Exploring the Potential Influence of the Human Gut Microbiota on the Gut Resistome: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Selection of Studies
2.3. Data Extraction and Synthesis
2.4. Assessment Parameters
2.5. Risk of Assessment Bias and Critical Appraisal of Eligible Studies
3. Results
3.1. Characteristics of Studies Included in the Analysis
3.2. The Potential Influence of the Gut Microbiome on the Gut Resistome
3.3. The Potential Association between the Gut Microbiota and E. coli Resistome
4. Discussion
4.1. Strengths and Limitations of the Study
4.2. Conclusions and Future Directives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. Antibiotic Resistance. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 15 August 2024).
- World Health Organisation. Proportion of Bloodstream Infection Due to Escherichia coli Resistant to Third Generation Cephalosporins. WHO. 2023. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/sdg-3.d.2--proportion-of-bloodstream-infections-due-to-selected-antimicrobial-resistant-organisms--median-(-) (accessed on 3 November 2023).
- The United Nations. The Sustainable Development Goal Report, 2023. UN 2023. Available online: https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf (accessed on 3 November 2023).
- Million, M.; Diallo, A.; Raoult, D. Gut microbiota and malnutrition. Microb. Pathog. 2017, 106, 127–138. [Google Scholar] [PubMed]
- Nath, A.; Bhattacharjee, R.; Nandi, A.; Sinha, A.; Kar, S.; Manoharan, N.; Mitra, S.; Mojumdar, A.; Panda, P.K.; Patro, S.; et al. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomed. Pharmacother. 2022, 151, 113122. [Google Scholar]
- Priadko, K.; Romano, L.; Olivieri, S.; Romeo, M.; Barone, B.; Sciorio, C.; Spirito, L.; Morelli, M.; Crocetto, F.; Arcaniolo, D.; et al. Intestinal microbiota, intestinal permeability and the urogenital tract: Is there a pathophysiological link? J. Physiol. Pharmacol. 2022, 73, 575–585. [Google Scholar]
- Moore, A.M.; Patel, S.; Forsberg, K.J.; Wang, B.; Bentley, G.; Razia, Y.; Qin, X.; Tarr, P.I.; Dantas, G. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS ONE 2013, 8, e78822. [Google Scholar]
- Purkait, D.; Hameed, S.; Fatima, Z. Gut microbiome: Current development, challenges, and perspectives. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 227–241. [Google Scholar]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [PubMed]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar]
- Dethlefsen, L.; Huse, S.; Sogin, M.L.; Relman, D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008, 6, e280. [Google Scholar]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar]
- Bibbò, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4742–4749. [Google Scholar]
- Chiu, K.; Warner, G.; Nowak, R.A.; Flaws, J.A.; Mei, W. The impact of environmental chemicals on the gut microbiome. Toxicol. Sci. 2020, 176, 253–284. [Google Scholar]
- Duan, Y.; Chen, Z.; Tan, L.; Wang, X.; Xue, Y.; Wang, S.; Wang, Q.; Das, R.; Lin, H.; Hou, J.; et al. Gut resistomes, microbiota and antibiotic residues in Chinese patients undergoing antibiotic administration and healthy individuals. Sci. Total Environ. 2020, 705, 135674. [Google Scholar] [PubMed]
- Penders, J.; Stobberingh, E.E.; Savelkoul, P.H.; Wolffs, P.F. The human microbiome as a reservoir of antimicrobial resistance. Front. Microbiol. 2013, 4, 87. [Google Scholar]
- von Wintersdorff, C.J.; Wolffs, P.F.; van Niekerk, J.M.; Beuken, E.; van Alphen, L.B.; Stobberingh, E.E.; Oude Lashof, A.M.; Hoebe, C.J.; Savelkoul, P.H.; Penders, J. Detection of the plasmid-mediated colistin-resistance gene mcr-1 in faecal metagenomes of Dutch travellers. J. Antimicrob. Chemother. 2016, 71, 3416–3419. [Google Scholar]
- Jiang, X.; Ellabaan, M.M.H.; Charusanti, P.; Munck, C.; Blin, K.; Tong, Y.; Weber, T.; Sommer, M.O.A.; Lee, S.Y. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 2017, 8, 15784. [Google Scholar]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [PubMed]
- Martínez, J.L.; Baquero, F. Emergence and spread of antibiotic resistance: Setting a parameter space. Upsala J. Med. Sci. 2014, 119, 68–77. [Google Scholar]
- DeFrancesco, A.S.; Tanih, N.F.; Samie, A.; Guerrant, R.L.; Bessong, P.O. Antibiotic resistance patterns and beta-lactamase identification in Escherichia coli isolated from young children in rural Limpopo Province, South Africa: The MAL-ED cohort. S. Afr. Med. J. 2017, 107, 205–214. [Google Scholar] [PubMed]
- Feng, J.; Li, B.; Jiang, X.; Yang, Y.; Wells, G.F.; Zhang, T.; Li, X. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses. Environ. Microbiol. 2018, 20, 355–368. [Google Scholar]
- Gasparrini, A.J.; Wang, B.; Sun, X.; Kennedy, E.A.; Hernandez-Leyva, A.; Ndao, I.M.; Tarr, P.I.; Warner, B.B.; Dantas, G. Persistent metagenomic signatures of early-life hospitalisation and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 2019, 4, 2285–2297. [Google Scholar]
- Chong, C.W.; Alkatheeri, A.H.S.; Ali, N.; Tay, Z.H.; Lee, Y.L.; Paramasivam, S.J.; Jeevaratnam, K.; Low, W.Y.; Lim, S.H.E. Association of antimicrobial resistance and gut microbiota composition in human and non-human primates at an urban ecotourism site. Gut Pathog. 2020, 12, 14. [Google Scholar]
- Carvalho, M.J.; Sands, K.; Thomson, K.; Portal, E.; Mathias, J.; Milton, R.; Gillespie, D.; Dyer, C.; Akpulu, C.; Boostrom, I.; et al. Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low-and middle-income countries. Nat. Microbiol. 2022, 7, 1337–1347. [Google Scholar]
- Narayan, S.; Nayak, A.; King, C.L. Inflammatory pseudotumor of the liver with Escherichia coli in the sputum. Case Rep. Med. 2015, 1, 249210. [Google Scholar]
- Kobayashi, T.; Ikeda, M.; Okada, Y.; Higurashi, Y.; Okugawa, S.; Moriya, K. Clinical and microbiological characteristics of recurrent Escherichia coli bacteremia. Microbiol. Spectr. 2021, 9, e01399-21. [Google Scholar] [PubMed]
- Geurtsen, J.; de Been, M.; Weerdenburg, E.; Zomer, A.; McNally, A.; Poolman, J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol. Rev. 2022, 46, fuac031. [Google Scholar]
- Mohsin, A.S.; Alsakini, A.H.; Ali, M.R. Outbreak of drug resistance Escherichia coli phylogenetic F group associated urinary tract infection. Iran J. Microbiol. 2022, 14, 341–350. [Google Scholar] [PubMed]
- Abdullah, R.N.; Juboory, Y.H.O.; Noomi, B.S. Antibiotic Susceptibility Profile and Virulence Factors Profile of E. coli Isolated from Otitis Media. Ann. Romanian Soc. Cell Biol. 2023, 27, 105–111. [Google Scholar]
- Balestracci, A.; Luz, D.; Sacerdoti, F.; Amaral, M.M.; Gómez-Duarte, O.G.; Piazza, R.M.F. Therapeutic Options for Diarrheagenic Escherichia coli. In Trending Topics in Escherichia coli Research: The Latin American Perspective; Springer International Publishing: Cham, Switzerland, 2023; pp. 339–360. [Google Scholar]
- Campbell, T.P.; Sun, X.; Patel, V.H.; Sanz, C.; Morgan, D.; Dantas, G. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 2020, 14, 1584–1599. [Google Scholar]
- Melo, R.T.; Oliveira, R.P.; Silva, B.F.; Monteiro, G.P.; Saut, J.P.E.; Costa, L.R.M.; Dias, S.D.C.; Rossi, D.A. Phylogeny and Virulence Factors of Escherichia coli Isolated from Dogs with Pyometra. Vet. Sci. 2022, 9, 158. [Google Scholar] [CrossRef]
- Sajeev, S.; Hamza, M.; Rajan, V.; Vijayan, A.; Sivaraman, G.K.; Shome, B.R.; Holmes, M.A. Resistance profiles and genotyping of extended-spectrum beta-lactamase (ESBL)-producing and non-ESBL-producing E. coli and Klebsiella from retail market fishes. Infect. Genet. Evol. 2023, 112, 105446. [Google Scholar] [PubMed]
- Bargheet, A.; Klingenberg, C.; Esaiassen, E.; Hjerde, E.; Cavanagh, J.P.; Bengtsson-Palme, J.; Pettersen, V.K. Development of early life gut resistome and mobilome across gestational ages and microbiota-modifying treatments. EBioMedicine 2023, 92, 104606. [Google Scholar]
- Lebeaux, R.M.; Coker, M.O.; Dade, E.F.; Palys, T.J.; Morrison, H.G.; Ross, B.D.; Baker, E.R.; Karagas, M.R.; Madan, J.C.; Hoen, A.G. The infant gut resistome is associated with E. coli and early-life exposures. BMC Microbiol. 2021, 21, 201. [Google Scholar]
- Pärnänen, K.; Karkman, A.; Hultman, J.; Lyra, C.; Bengtsson-Palme, J.; Larsson, D.J.; Rautava, S.; Isolauri, E.; Salminen, S.; Kumar, H.; et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 2018, 9, 3891. [Google Scholar]
- Li, X.; Stokholm, J.; Brejnrod, A.; Vestergaard, G.A.; Russel, J.; Trivedi, U.; Thorsen, J.; Gupta, S.; Hjelmsø, M.H.; Shah, S.A.; et al. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe 2021, 29, 975–987. [Google Scholar]
- Zhang, W.; Han, N.; Zhang, T.; Qiang, Y.; Peng, X.; Li, X.; Kan, B. The spatial features and temporalchanges in the gut microbiota of a healthy Chinese population. Microbiol. Spectr. 2022, 10, e01310-22. [Google Scholar] [PubMed]
- Pereira-Dias, J.; Nguyen Ngoc Minh, C.; Tran Thi Hong, C.; Nguyen Thi Nguyen, T.; Ha Thanh, T.; Zellmer, C.; Chung The, H.; Pike, L.; Higginson, E.E.; Baker, S. The gut microbiome of healthy Vietnamese adults and children is a major reservoir for resistance genes against critical antimicrobials. J. Infect. Dis. 2021, 224 (Suppl. S7), S840–S847. [Google Scholar]
- Trinh, P.; Roberts, M.C.; Rabinowitz, P.M.; Willis, A.D. Differences in gut metagenomes between dairy workers and community controls: A cross-sectional study. bioRxiv, 2023; preprint. [Google Scholar]
- Wang, Y.; Lyu, N.; Liu, F.; Liu, W.J.; Bi, Y.; Zhang, Z.; Ma, S.; Cao, J.; Song, X.; Wang, A.; et al. More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environ. Int. 2021, 153, 106534. [Google Scholar]
- Dwiyanto, J.; Huët, M.A.L.; Hussain, M.H.; Su, T.T.; Tan, J.B.L.; Toh, K.Y.; Lee, J.W.J.; Rahman, S.; Chong, C.W. Social demographics determinants for resistome and microbiome variation of a multiethnic community in Southern Malaysia. NPJ Biofilms Microbiomes 2023, 9, 55. [Google Scholar]
- Clemente, J.C.; Pehrsson, E.C.; Blaser, M.J.; Sandhu, K.; Gao, Z.; Wang, B.; Magris, M.; Hidalgo, G.; Contreras, M.; Noya-Alarcón, Ó.; et al. The microbiome of uncontacted Amerindians. Sci. Adv. 2015, 1, e1500183. [Google Scholar]
- Khan, I.; Yasir, M.; Farman, M.; Kumosani, T.; AlBasri, S.F.; Bajouh, O.S.; Azhar, E.I. Evaluation of gut bacterial community composition and antimicrobial resistome in pregnant and non-pregnant women from Saudi population. Infect. Drug Resist. 2019, 12, 1749–1761. [Google Scholar] [PubMed]
- Siezen, R.J.; Kleerebezem, M. The human gut microbiome: Are we our enterotypes? Microb. Biotechnol. 2011, 4, 550. [Google Scholar]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar]
- Hu, Y.; Yang, X.; Lu, N.; Zhu, B. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal. Gut Microbes 2014, 5, 245–249. [Google Scholar]
- Xu, J.; Sangthong, R.; McNeil, E.; Tang, R.; Chongsuvivatwong, V. Antibiotic use in chicken farms in northwestern China. Antimicrob. Resist. Infect. Control 2020, 9, 10. [Google Scholar] [PubMed]
- Afridi, O.K.; Ali, J.; Chang, J.H. Fecal microbiome and Resistome profiling of healthy and diseased Pakistani individuals using next-generation sequencing. Microorganisms 2021, 9, 616. [Google Scholar] [CrossRef]
- Sun, S.; Luo, L.; Liang, W.; Yin, Q.; Guo, J.; Rush, A.M.; Lv, Z.; Liang, Q.; Fischbach, M.A.; Sonnenburg, J.L.; et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc. Natl. Acad. Sci. USA 2020, 117, 27509–27515. [Google Scholar]
- Mitsuoka, T. Bifidobacteria and their role in human health. J. Ind. Microbiol. 1990, 6, 263–267. [Google Scholar]
- Gagnon, M.; Kheadr, E.E.; Le Blay, G.; Fliss, I. In vitro inhibition of Escherichia coli O157: H7 by bifidobacterial strains of human origin. J. Food Microbiol. 2004, 92, 69–78. [Google Scholar]
- Piddock, L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 2006, 19, 382–402. [Google Scholar]
- Nishino, K.; Yamasaki, S.; Nakashima, R.; Zwama, M.; Hayashi-Nishino, M. Function and inhibitory mechanisms of multidrug efflux pumps. Front. Microbiol. 2021, 12, 737288. [Google Scholar]
- Nuonming, P.; Khemthong, S.; Dokpikul, T.; Sukchawalit, R.; Mongkolsuk, S. Characterization and regulation of AcrABR, a RND-type multidrug efflux system, in Agrobacterium tumefaciens C58. Microbiol. Res. 2018, 214, 146–155. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Research Agenda for Antimicrobial Resistance in Human Health. Policy Brief. June 2023. WHO 2023. Available online: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/who-global-research-agenda-for-amr-in-human-health---policy-brief.pdf?sfvrsn=f86aa073_4&download=true (accessed on 4 November 2023).
- Barba, M.; Czosnek, H.; Hadidi, A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 2014, 6, 106–136. [Google Scholar] [CrossRef] [PubMed]
- Marchant, J. When antibiotics turn toxic. Nature 2018, 555, 431–433. [Google Scholar] [PubMed]
- Naylor, N.R.; Pouwels, K.B.; Hope, R.; Green, N.; Henderson, K.L.; Knight, G.M.; Atun, R.; Robotham, J.V.; Deeny, S.R. The health and cost burden of antibiotic resistant and susceptible Escherichia coli bacteraemia in the English hospital setting: A national retrospective cohort study. PLoS ONE 2019, 14, e0221944. [Google Scholar]
- Peters, L.; Olson, L.; Khu, D.T.; Linnros, S.; Le, N.K.; Hanberger, H.; Hoang, N.T.; Tran, D.M.; Larsson, M. Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. PLoS ONE 2019, 14, e0215666. [Google Scholar]
- Collado, M.C.; Gueimonde, M.; Salminen, S. Probiotics in adhesion of pathogens: Mechanisms of action. In Bioactive Foods in Promoting Health; Academic Press: Cambridge, MA, USA, 2010; pp. 353–370. [Google Scholar]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar]
- Elshaghabee, F.M.; Rokana, N. Dietary management by probiotics, prebiotics and synbiotics for the prevention of antimicrobial resistance. In Sustainable Agriculture Reviews 49: Mitigation of Antimicrobial Resistance Vol 2. Natural and Synthetic Approaches; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2021; pp. 33–56. [Google Scholar]
- Nataraj, B.H.; Mallappa, R.H. Antibiotic resistance crisis: An update on antagonistic interactions between probiotics and methicillin-resistant Staphylococcus aureus (MRSA). Curr. Microbiol. 2021, 78, 2194–2211. [Google Scholar] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Pot, B.; Vandenplas, Y. Factors that influence clinical efficacy of live biotherapeutic products. Eur. J. Med. Res. 2021, 26, 40. [Google Scholar] [PubMed]
S/N | Country of Study | Study Design | Study Objective/Hypothesis | Age of Participant and Study Time Points | Sample Size | DNA Extraction and Quantification | Sequencing Technology and Platform | Major Bioinformatic Database and Pipelines | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 ab | Norway | Longitudinal | Determine resistome and mobilome across gestational ages and microbiota-modifying treatment. | 7 days, 28 days, 120 days, 365 days. | n = 10 | NorDiag Arrow Stool DNA Extraction kit (+bead beating); Qubit, Nanodrop. | Shotgun Illumina Miseq | Bowtie2; MetaPhlAn3 (based on CHOCOPhlAn); MetaSPAdes and MetaQUAST (from QUAST); ShortBRED based on CARD; NanoARG; HUMAnN. | [38] |
2 ab | USA | Longitudinal | Determine factors associated with early life resistome development. | 6 weeks and 1 year. | n = 195 | Fecal DNA extraction kit; Qubit. | Shotgun | MetaPhlAn; PanPhlAn; HUMAnN2; ShortBRED based on CARD. | [39] |
3 ab | USA | Longitudinal | Determine potential sources of infant and maternal ARGs. | Mother and child; 1 month, 6 months. | n = 10 | InviMag® Stool DNA Kit; Qubit, Nanodrop. | Shotgun Illumina NextSeq | Bowtie2; MetaPhlAn2; CARD; ResFinder; PlasmidFinder. | [40] |
4 ab | Denmark | Longitudinal | Characterize the ARGs acquired during the first year of life and assess the impacts of diverse environmental exposures on ARG load. | n = 662—shotgun n = 660—16S rRNA | PowerMag Soil DNA Isolation Kit. | Shotgun Illumina NovaSeq 16SrRNA sequencing-Illumina Miseq | SPAdes; HUMAnN2; MetaPhlAn; MetaWRAP; MetaBAT2; Bowtie2; QIIME2. CARD. | [41] | |
5 a | China | Longitudinal | To understand the characteristics of the gut microbial composition. | 18–69 years (mean = 28.6) | n = 7 (followed monthly for 1 year) | QIAamp Fast DNA Stool Mini Kit. | Shotgun Illumina HiSeq | HUMAnN3; UniRef90; KEGG; Kraken2; ResFinder; SPAdes. | [42] |
6 a | Vietnam | Cross-sectional | Healthy human gut in Vietnam is a source of ARGs transferable to gut pathogens. | 0–23 months 2–5 years >18 years | n = 42 | FastDNA soil kit. | Shotgun Illumina | Bowtie2; Kraken2; Bracken; ARGANNOT database. | [43] |
7 a | USA | Cross-sectional | To characterize the microbiome and resistome of dairy workers. | Mean age of dairy workers = 38.4; Mean age of community controls = 49.5 | n = 16 (10 dairy workers and 6 non-dairy workers | MoBio DNeasy PowerLyzer PowerSoil Kit. | Shotgun Illumina HiSeq | MetaPhlAn3; ChocoPhlAn; Anvio; Centrifuge; MEGAHIT; ABRicate; MetaCherchant; Kraken2; CARD. | [44] |
8 a | China | Cross-sectional. | Determine antibiotic resistome shared between chicken farms and live poultry market workers and those with no contact with live poultry markets. | NR | n = 36 (18 live poultry market workers and 18 non-workers) | DNeasy PowerSoil Pro Kit; Agarose gel electrophoresis; Qubit dsDNA assay kit; | Shotgun Illumina NovaSeq PE150. | MEGAHIT; MetaGeneMark: MetaPhlAn2; CARD. ResFinder | [45] |
9 b | Malaysia | Cross-sectional | Profile the gut resistome of Malaysians and investigate its association with demographic and lifestyle variables. | ≤90 years Lower boundary, NR | n = 200 | QIAamp PowerFecal Pro DNA Kit. | Shotgun Illumina NovaSeq | BioBakery3; KneadData; MetaPhlAn3; Bowtie; ARGs-OAP. | [46] |
10 b | USA | Cross-sectional | Characterize fecal, oral, and skin bacterial microbiome and resistome of the Yanomami Amerindians with no previous contact with Western people. | 4–50 years old | n = 12 | PowerSoil DNA Isolation Kit. | V4 region of the 16SrRNA Illumina HiSeq | PICRUSt STAMP; KEGG; CONCOCT; PARFuMS; Resfams. | [47] |
11 b | Saudi Arabia | Cross-sectional | To assess pregnancy-induced gut microbiome composition and antimicrobial resistome in Saudi females. | Mean age: NP 39.1 ± 7.7; First trimester: 25.4 ± 4.1; Third trimester: 33.3 ± 7.3. | n = 24 (8 NP, 8 first trimester, 8 third trimester) | QIAamp Fast DNA Stool Mini Kit. | 16S rRNA Illumina MiSeq | PANDAseq | [48] |
Groups | Metric | Microbiota Diversity | Taxonomic Abundance | ARG Abundance | Associations between Microbiota and Resistome | Ref. |
---|---|---|---|---|---|---|
Full-term infants at 7 days, 28 days, 120 days, and 365 days. | α, Shannon diversity | Lowest at 7 days and increased to 365 days. | Bifidobacterium: highest at 28 days > 120 > 7 > 365. Escherichia: 7 days > 120 > 28. Bacteroides: 365 days > lower time points. Klebsiella: highest at 7 days similar to 120 days > 28 days, lowest at 365 days. | Higher ARGs at 28 days compared to 120 days. Median: 7 days > 28 days > 120 days. | E. coli associated with highest ARGs, followed by Klebsiella pneumoniae and Klebsiella aerogenes. | [38] |
6 weeks vs. 1 year. | α, Shannon and Simpson | Higher | Proteobacteria: positive correlation of resistome composition. E. coli: strong positive correlation between E. coli abundance and resistome load. | [39] | ||
0–23 months vs. 2–5 years. 0–23 months vs. >18 years. | α, Shannon | Lower Lower | Proteobacteria and Actinobacteria: higher in children than adults. Bacteroides and Firmicutes A: higher in adults than children | Higher Higher | [43] | |
1-month infants vs. mothers and 6-month infants vs. mothers. | α, Simpson | Lower diversity in infants than mothers. | Higher Gamma Proteobacteria. Higher E. coli. | Higher in 1 month. Higher in 6 months. | Gammaproteobacteria: strong positive correlation with resistome load. E. coli: strong positive correlation with resistome abundance; strongest predictor of ARGs in infants. Bifidobacterium: negative correlation with resistome load. | [40] |
NA | OTU richness For E. coli | Higher abundance of E. coli from one week, lowering to 1 year. | Higher in Proteobacteria. Highest in E. coli. Higher in the first year, and lower toward an equilibrium. | Lower gut microbiome maturity associated with higher ARGs. Higher E. coli abundance associated with lower gut maturity. | [41] | |
18–69 years vs. HMP data set. | α, Shannon | Higher | Higher | [42] | ||
Poultry vs. non-poultry workers. | α, Simpson | Lower | Higher | [45] | ||
Dairy vs. non-dairy workers. | α, Shannon | No significant difference. | Lower | [44] |
Infant Groups | Adult-Dominated Group | ||
---|---|---|---|
7 Days Old | 1 Month | 6 Months | <11 Years (2%) 11–20 Years (22%) 20–90 Years (76%) |
Bifidobacterium A | Bifidobacterium A | Bifidobacterium A | Bifidobacterium A |
Escherichia P | Escherichia P | Escherichia P | Prevotella A |
Klebsiella P | Lactobacillus F | Blautia Ba | Collinsella B |
Vellionella Ba | Bacteroides B | Bacteroides B | Eubacterium F |
Bacteroides B | Streptococcus F | Lactobacillus F | Ruminococcus F |
Enterococcus F | Staphylococcus F | Eubacterium P | Escherichia P |
Staphylococcus F | Blautia Ba | Akkermansia V | Lactobacillu F |
Antibiotic Resistance Group | Antibiotic Resistance Genes |
---|---|
Multidrug-resistant (MDR) efflux pumps and regulators | acrA, acrD, acrE, acrF, acrR, mdfA, mdtE, mdtF, mdtG, mdtH, mdtO, emrA, emrE, marA, marR, gadW, gadX, soxS, soxR, tolC, |
Betalactam | ompA, ompF, ampH, EC15 |
Polypeptide | bacA, eptA, pmrF |
Fosfomycins | murA, glpT, uhpT |
Multidrug resistance | evgA, |
Rifampicin | rpoB |
Nitrofurans | nfSA |
Aminocoumarins | gyrB |
Folate pathway inhibition | folP |
Peptides | yojl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fri, J.; Raphalalani, M.; Mavhandu-Ramarumo, L.G.; Bessong, P.O. Exploring the Potential Influence of the Human Gut Microbiota on the Gut Resistome: A Systematic Review. Microbiol. Res. 2024, 15, 1616-1633. https://doi.org/10.3390/microbiolres15030107
Fri J, Raphalalani M, Mavhandu-Ramarumo LG, Bessong PO. Exploring the Potential Influence of the Human Gut Microbiota on the Gut Resistome: A Systematic Review. Microbiology Research. 2024; 15(3):1616-1633. https://doi.org/10.3390/microbiolres15030107
Chicago/Turabian StyleFri, Justine, Mulalo Raphalalani, Lufuno Grace Mavhandu-Ramarumo, and Pascal Obong Bessong. 2024. "Exploring the Potential Influence of the Human Gut Microbiota on the Gut Resistome: A Systematic Review" Microbiology Research 15, no. 3: 1616-1633. https://doi.org/10.3390/microbiolres15030107
APA StyleFri, J., Raphalalani, M., Mavhandu-Ramarumo, L. G., & Bessong, P. O. (2024). Exploring the Potential Influence of the Human Gut Microbiota on the Gut Resistome: A Systematic Review. Microbiology Research, 15(3), 1616-1633. https://doi.org/10.3390/microbiolres15030107