Detection of Bacteria with Potential to Cause Hospital-Associated Infections in a Small-Species Veterinary Hospital in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statements
2.2. Sample Collection and Sampling Procedure
2.3. Sample Processing
2.4. Molecular Identification of Bacterial Isolates by 16S rRNA Gene Amplification
2.5. Antimicrobial Susceptibility Test
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sikora, A.; Zahra, F. Nosocomial Infections. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK559312/ (accessed on 28 April 2022).
- World Health Organization; Regional Office for South-East Asia. Guidelines on Prevention and Control of Hospital Associated Infections; WHO Regional Office for South-East Asia: New Delhi, India, 2002; Available online: https://apps.who.int/iris/handle/10665/205187 (accessed on 28 April 2022).
- Gidey, K.; Gidey, M.T.; Hailu, B.Y.; Gebreamlak, Z.B.; Niriayo, Y.L. Clinical and economic burden of healthcare-associated infections: A prospective cohort study. PLoS ONE 2023, 18, e0282141. [Google Scholar] [CrossRef]
- Puchter, L.; Chaberny, I.F.; Schwab, F.; Vonberg, R.-P.; Bange, F.-C.; Ebadi, E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob. Resist. Infect. Control 2018, 7, 1. [Google Scholar] [CrossRef]
- Stone, P.W. Economic burden of healthcare-associated infections: An American perspective. Expert. Rev. Pharmacoecon. Outcomes Res. 2009, 9, 417–422. [Google Scholar] [CrossRef]
- Kramer, A.; Assadian, O. Survival of Microorganisms on Inanimate Surfaces. In Use of Biocidal Surfaces for Reduction of Healthcare Acquired Infections; Borkow, G., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 7–26. [Google Scholar] [CrossRef]
- von Wintersdorff, C.J.H.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2016.00173/full (accessed on 23 July 2024).
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Weiner-Lastinger, L.M.; Abner, S.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Dudeck, M.A. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Voidazan, S.; Albu, S.; Toth, R.; Grigorescu, B.; Rachita, A.; Moldovan, I. Healthcare Associated Infections—A New Pathology in Medical Practice? Int. J. Environ. Res. Public Health 2020, 17, 760. [Google Scholar] [CrossRef]
- Basak, S.; Singh, P.; Rajurkar, M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J. Pathog. 2016, 2016, 4065603. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, J.A.; Hatfield, K.M.; Wolford, H.; Nelson, R.E.; Olubajo, B.; Reddy, S.C.; Baggs, J. Multidrug-Resistant Bacterial Infections in, U.S. Hospitalized Patients, 2012–2017. N. Engl. J. Med. 2020, 382, 1309–1319. [Google Scholar] [CrossRef]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug Resistance: An Emerging Crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Sinicropi, M.S. Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. Molecules 2022, 27, 616. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Al-Saryi, N.; Al-Kadmy, I.M.S.; Aziz, S.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol. Biol. Rep. 2021, 48, 6987–6998. [Google Scholar] [CrossRef] [PubMed]
- Zendri, F.; Isgren, C.M.; Devaney, J.; Schmidt, V.; Rankin, R.; Timofte, D. Resistome-Based Surveillance Identifies ESKAPE Pathogens as the Predominant Gram-Negative Organisms Circulating in Veterinary Hospitals. Front. Microbiol. 2023, 14, 1252216. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1252216/full (accessed on 24 July 2024). [CrossRef] [PubMed]
- Zordan, S.; Prenger-Berninghoff, E.; Weiss, R.; van der Reijden, T.; van den Broek, P.; Baljer, G.; Dijkshoorn, L. Multidrug-Resistant Acinetobacter baumannii in Veterinary Clinics, Germany. 2011. Available online: https://wwwnc.cdc.gov/eid/article/17/9/10-1931_article (accessed on 29 April 2022).
- O’Neal, L.; Alvarez, D.; Mendizábal-Cabrera, R.; Ramay, B.M.; Graham, J. Community-Acquired Antimicrobial Resistant Enterobacteriaceae in Central America: A One Health Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 7622. [Google Scholar] [CrossRef]
- Oliveira, A.F.D.; Arrais, B.R.; Bannwart, P.F.; Pinto, J.F.N.; Stella, A.E. Detection of beta-lactamase-producing Enterobacteriaceae in a veterinary hospital environment. Braz. J. Vet. Res. Anim. Sci. 2022, 59, e191724. [Google Scholar] [CrossRef]
- Rojas, I.; Barquero-Calvo, E.; Van Balen, J.C.; Rojas, N.; Muñoz-Vargas, L.; Hoet, A.E. High Prevalence of Multidrug-Resistant Community-Acquired Methicillin-Resistant Staphylococcus aureus at the Largest Veterinary Teaching Hospital in Costa Rica. Vector-Borne Zoonotic Dis. 2017, 17, 645–653. [Google Scholar] [CrossRef]
- Troncoso Toro, I.; Pardo Contreras, K.; Urrutia Valenzuela, F.; Fischer Wiethuchter, C.; Sánchez Leiva, N. Identificación y sensibilidad antimicrobiana de bacterias potencialmente responsables de infecciones nosocomiales en medicina veterinaria. Rev. Med. Vet. 2020, 1, 85–90. [Google Scholar] [CrossRef]
- Bernal-Rosas, Y.; Osorio-Muñoz, K.; Torres-García, O. Pseudomonas aeruginosa: An emerging nosocomial trouble in veterinary. Rev. MVZ Córdoba 2015, 20, 4937–4946. [Google Scholar] [CrossRef]
- Churak, A.; Poolkhet, C.; Tamura, Y.; Sato, T.; Fukuda, A.; Thongratsakul, S. Evaluation of nosocomial infections through contact patterns in a small animal hospital using social network analysis and genotyping techniques. Sci. Rep. 2021, 11, 1647. [Google Scholar] [CrossRef]
- Galvin, S.; Dolan, A.; Cahill, O.; Daniels, S.; Humphreys, H. Microbial monitoring of the hospital environment: Why and how? J. Hosp. Infect. 2012, 82, 143–151. [Google Scholar] [CrossRef]
- Chai, J.; Donnelly, T.; Wong, T.; Bryce, E. Environmental sampling of hospital surfaces: Assessing methodological quality. Can. J. Infect. Control. 2018, 33, 138–145. [Google Scholar]
- Rawlinson, S.; Ciric, L.; Cloutman-Green, E. How to carry out microbiological sampling of healthcare environment surfaces? A review of current evidence. J. Hosp. Infect. 2019, 103, 363–374. [Google Scholar] [CrossRef]
- James, G. Universal Bacterial Identification by PCR and DNA Sequencing of 16S rRNA Gene. In PCR for Clinical Microbiology: An Australian and International Perspective; Schuller, M., Sloots, T.P., James, G.S., Halliday, C.L., Carter, I.W.J., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 209–214. [Google Scholar] [CrossRef]
- M100 Ed34. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed. Clinical & Laboratory Standards Institute: Berwyn, PA, USA. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 26 July 2024).
- Shobrak, M.Y.; Abo-Amer, A.E. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris. Braz. J. Microbiol. 2014, 45, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Nagarjuna, D.; Gaind, R.; Chopra, S.; Debata, P.K.; Dawar, R.; Yadav, M. Escherichia vulneris: An unusual cause of complicated diarrhoea and sepsis in an infant. A case report and review of literature. New Microbes New Infect. 2016, 13, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yin, M.; Zhang, X.; Guo, Q.; Wang, M. Identification of qnrE3 and qnrE4, New Transferable Quinolone Resistance qnrE Family Genes Originating from Enterobacter mori and Enterobacter asburiae, Respectively. Antimicrob. Agents Chemother. 2021, 65, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Hartl, R.; Kerschner, H.; Gattringer, R.; Lepuschitz, S.; Allerberger, F.; Sorschag, S.; Apfalter, P. Whole-Genome Analysis of a Human Enterobacter mori Isolate Carrying a blaIMI-2 Carbapenemase in Austria. Microb. Drug Resist. 2019, 25, 94–96. [Google Scholar] [CrossRef]
- Malek, A.; McGlynn, K.; Taffner, S.; Fine, L.; Tesini, B.; Wang, J.; Pecora, N. Next-Generation-Sequencing-Based Hospital Outbreak Investigation Yields Insight into Klebsiella aerogenes Population Structure and Determinants of Carbapenem Resistance and Pathogenicity. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef]
- Mazumder, R.; Hussain, A.; Bhadra, B.; Phelan, J.; Campino, S.; Clark, T.G.; Mondal, D. Case report: A successfully treated case of community-acquired urinary tract infection due to Klebsiella aerogenes in Bangladesh. Front. Med. 2023, 10, 1206756. [Google Scholar] [CrossRef]
- Zhu, B.; Lou, M.M.; Xie, G.L.; Wang, G.F.; Zhou, Q.; Wang, F.; Duan, Y.P. Enterobacter mori sp nov associated with bacterial wilt on Morus alba L. Int. J. Syst. Evol. Microbiol. 2011, 61, 2769–2774. [Google Scholar] [CrossRef]
- Kamathewatta, K.; Bushell, R.; Rafa, F.; Browning, G.; Billman-Jacobe, H.; Marenda, M. Colonization of a hand washing sink in a veterinary hospital by an Enterobacter hormaechei strain carrying multiple resistances to high importance antimicrobials. Antimicrob. Resist. Infect. Control 2020, 9, 163. [Google Scholar] [CrossRef]
- Wang, C.; Wu, W.; Wei, L.; Feng, Y.; Kang, M.; Xie, Y.; Zong, Z. Enterobacter wuhouensis sp. nov. and Enterobacter quasihormaechei sp. nov. recovered from human sputum. Int. J. Syst. Evol. Microbiol. 2020, 70, 874–881. [Google Scholar] [CrossRef]
- Willcocks, S.; Huse, K.K.; Stabler, R.; Oyston, P.C.; Scott, A.; Atkins, H.S.; Wren, B.W. Genome-wide assessment of antimicrobial tolerance in Yersinia pseudotuberculosis under ciprofloxacin stress. Microb. Genom. 2019, 5, e000304. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.; Donnenberg, M.S. Human Pathogenic Enterobacteriaceae. In Reference Module in Biomedical Sciences [Internet]; Elsevier. 2014. Available online: https://www.sciencedirect.com/science/article/pii/B9780128012383001367 (accessed on 27 July 2024).
- Jabeen, I.; Islam, S.; Hassan, A.K.M.I.; Tasnim, Z.; Shuvo, S.R. A Brief Insight into Citrobacter Species—A Growing Threat to Public Health. Front. Antibiot. 2023, 2, 1276982. Available online: https://www.frontiersin.org/journals/antibiotics/articles/10.3389/frabi.2023.1276982/full (accessed on 27 July 2024). [CrossRef]
- Oberhettinger, P.; Schüle, L.; Marschal, M.; Bezdan, D.; Ossowski, S.; Dörfel, D.; Peter, S. Description of Citrobacter cronae sp. nov. isolated from human rectal swabs and stool samples. Int. J. Syst. Evol. Microbiol. 2020, 70, 2998–3003. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, R.; Liang, Y.; Luo, L.; Han, Y.; Wang, H.; Wang, M. Characterization and genomic analysis of a novel lytic phage vB_PstM_ZRG1 infecting Stutzerimonas stutzeri, representing a new viral genus, Elithevirus. Virus Res. 2023, 334, 199183. [Google Scholar] [CrossRef]
- Amin, A.R.; Feng, G.; Al-Saari, N.; Meirelles, P.M.; Yamazaki, Y.; Mino, S.; Sawabe, T. The First Temporal and Spatial Assessment of Vibrio Diversity of the Surrounding Seawater of Coral Reefs in Ishigaki, Japan. Front. Microbiol. 2016, 7, 1185. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2016.01185/full (accessed on 27 July 2024). [CrossRef]
- Khodzori, F.A.; Saad, S.; Mansor, N.N.; Nasir, N.A.N.M.; Khalid, N.N.N.A.; Rawi, F.Z. Pathogenic Vibrio spp. identified for white syndrome coral disease in Tioman Island Marine Park, Malaysia. Malays. J. Microbiol. 2021, 17, 69–79. [Google Scholar] [CrossRef]
- Hönemann, M.; Viehweger, A.; Dietze, N.; Johnke, J.; Rodloff, A.C. Leclercia pneumoniae sp. nov. a bacterium isolated from clinical specimen in Leipzig, Germany. Int. J. Syst. Evol. Microbiol. 2022, 72, 005293. [Google Scholar] [CrossRef]
- Ko, K.S.; Choi, J.-Y.; Kim, J.; Park, M.K. Citrobacter bitternis sp. nov. isolated from bitterns. Curr. Microbiol. 2015, 70, 894–897. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y.; Zong, Z. Enterobacter sichuanensis sp. nov. recovered from human urine. Int. J. Syst. Evol. Microbiol. 2018, 68, 3922–3927. [Google Scholar] [CrossRef]
- Palmer, M.; Steenkamp, E.T.; Coetzee, M.P.; Avontuur, J.R.; Chan, W.Y.; Van Zyl, E.; Venter, S.N. Mixta gen. nov. a new genus in the Erwiniaceae. Int. J. Syst. Evol. Microbiol. 2018, 68, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Soh, J.Y.K.; Russell, C.W.; Fenlon, S.N.; Chen, S.L. Complete Genome Sequence of Photobacterium leiognathi Strain JS01. Genome Announc. 2018, 6, e01396-17. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, C.; Tiecco, G.; Di Gregorio, M.; Capone, S.; Allegri, R.L.; De Francesco, M.; Caccuri, F.; Caruso, A.; Castelli, F.; Focà, E. A Rare Case of Multidrug-resistant Leclercia adecarboxylata Catheter-related Bloodstream Infection and an Updated Brief Literature Review. Mediterr. J. Hematol. Infect. Dis. 2023, 15, e2023052. [Google Scholar] [CrossRef] [PubMed]
- Keyes, J.; Johnson, E.P.; Epelman, M.; Cadilla, A.; Ali, S. Leclercia adecarboxylata: An Emerging Pathogen Among Pediatric Infections. Cureus 2020, 12, e8049. [Google Scholar] [CrossRef]
- Silva, M.E.P.D.; Gomes, M.A.D.S.; Rodrigues, R.S.; Lima, N.C.D.S.; Carvalho, A.G.; Taborda, R.L.M.; Matos, N.B. Multidrug-resistant Acinetobacter spp. from hospital intensive care units in Brazilian Amazon. Braz. J. Infect. Dis. 2023, 27, 103687. Available online: http://www.bjid.org.br/en-multidrug-resistant-acinetobacter-spp-from-hospital-articulo-S1413867023009479 (accessed on 27 July 2024). [CrossRef]
- Krizova, L.; McGinnis, J.; Maixnerova, M.; Nemec, M.; Poirel, L.; Mingle, L.; Nemec, A. Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals. Int. J. Syst. Evol. Microbiol. 2015, 65, 857–863. [Google Scholar]
- Lenaerts, M.; Álvarez-Pérez, S.; de Vega, C.; Van Assche, A.; Johnson, S.D.; Willems, K.A.; Herrera, C.M.; Jacquemyn, H.; Lievens, B. Rosenbergiella australoborealis sp. nov. Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov. three novel bacterial species isolated from floral nectar. Syst. Appl. Microbiol. 2014, 37, 402–411. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, Y.; Wang, K.; Zhang, X.; Zhang, S.; Fu, X.; Zhang, C.; Jiang, J. Pseudomonas songnenensis sp. nov. isolated from saline and alkaline soils in Songnen Plain, China. Antonie Van. Leeuwenhoek 2015, 107, 711–721. [Google Scholar] [CrossRef]
- Matsuura, T.; Mizuno, A.; Tsukamoto, T.; Shimizu, Y.; Saito, N.; Sato, S.; Kikuchi, S.; Uzuki, T.; Azegami, K.; Sawada, H. Erwinia uzenensis sp. nov. a novel pathogen that affects European pear trees (Pyrus communis L.). Int. J. Syst. Evol. Microbiol. 2012, 62, 1799–1803. [Google Scholar] [CrossRef]
- Dunlap, C.A.; Schisler, D.A.; Perry, E.B.; Connor, N.; Cohan, F.M.; Rooney, A.P. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov. isolated from desert soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 2720–2725. [Google Scholar] [CrossRef]
- Bian, D.; Xue, H.; Wang, G.; Piao, C.; Li, Y. Affinibrenneria salicis gen. nov. sp. nov. isolated from Salix matsudana bark canker. Arch. Microbiol. 2021, 203, 3473–3481. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.-S.; Liu, Y.; Yan, L.; Hou, T.-T.; Liu, H.-C.; Zhou, Y.-G.; Liu, Z.-P. Pseudomonas nitrititolerans sp. nov. a nitrite-tolerant denitrifying bacterium isolated from a nitrification/denitrification bioreactor. Int. J. Syst. Evol. Microbiol. 2019, 69, 2471–2476. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.; Bloos, F.; Vylkova, S. Bloodstream infection due to Enterobacter ludwigii, correlating with massive aggregation on the surface of a central venous catheter. Infection 2020, 48, 955–958. [Google Scholar] [CrossRef]
- Extensively drug-resistant Enterobacter ludwigii co-harbouring MCR-9 and a multicopy of blaIMP-1 in South Korea. J. Glob. Antimicrob. Resist. 2024, 36, 217–222. [CrossRef]
- Mattioni Marchetti, V.; Kuka, A.; Piazza, A.; Gaiarsa, S.; Merla, C.; Sottosanti, M.; Baldanti, F. Enterobacter asburiae ST229, an emerging carbapenemases producer. Sci. Rep. 2024, 14, 6220. [Google Scholar] [CrossRef] [PubMed]
- Maddock, D.; Brady, C.; Denman, S.; Arnold, D. Description of Dryocola gen. nov. and two novel species, Dryocola boscaweniae sp. nov. and Dryocola clanedunensis sp. nov. isolated from the rhizosphere of native British oaks. Syst. Appl. Microbiol. 2023, 46, 126399. [Google Scholar] [CrossRef]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef]
- Bernardini, A.; Cuesta, T.; Tomás, A.; Bengoechea, J.A.; Martínez, J.L.; Sánchez, M.B. The intrinsic resistome of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2019, 53, 29–33. [Google Scholar] [CrossRef]
- Dong, N.; Yang, X.; Chan, E.W.-C.; Zhang, R.; Chen, S. Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. eBioMedicine 2022, 79, 103998. Available online: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(22)00182-7/fulltext (accessed on 28 July 2024). [CrossRef]
- Morgado, S.; Fonseca, É.; Freitas, F.; Caldart, R.; Vicente, A.C. In-depth analysis of Klebsiella aerogenes resistome, virulome and plasmidome worldwide. Sci. Rep. 2024, 14, 6538. [Google Scholar] [CrossRef]
- Boye, K.; Hansen, D.S. Sequencing of 16S rDNA of Klebsiella: Taxonomic relations within the genus and to other Enterobacteriaceae. Int. J. Med. Microbiol. 2003, 292, 495–503. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Uhlemann, A.-C. Multidrug-Resistant Enterobacter cloacae Complex Emerging as a Global, Diversifying Threat. Front. Microbiol. 2019, 10, 44. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00044/full (accessed on 28 July 2024). [CrossRef]
- Mezzatesta, M.L.; Gona, F.; Stefani, S. Enterobacter cloacae Complex: Clinical Impact and Emerging Antibiotic Resistance. Future Microbiol. 2012, 7, 887–902. [Google Scholar] [CrossRef]
- Sato, T.; Harada, K.; Usui, M.; Yokota, S.; Horiuchi, M. Colistin Susceptibility in Companion Animal-Derived Escherichia coli, Klebsiella spp. and Enterobacter spp. in Japan: Frequent Isolation of Colistin-Resistant Enterobacter cloacae Complex. Front. Cell. Infect. Microbiol. 2022, 12, 946841. Available online: https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2022.946841/full (accessed on 28 July 2024). [CrossRef]
- Daniels, J.B.; Chen, L.; Grooters, S.V.; Mollenkopf, D.F.; Mathys, D.A.; Pancholi, P.; Kreiswirth, B.N.; Wittum, T.E. Enterobacter cloacae Complex Sequence Type 171 Isolates Expressing KPC-4 Carbapenemase Recovered from Canine Patients in Ohio. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Zogg, A.L.; Simmen, S.; Zurfluh, K.; Stephan, R.; Schmitt, S.N.; Nüesch-Inderbinen, M. High Prevalence of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Among Clinical Isolates From Cats and Dogs Admitted to a Veterinary Hospital in Switzerland. Front. Vet. Sci. 2018, 5, 62. Available online: https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2018.00062/full (accessed on 28 July 2024). [CrossRef]
- Scarpellini, R.; Giunti, M.; Pontiero, A.; Savini, F.; Esposito, E.; Piva, S. Two cases of bloodstream infections associated with opportunistic bacterial species (Enterococcus hirae and Enterobacter xiangfangensis) in companion animals. BMC Vet. Res. 2023, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Kaier, K.; Mutters, N.T.; Frank, U. Bed occupancy rates and hospital-acquired infections—Should beds be kept empty? Clin. Microbiol. Infect. 2012, 18, 941–945. [Google Scholar] [CrossRef]
- Wilson, T.; Nolte, D.; Omar, S. Bed occupancy and nosocomial infections in the intensive care unit: A retrospective observational study in a tertiary hospital. S. Afr. J. Crit. Care 2024, 40, e1906. [Google Scholar] [CrossRef]
Hospital Area | Number of Samples | Sampled Objects and Surfaces |
---|---|---|
Waiting room | 3 | Guest chairs |
Reception | 0 | Computer mouse and keyboard, desk surface |
Preventive medicine rooms | 4 | Desks surfaces, examination table surfaces |
Clinical laboratory | 2 | Work bench surfaces |
Consulting room 1 | 2 | Desks surfaces, door handles, examination table surfaces |
Consulting room 2 | 4 | Desks surfaces, examination table surfaces, ultrasound scanner |
Multipurpose room | 1 | Boardroom table surface |
Radiology room | 5 | Door handles, ultrasound scanner, X-Ray radiography system |
Teaching area | 0 | |
Hospitalization area | 5 | Desk surfaces, door handles, sink faucet and taps |
Recovery area | 4 | Sink faucets and taps |
Operating room 1 | 2 | Anesthesia system |
Operating room 2 | 2 | Anesthesia system, multi-parameter patient’s monitor |
Autoclave/washing room | 2 | Desks and shelves surfaces, sink faucet and taps |
Dressing room | 4 | Door handles, surface bench |
Infectious hospitalization | 1 | Sink faucet and taps |
Total samples | 41 |
ID | Sample Origin | Identified Bacteria | Query Cover | E-Value | Identity (%) | Accession Number | Pathogenicity Reported | Antimicrobial Resistance Reported | Environmental Or Nosocomial (E or N) | References |
---|---|---|---|---|---|---|---|---|---|---|
1 | Waiting room | Pseudescherichia vulneris | 100 | 0 | 99.71 | NR_041927.1 | Yes | Yes | N | [29,30] |
2 | Enterobacter mori | 100 | 0 | 100 | NR_146667.2 | Recently reported in humans | Recently reported | E | [31,32] | |
3 | Klebsiella aerogenes KCTC | 100 | 0 | 100 | NR_102493.2 | Reported in human and veterinary medicine | Yes | N | [33,34] | |
4 | Preventive medicine room | Enterobacter mori | 100 | 0 | 100 | NR_146667.2 | Recently reported | Recently reported | E | [32,35] |
5 | Enterobacter quasihormaechei | 100% | 2.00 × 10−139 | 100 | NR_180451.1 | Recently reported in a human patient | No | N | [36,37] | |
6 | Yersinia pseudotuberculosis | 100 | 2.00 × 10−174 | 100 | NR_118571.1 | Yes, described in humans | No | N | [38,39] | |
7 | Klebsiella aerogenes KCTC | 100 | 0 | 100 | NR_102493.2 | Reported in human and veterinary medicine | Yes | N | [33,34] | |
8 | Consulting room 2 | Citrobacter cronae | 100 | 3.00 × 10−95 | 100 | NR_170426.1 | Considered opportunistic pathogen | Yes | N | [40,41] |
9 | Enterobacter mori | 100 | 0 | 100 | NR_146667.2 | Recently reported in humans | Recently reported | E | [31,32] | |
10 | Stutzerimonas stutzeri ATCC | 100 | 1.00 × 10−63 | 100 | NR_103934.2 | No | No | E | [42] | |
11 | Vibrio ishigakensis | 100 | 6.00 × 10−39 | 100 | NR_156028.1 | No | No | E | [43,44] | |
12 | Clinical laboratory | Leclercia pneumoniae | 100 | 8.00 × 10−65 | 100 | NR_181872.1 | Recently reported | No | E | [45] |
13 | Citrobacter bitternis | 100 | 3.00 × 10−85 | 100 | NR_178707.1 | No | No | E | [46] | |
14 | Multipurpose room | Enterobacter sichuanensis | 100 | 0 | 91.44 | NR_179946.1 | Recently reported | No | E | [47] |
15 | Radiology room | Mixta gaviniae | 99% | 0 | 97.40 | NR_117305.1 | No | No | E | [48] |
16 | Photobacterium leiognathi | 100 | 1.00 × 10−72 | 100 | NR_029253.1 | No | No | E | [49] | |
18 | Mixta gaviniae | 100 | 6.00 × 10−159 | 100 | NR_117305.1 | No | No | E | [48] | |
19 | Leclercia adecarboxylata | 100 | 3.00 × 10−162 | 100 | NR_114154.1 | Yes | Recently reported | N | [50,51] | |
20 | Dressing room | Acinetobacter variabilis | 100 | 0 | 100 | NR_134685.1 | No | No | E | [52,53] |
22 | Rosenbergiella australiborealis | 99 | 0 | 99.43 | NR_126305.1 | No | No | E | [54] | |
23 | Autoclave washing room | Citrobacter cronae | 100 | 0 | 100 | NR_170426.1 | Considered opportunistic pathogen | Yes | N | [40,41] |
29 | Pseudomonas songnenensis | 100 | 0 | 100 | NR_148295.1 | No | No | E | [55] | |
24 | Operating room 2 | Erwinia uzenensis | 99 | 0 | 99.79 | NR_113061.1 | No | No | E | [56] |
25 | Bacillus haynesii | 100 | 2.00 × 10−60 | 100 | NR_157609.1 | No | No | E | [57] | |
34 | Consulting room 1 | Undetermined | − | − | − | − | − | − | − | − |
26 | Klebsiella aerogenes KCTC | 100 | 6.00 × 10−98 | 100 | NR_102493.2 | Reported in human and veterinary medicine | Yes | N | [33,34] | |
38 | Affinibrenneria salicis | 100% | 9.00 × 10−43 | 100 | NR_173669.1 | No | No | E | [58] | |
30 | Hospitalization area | Stutzerimonas nitrititolerans | 100 | 0 | 100 | NR_169495.1 | No | No | E | [59] |
31 | Enterobacter ludwigii | 100 | 0 | 99.84 | NR_042349.1 | Yes | Recently reported | N | [60,61] | |
32 | Enterobacter asburiae | 100% | 0 | 100 | NR_024640.1 | Yes | No | N | [62] | |
33 | Dryocola clanedunensis | 100% | 4.00 × 10−84 | 99.42 | NR_189237.1 | No | No | E | [63] | |
39 | Recovery area | Pseudomonas songnenensis | 100% | 0 | 100.00 | NR_148295.1 | No | No | E | [55] |
28 | Undetermined | − | − | − | − | − | − | − | − | |
36 | Infectious hospitalization | Enterobacter asburiae | 100% | 0 | 100.00 | NR_024640.1 | Yes | No | N | [62] |
Vitek Results | CLSI MIC Breakpoints for Enterobacterales (µg/mL) | ||||
---|---|---|---|---|---|
Antimicrobial Agent | MIC (µg/mL) | Interpretation 1 | ≤S | I | ≥R |
Piperacillin-tazobactam | ≥128 | R | 8/4 | 16/4 | 32/4 |
Ceftriaxone | ≤1 | S | 1 | 2 | 4 |
Ceftazidime | ≥64 | R | 4 | 8 | 16 |
Cefepime | ≥8 | R | 2 | 4–8 | 16 |
Doripenem | ≥8 | R | 1 | 2 | 4 |
Imipenem | ≥16 | R | 0.5 | 1 | 2 |
Ertapenem | ≥8 | R | 1 | 2 | 4 |
Meropenem | ≥16 | R | 1 | 2 | 4 |
Amikacin | 4 | S | 4 | 8 | 16 |
Gentamicin | 2 | S | 2 | 4 | 8 |
Ciprofloxacin | ≤0.25 | S | 0.25 | 0.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Silva, D.J.; Rivera-González, A.I.; Avilés-Benitez, L.K.; Becerra-Reyes, M.M.; Rivera-Ballesteros, C.; Morales-García, R.; García-Ramírez, L.; Chávez-Moreno, O.F.; Aguilar-Tipacamu, G.; Gómez-Soto, J.G.; et al. Detection of Bacteria with Potential to Cause Hospital-Associated Infections in a Small-Species Veterinary Hospital in Mexico. Microbiol. Res. 2024, 15, 1758-1771. https://doi.org/10.3390/microbiolres15030117
Hernández-Silva DJ, Rivera-González AI, Avilés-Benitez LK, Becerra-Reyes MM, Rivera-Ballesteros C, Morales-García R, García-Ramírez L, Chávez-Moreno OF, Aguilar-Tipacamu G, Gómez-Soto JG, et al. Detection of Bacteria with Potential to Cause Hospital-Associated Infections in a Small-Species Veterinary Hospital in Mexico. Microbiology Research. 2024; 15(3):1758-1771. https://doi.org/10.3390/microbiolres15030117
Chicago/Turabian StyleHernández-Silva, Diego Josimar, Ana Isabel Rivera-González, Laura Karina Avilés-Benitez, Mayra M. Becerra-Reyes, Carlos Rivera-Ballesteros, Rodrigo Morales-García, Larisa García-Ramírez, Orlando Federico Chávez-Moreno, Gabriela Aguilar-Tipacamu, José Guadalupe Gómez-Soto, and et al. 2024. "Detection of Bacteria with Potential to Cause Hospital-Associated Infections in a Small-Species Veterinary Hospital in Mexico" Microbiology Research 15, no. 3: 1758-1771. https://doi.org/10.3390/microbiolres15030117
APA StyleHernández-Silva, D. J., Rivera-González, A. I., Avilés-Benitez, L. K., Becerra-Reyes, M. M., Rivera-Ballesteros, C., Morales-García, R., García-Ramírez, L., Chávez-Moreno, O. F., Aguilar-Tipacamu, G., Gómez-Soto, J. G., & Mosqueda, J. (2024). Detection of Bacteria with Potential to Cause Hospital-Associated Infections in a Small-Species Veterinary Hospital in Mexico. Microbiology Research, 15(3), 1758-1771. https://doi.org/10.3390/microbiolres15030117