Vivero, R.J.; Jaramillo, N.G.; Cadavid-Restrepo, G.; Soto, S.I.U.; Herrera, C.X.M. Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasites Vectors 2016, 9, 496. [Google Scholar] [CrossRef]
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Z.; Yu, J.; Li, Z.; Liu, X.; Xu, H. Comparison of gut bacterial communities and their associations with host diets in four fruit borers. Pest Manag. Sci. 2020, 76, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.J.; Peiffer, M.; Felton, G.W.; Hoover, K. Host-Specific larval lepidopteran mortality to pathogenic Serratia mediated by poor diet. J. Invertebr. Pathol. 2022, 194, 107818. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Freitak, D.; Vogel, H.; Ping, L.; Shao, Y.; Cordero, E.A.; Andersen, G.; Westermann, M.; Heckel, D.G.; Boland, W. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 2012, 7, e36978. [Google Scholar] [CrossRef] [PubMed]
- Tetreau, G.; Grizard, S.; Patil, C.D.; Tran, F.-H.; Van, V.T.; Stalinski, R.; Laporte, F.; Mavingui, P.; Després, L.; Moro, C.V. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasites Vectors 2018, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Dubovskiy, I.M.; Grizanova, E.V.; Whitten, M.M.; Mukherjee, K.; Greig, C.; Alikina, T.; Kabilov, M.; Vilcinskas, A.; Glupov, V.V.; Butt, T.M. Immuno-physiological adaptations confer wax moth Galleria mellonella tolerance to Bacillus thuringiensis. Virulence 2016, 7, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, X.; De Mandal, S.; Shakeel, M.; Hua, Y.; Shoukat, R.F.; Fu, D.; Jin, F. Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environ. Pollut. 2021, 271, 116271. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.-Y.; Geng, L.-L.; Dai, P.-L.; Lang, Z.-H.; Shu, C.-L.; Lin, Y.; Zhou, T.; Song, F.-P.; Zhang, J. The influence of Bt-transgenic maize pollen on the bacterial diversity in the midgut of Chinese honeybees, Apis cerana cerana. J. Integr. Agric. 2013, 12, 474–482. [Google Scholar] [CrossRef]
- Castagnola, A.; Jurat-Fuentes, J.L. Intestinal regeneration as an insect tolerance mechanism to entomopathogenic bacteria. Curr. Opin. Insect Sci. 2016, 15, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yu, X.-Q.; Wang, Q.; Tao, X.; Li, J.; Zhang, S.; Xia, X.; You, M. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 2020, 107, 103661. [Google Scholar] [CrossRef] [PubMed]
- Login, F.H.; Balmand, S.; Vallier, A.; Vincent-Monégat, C.; Vigneron, A.; Weiss-Gayet, M.; Rochat, D.; Heddi, A. Antimicrobial peptides keep insect endosymbionts under control. Science 2011, 334, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Buchon, N.; Broderick, N.A.; Lemaitre, B. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat. Rev. Microbiol. 2013, 11, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Caccia, S.; Di Lelio, I.; La Storia, A.; Marinelli, A.; Varricchio, P.; Franzetti, E.; Banyuls, N.; Tettamanti, G.; Casartelli, M.; Giordana, B.; et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc. Natl. Acad. Sci. USA 2016, 113, 9486–9491. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Kim, S.H.; Kim, E.K.; Ha, E.M.; You, H.; Kim, B.; Kim, M.J.; Kwon, Y.; Ryu, J.H.; Lee, W.J. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 2013, 153, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 2016, 58, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Johnston, P.R.; Crickmore, N. Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the tobacco hornworm, Manduca sexta. Appl. Environ. Microbiol. 2009, 75, 5094–5099. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Martínez, P.; Naseri, B.; Navarro-Cerrillo, G.; Escriche, B.; Ferré, J.; Herrero, S. Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ. Microbiol. 2010, 12, 2730–2737. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; De Mandal, S.; Xu, X.; Jin, F. The tripartite interaction of host immunity–Bacillus thuringiensis infection–gut microbiota. Toxins 2020, 12, 514. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Chen, G.; Chen, F.; Han, L. Development and relative fitness of Cry1C resistance in Chilo suppressalis. Pest Manag. Sci. 2018, 74, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Moussa, S.; Kamel, E.; Ismail, I.M.; Mohammed, A. Inheritance of Bacillus thuringiensis Cry1C tolerance in Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae). Entomol. Res. 2016, 46, 61–69. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Gebbardi, K.; Schimana, J.; Muller, J.; Krantal, P.; Zeeck, A.; Vater, I. Screening for biologicaly active metabolites with endosymbiotic bacilli isolated from arthropods. FEMS Microbiol. Lett. 2001, 217, 199–205. [Google Scholar]
- Breakwell, D.; Woolverton, C.; MacDonald, B.; Smith, K.; Robison, R. Colony Morphology Protocol; American Society for Microbiology: Washington, DC, USA, 2007. [Google Scholar]
- Smith, A.C.; Hussey, M.A. Gram Stain Protocols. Am. Soc. Microbiol. 2005, 1, 1–9. [Google Scholar]
- Shields, P.; Cathcart, L. Motility Test Medium Protocol; American Society for Microbiology: Washington, DC, USA, 2011. [Google Scholar]
- Shields, P.; Cathcart, L. Oxidase Test Protocol; American Society for Microbiology: Washington, DC, USA, 2013. [Google Scholar]
- Brink, B. Urease Test Protocol; American Society for Microbiology: Washington, DC, USA, 2010. [Google Scholar]
- Hanson, A. Oxidative-Fermentation Test; American Society for Microbiology: Washington, DC, USA, 2008. [Google Scholar]
- McDevitt, S. Methyl Red and Voges-Proskauer Test Protocol; American Society for Microbiology: Washington, DC, USA, 2009. [Google Scholar]
- MacWilliams, M.P. Indole Test Protocol; American Society for Microbiology: Washington, DC, USA, 2009. [Google Scholar]
- Tille, P.M. Bailey and Scott’s Diagnostic Microbiology, 13th ed.; Mosby, Inc., an affiliate of Elsevier Inc.: St. Louis, MO, USA, 2014; p. 63043. [Google Scholar]
- Dela Cruz, T.E.E.; Torres, J.M.O. Gelatin Hydrolysis Test; American Society for Microbiology: Washington, DC, USA, 2012. [Google Scholar]
- Cheesbrough, M. District Laboratory Practice in Tropical Countries, Part 2; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Huang, S.; Sheng, P.; Zhang, H. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci. 2012, 13, 2563–2577. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.; Ryan, P. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 4–9. [Google Scholar]
- Engelmann, H.-D. Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia 1978, 18, 378–380. [Google Scholar] [CrossRef]
- Holtof, M.; Lenaerts, C.; Cullen, D.; Vanden Broeck, J. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res. 2019, 377, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.M.; Perlman, S.J. Toxin-mediated protection against natural enemies by insect defensive symbionts. In Advances in Insect Physiology; Academic Press: Cambridge, MA, USA, 2020; Volume 58, pp. 277–316. [Google Scholar]
- Bai, S.; Yao, Z.; Raza, M.F.; Cai, Z.; Zhang, H. Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci. 2021, 28, 286–301. [Google Scholar] [CrossRef]
- Chapman, R.F. The Insects: Structure and Function, 5th ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Chen, B.; Du, K.; Sun, C.; Vimalanathan, A.; Liang, X.; Li, Y.; Wang, B.; Lu, X.; Li, L.; Shao, Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 2018, 12, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Broderick, N.A.; Robinson, C.J.; McMahon, M.D.; Holt, J.; Handelsman, J.; Raffa, K.F. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol. 2009, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Buchon, N.; Broderick, N.A.; Chakrabarti, S.; Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 2009, 23, 2333–2344. [Google Scholar] [CrossRef]
- Van Frankenhuyzen, K.; Liu, Y.; Tonon, A. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. J. Invertebr. Pathol. 2010, 103, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Mason, K.L.; Stepien, T.A.; Blum, J.E.; Holt, J.F.; Labbe, N.H.; Rush, J.S.; Raffa, K.F.; Handelsman, J. From commensal to pathogen: Translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. MBio 2011, 2, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, W.; Luo, J.; Zhang, L.; Ji, J.; Zhu, X.; Wang, L.; Zhang, S.; Cui, J. Biodiversity of the microbiota in Spodoptera exigua (Lepidoptera: Noctuidae). J. Appl. Microbiol. 2019, 126, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Visweshwar, R.; Sharma, H.C.; Akbar, S.M.D.; Sreeramulu, K. Elimination of gut microbes with antibiotics confers tolerance to Bacillus thuringiensis toxin proteins in Helicoverpa armigera (Hubner). Appl. Biochem. Biotechnol. 2015, 177, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Polenogova, O.V.; Noskov, Y.A.; Yaroslavtseva, O.N.; Kryukova, N.A.; Alikina, T.; Klementeva, T.N.; Andrejeva, J.; Khodyrev, V.P.; Kabilov, M.R.; Kryukov, V.Y.; et al. Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS ONE 2021, 16, e0248704. [Google Scholar] [CrossRef] [PubMed]
- Polenogova, O.V.; Noskov, Y.A.; Artemchenko, A.S.; Zhangissina, S.; Klementeva, T.N.; Yaroslavtseva, O.N.; Khodyrev, V.P.; Kruykova, N.A.; Glupov, V.V. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. Pest Manag. Sci. 2022, 78, 3823–3835. [Google Scholar] [CrossRef] [PubMed]
- Gould, F.; Brown, Z.S.; Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide tolerance? Science 2018, 360, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect tolerance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Flagel, L.E.; Swarup, S.; Chen, M.; Bauer, C.; Wanjugi, H.; Carroll, M.; Goldman, B.S. Genetic markers for western corn rootworm tolerance to Bt toxin. G3 Genes Genomes Genet. 2015, 5, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.D.; Borase, H.P.; Salunke, B.K.; Patil, S.V. Alteration in Bacillus thuringiensis toxicity by curing gut flora: Novel approach for mosquito tolerance management. Parasitol. Res. 2013, 112, 3283–3288. [Google Scholar] [CrossRef]
- Shan, Y.; Shu, C.; Crickmore, N.; Liu, C.; Xiang, W.; Song, F.; Zhang, J. Cultivable gut bacteria of scarabs (Coleoptera: Scarabaeidae) inhibit Bacillus thuringiensis multiplication. Environ. Entomol. 2014, 43, 612–616. [Google Scholar] [CrossRef]
- Yin, Y.; Cao, K.; Zhao, X.; Cao, C.; Dong, X.; Liang, J.; Shi, W. Bt Cry1Ab/2Ab toxins disrupt the structure of the gut bacterial community of Locusta migratoria through host immune responses. Ecotoxicol. Environ. Saf. 2022, 238, 113602. [Google Scholar] [CrossRef]
- Chen, G.; Li, Q.; Yang, X.; Li, Y.; Liu, W.; Chen, F.; Han, L. Comparison of the co-occurrence patterns of the gut microbial community between Bt-susceptible and Bt-tolerant strains of the rice stem borer, Chilo suppressalis. J. Pest Sci. 2023, 96, 299–315. [Google Scholar] [CrossRef]
- Xia, X.; Zheng, D.; Zhong, H.; Qin, B.; Gurr, G.M.; Vasseur, L.; Lin, H.; Bai, J.; He, W.; You, M. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide tolerance. PLoS ONE 2013, 8, e68852. [Google Scholar]
- Vijayakumar, M.M.; More, R.P.; Rangasamy, A.; Gandhi, G.R.; Muthugounder, M.; Thiruvengadam, V.; Samaddar, S.; Jalali, S.K.; Sa, T. Gut Bacterial Diversity of Insecticide-Susceptible and -Resistant Nymphs of the Brown Planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and Elucidation of Their Putative Functional Roles. J. Microbiol. Biotechnol. 2018, 28, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Boucias, D.G.; Cai, Y.; Sun, Y.; Lietze, V.U.; Sen, R.; Raychoudhury, R.; Scharf, M.E. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol. Ecol. 2013, 22, 1836–1853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Li, J.; Liu, M.; Liu, Z. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: Digestion, detoxification and oxidative stress response. PLoS ONE 2016, 11, e0155254. [Google Scholar] [CrossRef]
- Chen, B.; Teh, B.S.; Sun, C.; Hu, S.; Lu, X.; Boland, W.; Shao, Y. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 2016, 6, 29505. [Google Scholar] [CrossRef]
- Bulet, P.; Hetru, C.; Dimarcq, J.L.; Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 1999, 23, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Deguenon, J.M.; Dhammi, A.; Ponnusamy, L.; Travanty, N.V.; Cave, G.; Lawrie, R.; Roe, R.M. Bacterial microbiota of field-collected Helicoverpa zea (Lepidoptera: Noctuidae) from transgenic Bt and Non-Bt cotton. Microorganisms 2021, 9, 878. [Google Scholar] [CrossRef]
- Tuanudom, R.; Yurayart, N.; Rodkhum, C.; Tiawsirisup, S. Diversity of midgut microbiota in laboratory-colonized and field-collected Aedes albopictus (Diptera: Culicidae): A preliminary study. Heliyon 2021, 7, e08259. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Li, J.Y.; Hu, Z.Q.; Liu, T.X.; Zhang, S.Z. Fall armyworm gut bacterial diversity associated with different developmental stages, environmental habitats, and diets. Insects 2022, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Rahman, M.M.; Han, C.; Shin, J.; Sa, K.J.; Kim, J. Spodoptera frugiperda (Lepidoptera: Noctuidae) Life Table Comparisons and Gut Microbiome Analysis Reared on Corn Varieties. Insects 2023, 14, 358. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Nan, X.; Zhang, Z.; Li, M. Composition and diversity analysis of the gut bacterial community of the Oriental armyworm, Mythimna separata, determined by culture-independent and culture-dependent techniques. J. Insect Sci. 2013, 13, 165. [Google Scholar] [CrossRef] [PubMed]
- Mereghetti, V.; Chouaia, B.; Montagna, M. New insights into the microbiota of moth pests. Int. J. Mol. Sci. 2017, 18, 2450. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.G.; Milani, C.; De Giori, G.S.; Sesma, F.; Van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Y.; Wu, W.M.; Zhao, J.; Jiang, L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 2014, 48, 13776–13784. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Lu, X. Diversity and functional roles of the gut microbiota in Lepidopteran insects. Microorganisms 2022, 10, 1234. [Google Scholar] [CrossRef]
- Du, Y.; Luo, S.; Zhou, X. Enterococcus faecium regulates honeybee developmental genes. Int. J. Mol. Sci. 2021, 22, 12105. [Google Scholar] [CrossRef]
- Mead, L.J.; Khachatourians, G.G.; Jones, G.A. Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Appl. Environ. Microbiol. 1988, 54, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Bar-Shmuel, N.; Shavit, R.; Behar, A.; Segoli, M. Gut bacteria of weevils developing on plant roots under extreme desert conditions. BMC Microbiol. 2019, 19, 311. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Peiffer, M.; Hoover, K.; Rosa, C.; Zeng, R.; Felton, G.W. Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor (s). New Phytol. 2017, 214, 1294–1306. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Fang, Y.; Hou, Y.; Shi, Z. The gut entomotype of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and their effect on host nutrition metabolism. Front. Microbiol. 2017, 8, 2291. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Shikano, I.; Hoover, K.; Liu, T.X.; Felton, G.W. Enterobacter ludwigii, isolated from the gut microbiota of Helicoverpa zea, promotes tomato plant growth and yield without compromising anti-herbivore defenses. Arthropod-Plant Interact. 2019, 13, 271–278. [Google Scholar] [CrossRef]
- Lilburn, T.G.; Kim, K.S.; Ostrom, N.E.; Byzek, K.R.; Leadbetter, J.R.; Breznak, J.A. Nitrogen fixation by symbiotic and free-living spirochetes. Science 2001, 292, 2495–2498. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Gordon, J.I. Honor thy symbionts. Proc. Natl. Acad. Sci. USA 2003, 100, 10452–10459. [Google Scholar] [CrossRef] [PubMed]
- Habineza, P.; Muhammad, A.; Ji, T.; Xiao, R.; Yin, X.; Hou, Y.; Shi, Z. The promoting effect of gut microbiota on growth and development of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Front. Microbiol. 2019, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Gurr, G.M.; Vasseur, L.; Zheng, D.; Zhong, H.; Qin, B.; You, M. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front. Microbiol. 2017, 8, 663. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Miranda, E.; Cossio-Bayugar, R.; Quezada-Delgado, M.R.; Sachman-Ruiz, B.; Reynaud-Garza, E. Staphylococcus saprophyticus causa infeccion letal en la garapata del Ganado Rhipicephalus microplius. Entomol. Mex. Mex. Sociendad Mex. Entomol. AC 2009, 104–108. [Google Scholar]
- Miranda-Miranda, E.; Cossio-Bayugar, R.; Quezada-Delgado, M.R.; Sachman-Ruiz, B.; Reynaud-Garza, E. Staphylococcus saprophyticus is a pathogen of the cattle tick Rhipicephalus (Boophilus) microplus. Biocontrol Sci. Technol. 2010, 20, 1055–1067. [Google Scholar] [CrossRef]
- Oishi, S.; Moriyama, M.; Koga, R.; Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool. Lett. 2019, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Suen, G.; Scott, J.J.; Aylward, F.O.; Adams, S.M.; Tringe, S.G.; Pinto-Tomás, A.A.; Currie, C.R. An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 2010, 6, e1001129. [Google Scholar] [CrossRef] [PubMed]
- Rosete-Enríquez, M.; Romero-López, A.A. Klebsiella bacteria isolated from the genital chamber of Phyllophaga obsoleta 1. Southwest. Entomol. 2017, 42, 1003–1014. [Google Scholar] [CrossRef]
- Cheng, D.; Guo, Z.; Riegler, M.; Xi, Z.; Liang, G.; Xu, Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 2017, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Sikorowski, P.P.; Lawrence, A.M.; Inglis, G.D. Effects of Serratia marcescens on rearing of the tobacco budworm (Lepidoptera: Noctuidae). Am. Entomol. 2001, 47, 51–60. [Google Scholar] [CrossRef]
- Tan, B.; Jackson, T.A.; Hurst, M.R. Virulence of Serratia strains against Costelytra zealandica. Appl. Environ. Microbiol. 2006, 72, 6417–6418. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Ekaterina, P.; Yang, S.S.; Lu, B.; Liu, B.; Ren, N.; Corvini, P.F.-X.; Xing, D. Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ. Sci. Technol. 2020, 54, 2821–2831. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Su, T.; Zhao, J.; Wang, Z. Isolation, identification, and characterization of polystyrene-degrading bacteria from the gut of Galleria mellonella (Lepidoptera: Pyralidae) larvae. Front. Bioeng. Biotechnol. 2021, 9, 736062. [Google Scholar] [CrossRef] [PubMed]
Strain | LC50 (95% FL *) (μg/g Diet) | Slope ± SE | RR | χ2 (df) |
---|---|---|---|---|
Susceptible | 1.8950 (1.3193–3.77) | 1.489249 ± 0.290369 | - | 1.761 (3) |
Tolerant | 12.263 (9.433–16.692) | 2.029307 ± 0.311965 | 6.5 | 1.212 (3) |
Isolate No. | Colony Color | Morphology | Motility | Gram | Biochemical Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Starch Hydrolysis | Catalase | Oxidase | Gelatin Hydrolysis | Indole Production | Methyl Red Test | Voges–Proskauer Test | Urease Production | Sucrose | Xylose | Lactose | Dextrose | Bacterial Type | |||||
S.L. S. 1 | White | rod | + | + | + | + | - | + | - | - | - | + | + | + | + | + | Bacillus sp. |
S.L. S. 2 | Lemon yellow | rod | + | - | + | + | - | - | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. S. 3 | Pale yellow | s. rod | - | - | - | + | - | - | - | - | - | + | - | + | - | + | Acinetobacter sp. |
S.L. S. 4 | Creamy white | rod | + | - | - | + | - | + | - | + | - | + | + | + | + | + | Citrobacter sp. |
S.L. S. 5 | Grey | cocci | - | + | - | - | - | - | - | + | + | - | + | + | +B | + | Enterococcus sp. |
S.L. S. 6 | Yellow | cocci | - | + | + | + | - | + | - | - | + | + | + | + | + | + | Staphylococcus sp. |
S.L. S. 7 | Pale yellow | s. rod | - | - | - | + | - | - | - | - | - | - | - | + | - | + | Acinetobacter sp. |
S.L. S. 8 | Yellow | cocci | - | + | - | + | - | + | - | + | + | + | + | - | + | + | Staphylococcus sp. |
S.L. S. 9 | Yellow | cocci | - | + | - | + | - | + | - | + | - | - | + | - | + | + | Staphylococcus sp. |
S.L. S. 10 | Creamy white | rod | + | - | - | + | - | - | - | + | - | + | + | + | + | + | Citrobacter sp. |
S.L. S. 11 | Lemon yellow | rod | + | - | + | + | - | + | - | - | + | - | + | + | + | + | Pantoea sp. |
S.L. S. 12 | Grey | cocci | - | + | - | - | - | - | - | + | - | - | + | + | + | + | Enterococcus sp. |
S.L. S. 13 | Grey | cocci | - | + | - | - | - | - | - | + | + | - | + | +B | + | +B | Enterococcus sp. |
S.L. S. 14 | Grey | rod | + | - | - | + | - | - | - | + | + | + | + | + | + | + | Enterobacter sp. |
S.L. S. 15 | Grey | rod | + | - | - | + | - | - | - | + | + | - | + | + | + | + | Enterobacter sp. |
S.L. S. 16 | Lemon yellow | rod | + | - | + | + | - | + | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. S. 17 | Grey | rod | + | + | - | - | - | + | - | + | - | - | - | + | - | + | Clostridium sp. |
S.L. S. 18 | White | rod | + | + | - | + | + | + | - | - | + | - | + | + | + | + | Bacillus sp. |
S.L. S. 19 | Slightly yellow | rod | + | + | - | + | + | + | - | - | + | - | + | + | - | + | Bacillus sp. |
S.L. S. 20 | Yellow | cocci | - | + | - | + | - | + | - | - | + | + | + | + | + | + | Staphylococcus sp |
S.L. S. 21 | Lemon yellow | rod | + | - | + | + | - | + | - | - | - | - | + | + | - | + | Pantoea sp. |
S.L. S. 22 | Pale yellow | s. rod | - | - | - | + | - | - | - | - | - | - | - | + | - | + | Acinetobacter sp. |
S.L. S. 23 | Grey | rod | + | - | - | + | - | - | - | + | + | - | + | + | + | + | Enterobacter sp. |
S.L. S. 24 | Grey | cocci | - | + | + | - | - | + | - | + | + | - | - | + | + | + | Enterococcus sp. |
S.L. S. 25 | Grey | cocci | - | + | - | - | - | - | - | + | + | - | + | + | + | + | Enterococcus sp. |
S.L. S. 26 | Grey | rod | + | - | - | + | - | - | - | + | + | - | + | + | + | + | Enterobacter sp. |
S.L. S. 27 | Yellow | rod | - | + | + | + | + | + | - | + | - | + | + | - | + | + | Micrococcus sp. |
S.L. S. 28 | White | rod | + | + | - | + | + | - | - | - | + | - | + | + | + | + | Bacillus sp. |
S.L. S. 29 | Creamy white | rod | + | - | - | + | - | + | - | + | - | + | + | + | + | + | Citrobacter sp. |
S.L. S. 30 | Lemon yellow | rod | + | - | + | + | - | + | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. S. 31 | White | rod | + | + | + | + | + | + | - | - | + | + | + | + | + | + | Bacillus sp. |
S.L. S. 32 | Grey | cocci | - | + | + | - | - | - | - | + | + | - | + | + | + | + | Enterococcus sp. |
S.L. S. 33 | Grey | rod | + | - | - | + | - | - | - | - | + | - | + | + | + | + | Enterobacter sp. |
S.L. S. 34 | Yellow | rod | - | + | + | + | + | + | - | + | - | + | + | - | - | + | Micrococcus sp. |
S.L. S. 35 | Creamy white | rod | + | - | - | + | - | - | - | + | - | + | + | + | + | + | Citrobacter sp. |
S.L. S. 36 | Grey | rod | + | + | - | - | - | + | - | + | - | - | - | + | - | + | Clostridium sp. |
S.L. S. 37 | Grey | cocci | - | + | + | - | - | + | - | + | + | + | + | + | + | + | Enterococcus sp. |
S.L. S. 38 | Slightly yellow | rod | + | + | + | + | + | + | - | - | + | + | + | + | + | + | Bacillus sp. |
S.L. S. 39 | Lemon yellow | rod | + | - | + | + | - | + | - | - | - | - | + | + | + | +B | Pantoea sp. |
S.L. S. 40 | White | rod | + | + | + | + | + | + | - | - | + | + | + | + | + | + | Bacillus sp. |
S.L. S. 41 | White | rod | + | + | + | + | + | + | - | + | + | + | - | - | - | + | Bacillus sp. |
S.L. S. 42 | Lemon yellow | rod | + | - | + | + | - | - | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. S. 43 | Bluish-white | rod | + | - | - | + | - | + | - | - | + | - | + | - | - | + | Serratia sp. |
S.L. S. 44 | Grayish-white | rod | - | - | - | + | + | - | - | - | + | + | - | + | - | + | Klebsiella sp. |
S.L. S. 45 | Bluish-white | rod | + | - | - | + | - | + | - | - | + | + | + | - | - | + | Serratia sp. |
S.L. T.1 | White | rod | + | + | - | + | + | + | - | - | + | - | + | + | - | + | Bacillus sp. |
S.L. T.2 | White | rod | + | + | - | + | + | + | - | - | + | - | + | + | - | + | Bacillus sp. |
S.L. T.3 | Lemon-yellow | rod | + | - | + | - | - | + | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. T.4 | Yellow | cocci | - | + | + | + | - | + | - | - | + | + | + | + | + | + | Staphylococcus sp. |
S.L. T.5 | White | rod | + | + | - | + | + | + | - | - | + | - | + | + | - | + | Bacillus sp. |
S.L. T.6 | Slightly yellow | rod | + | + | - | + | + | + | - | - | + | - | + | + | - | + | Bacillus sp. |
S.L. T.7 | White | rod | + | + | + | + | - | + | - | + | + | + | + | - | - | + | Bacillus sp. |
S.L. T.8 | Creamy-white | rod | + | - | - | + | - | - | - | + | - | + | + | + | + | + | Citrobacter sp. |
S.L. T.9 | Lemon-yellow | rod | + | - | + | + | - | + | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. T.10 | Grey | rod | + | + | - | - | - | + | - | + | - | - | - | + | - | + | Clostridium sp. |
S.L. T.11 | Creamy white | rod | + | - | - | + | - | - | - | + | - | + | + | + | + | + | Citrobacter sp. |
S.L. T.12 | White | rod | + | + | + | + | - | + | - | + | + | + | + | - | - | + | Bacillus sp. |
S.L. T.13 | Grey | cocci | - | + | - | - | - | - | - | - | + | - | + | + | + | + | Enterococuus Sp. |
S.L. T.14 | Slightly yellow | rod | + | + | + | + | - | + | - | + | + | + | + | - | - | + | Bacillus sp. |
S.L. T.15 | Lemon yellow | rod | + | - | + | + | - | + | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. T.16 | White | rod | + | + | - | + | + | - | - | - | + | - | + | - | - | + | Bacillus sp. |
S.L. T.17 | Yellow | cocci | - | + | + | + | - | + | - | - | + | + | + | + | + | + | Staphylococcus sp. |
S.L. T.18 | Yellow | rod | - | + | - | - | + | + | - | + | - | + | + | - | + | + | Micrococcus sp. |
S.L. T.19 | White | rod | + | + | + | + | - | + | - | + | + | + | + | - | - | + | Bacillus sp. |
S.L. T.20 | Grey | cocci | - | + | - | - | - | - | - | + | - | + | + | + | + | + | Enterococcus sp. |
S.L. T.21 | Slightly yellow | rod | + | + | + | + | - | + | - | + | + | + | + | - | - | + | Bacillu sp. |
S.L. T.22 | Lemon yellow | rod | + | - | + | - | - | + | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. T.23 | Grey | rod | + | + | - | - | - | + | - | + | - | + | - | - | - | + | Clostridium sp. |
S.L. T.24 | Grey | cocci | - | + | - | - | - | - | - | + | - | + | + | + | + | + | Enterococcus sp. |
S.L. T.25 | Grey | cocci | - | + | - | - | - | - | - | + | - | + | + | + | + | + | Enterococcus sp. |
S.L. T.26 | Grey | rod | + | + | - | - | - | + | - | + | - | - | - | - | - | + | Clostridium sp. |
S.L. T.27 | White | rod | + | + | - | + | + | + | - | - | + | - | + | + | - | + | Bacillus sp. |
S.L. T.28 | White | rod | + | + | + | + | - | + | - | + | + | + | + | - | - | + | Bacillus sp. |
S.L. T.29 | Grey | cocci | - | + | - | - | - | - | - | - | + | - | + | + | + | + | Enterococcus sp. |
S.L. T.30 | Grey | cocci | - | + | - | - | - | - | - | + | + | + | + | + | + | + | Enterococcus sp. |
S.L. T.31 | Grey | cocci | - | + | - | - | - | - | - | - | + | - | + | + | + | + | Enterococcus sp. |
S.L. T.32 | Lemon yellow | rod | + | - | + | + | - | + | - | - | - | - | + | + | + | + | Pantoea sp. |
S.L. T.33 | Grey | cocci | - | + | - | - | - | - | - | + | + | - | + | + | +B | + | Enterococcus sp. |
S.L. T.34 | Creamy white | rod | + | - | - | + | - | - | - | + | - | + | + | + | + | + | Citrobacter sp. |
S.L. T.35 | Grey | cocci | - | + | + | - | - | - | - | + | + | - | - | + | + | + | Enterococcus sp. |
S.L. T.36 | Yellow | rod | - | + | + | + | + | + | - | + | - | + | + | - | + | + | Micrococcus sp. |
S.L. T.37 | Grey | cocci | - | + | + | - | - | + | - | - | + | - | - | + | + | + | Enterococcus sp. |
S.L. T.38 | Grey | rod | + | - | - | + | - | - | - | + | + | - | + | + | + | + | Enterobacter sp. |
S.L. T.39 | Grey | cocci | - | + | + | - | - | + | - | - | + | - | + | + | + | + | Enterococcus sp. |
S.L. T.40 | Grey | cocci | - | + | - | - | - | - | - | + | + | + | + | + | + | + | Enterococcus sp. |
S.L. T.41 | Pale yellow | s.rod | + | - | - | + | - | + | - | - | - | - | - | + | - | + | Acinetobacter sp. |
S.L. T.42 | Yellow | rod | - | + | - | - | + | + | - | + | - | + | + | - | + | + | Micrococcus sp. |
S.L. T.43 | Grey | Cocci | - | + | - | + | + | + | - | + | - | + | + | - | + | + | Enterococcus sp. |
S.L. T.44 | Grey | rod | + | + | - | - | - | - | - | + | - | - | - | - | - | + | Clostridium sp. |
S.L. T.45 | Yellow | Cocci | - | + | - | + | - | + | - | + | - | + | + | + | + | + | Staphylococcus sp. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El Aziz, A.; Moussa, S.; Yassin, M.T.; El Husseiny, I.; El Kholy, S. Biochemical and Molecular Analysis of Gut Microbial Changes in Spodoptera littoralis (Lepidoptera: Noctuidae) to Counteract Cry1c Toxicity. Microbiol. Res. 2024, 15, 943-961. https://doi.org/10.3390/microbiolres15020062
Abd El Aziz A, Moussa S, Yassin MT, El Husseiny I, El Kholy S. Biochemical and Molecular Analysis of Gut Microbial Changes in Spodoptera littoralis (Lepidoptera: Noctuidae) to Counteract Cry1c Toxicity. Microbiology Research. 2024; 15(2):943-961. https://doi.org/10.3390/microbiolres15020062
Chicago/Turabian StyleAbd El Aziz, Abeer, Saad Moussa, Mohamed T. Yassin, Iman El Husseiny, and Samar El Kholy. 2024. "Biochemical and Molecular Analysis of Gut Microbial Changes in Spodoptera littoralis (Lepidoptera: Noctuidae) to Counteract Cry1c Toxicity" Microbiology Research 15, no. 2: 943-961. https://doi.org/10.3390/microbiolres15020062
APA StyleAbd El Aziz, A., Moussa, S., Yassin, M. T., El Husseiny, I., & El Kholy, S. (2024). Biochemical and Molecular Analysis of Gut Microbial Changes in Spodoptera littoralis (Lepidoptera: Noctuidae) to Counteract Cry1c Toxicity. Microbiology Research, 15(2), 943-961. https://doi.org/10.3390/microbiolres15020062