Algorithms for Effector Prediction in Plant Pathogens and Pests: Achievements and Current Challenges
Abstract
:1. Introduction
2. Algorithms for the Identification of Plant Pathogen and Pest Effectors
2.1. Algorithms for the Identification of Translocated Effectors: Bacteria and Oomycetes
2.1.1. Bacterial Effector Predictors
Predictors of Effectors Delivered Through T3 Secretion System (T3SS)
Algorithms | Description | Sensitivity/Specificity/Accuracy | Reference |
---|---|---|---|
EffectiveT3 | Machine learning; trained with amino acid composition and secondary structure of N-termini of 100 experimentally verified effector proteins | 0.75/0.85/0.86 | [39] |
SIEVE | Machine learning; trained on a set of known effectors to detect the secretion signal in the first 16–20 amino acids | 0.90/0.88/0.96 for P. syringae | [40] |
BPBAac | Support vector machine (SVM)-based classifier. Trained with a set of experimentally validated T3E from animal pathogens, plant pathogens, and symbiotic bacteria | 0.91/0.97/0.95 | [44] |
Meta-analytic | Vector machine-based discriminant analysis followed by a simple criteria-based filtering. Trained with known effectors of S. enterica | 0.90/0.90/-- for S. enterica | [45] |
T3SEpre | Mathematical model based on amino acid composition, secondary structure, and solvent accessibility in the N-termini of type III secreted proteins | 0.60/0.96/0.80 | [46] |
T3MM | A Markov model based on the amino acid composition within the N-terminal 100 amino acids from T3E | 0.84/0.90/0.90 | [47] |
GenSET | Based on 21 genomic and proteomic attributes such as peptide properties, molecular weight, charge, A280 molar extinction coefficient, probability of expression in inclusion bodies, isoelectric point, instability index, aliphatic index, and G + C content, among others | 094/0.98/-- | [41] |
T3SEpp | Deep learning to identify the atypical features in signal sequences of T3E, and then integration of the results of individual modules | 0.93/0.71/0.83 | [42] |
DeepT3 2.0 | Combines multiple deep learning architectures including convolutional, recurrent, convolutional-recurrent, and multilayer neural networks to learn N-terminal representations of T3E | ---- | [48] |
MolPhase | Prediction of protein phase separation | 0.90/0.75/-- | [43] |
Predictors of Effectors Delivered Through the T4 Secretion System (T4SS)
Predictors of Effectors Delivered Through the T6 Secretion System (T6SS)
2.1.2. Predictors of Oomycete Effectors
2.2. Algorithms for the Identification of Secreted Effectors: Phytoplasmas, Fungi, Nematodes, Insects
2.2.1. Predictors for Effector Identification in Phytoplasmas
2.2.2. Predictors for Effector Identification in Fungi
2.2.3. Predictors for Effector Identification in Insects
2.2.4. Predictors for Effector Identification in Nematodes
3. Effectoromics: Beyond Canonical Effectors
4. Breaking the Box: Opportunities to Revolutionize Effectoromics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flor, H.H. Inheritance of Pathogenicity in Melampsora. Phytopathology 1942, 32, 653–669. [Google Scholar]
- Todd, J.N.A.; Carreón-Anguiano, K.G.; Islas-Flores, I.; Canto-Canché, B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022, 10, 1980. [Google Scholar] [CrossRef] [PubMed]
- Mapuranga, J.; Chang, J.; Zhang, L.; Zhang, N.; Yang, W. Fungal Secondary Metabolites and Small RNAs Enhance Pathogenicity during Plant-Fungal Pathogen Interactions. J. Fungi 2022, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Erbs, G.; Newman, M. The Role of Lipopolysaccharide and Peptidoglycan, Two Glycosylated Bacterial Microbe-associated Molecular Patterns (MAMPs), in Plant Innate Immunity. Mol. Plant Pathol. 2012, 13, 95–104. [Google Scholar] [CrossRef] [PubMed]
- De Wit, P.J.G.M.; Mehrabi, R.; Van Den Burg, H.A.; Stergiopoulos, I. Fungal Effector Proteins: Past, Present and Future. Mol. Plant Pathol. 2009, 10, 735–747. [Google Scholar] [CrossRef]
- Sonah, H.; Deshmukh, R.K.; Bélanger, R.R. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges. Front. Plant Sci. 2016, 7, 126. [Google Scholar] [CrossRef]
- Carreón-Anguiano, K.G.; Vila-Luna, S.E.; Sáenz-Carbonell, L.; Canto-Canché, B. Novel Insights into Phytoplasma Effectors. Horticulturae 2023, 9, 1228. [Google Scholar] [CrossRef]
- Mitchum, M.G.; Hussey, R.S.; Baum, T.J.; Wang, X.; Elling, A.A.; Wubben, M.; Davis, E.L. Nematode Effector Proteins: An Emerging Paradigm of Parasitism. New Phytol. 2013, 199, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, S.; Hua, W. Advances of Herbivore-Secreted Elicitors and Effectors in Plant-Insect Interactions. Front. Plant Sci. 2023, 14, 1176048. [Google Scholar] [CrossRef]
- Christita, M.; Auzane, A.; Overmyer, K. Witches’ Broom Disease of Birch. In Tree Diseases and Pests; Elsevier: Amsterdam, The Netherlands; Volume 3, pp. 121–136. ISBN 978-0-443-18695-0.
- War, A.R.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Role of Salicylic Acid in Induction of Plant Defense System in Chickpea (Cicer arietinum L.). Plant Signaling Behav. 2011, 6, 1787–1792. [Google Scholar] [CrossRef]
- Bauters, L.; Stojilković, B.; Gheysen, G. Pathogens Pulling the Strings: Effectors Manipulating Salicylic Acid and Phenylpropanoid Biosynthesis in Plants. Mol. Plant Pathol. 2021, 22, 1436–1448. [Google Scholar] [CrossRef] [PubMed]
- Molloy, S. Ustilago Takes Control. Nat. Rev. Microbiol. 2011, 9, 833. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xue, B.; Dai, J.; Qin, X.; Liu, L.; Chi, Y.; Jones, J.T.; Li, H. A Novel Meloidogyne incognita Chorismate Mutase Effector Suppresses Plant Immunity by Manipulating the Salicylic Acid Pathway and Functions Mainly during the Early Stages of Nematode Parasitism. Plant Pathol. 2018, 67, 1436–1448. [Google Scholar] [CrossRef]
- Liu, T.; Song, T.; Zhang, X.; Yuan, H.; Su, L.; Li, W.; Xu, J.; Liu, S.; Chen, L.; Chen, T.; et al. Unconventionally Secreted Effectors of Two Filamentous Pathogens Target Plant Salicylate Biosynthesis. Nat. Commun. 2014, 5, 4686. [Google Scholar] [CrossRef]
- Jelenska, J.; Yao, N.; Vinatzer, B.A.; Wright, C.M.; Brodsky, J.L.; Greenberg, J.T. A J Domain Virulence Effector of Pseudomonas Syringae Remodels Host Chloroplasts and Suppresses Defenses. Curr. Biol. 2007, 17, 499–508. [Google Scholar] [CrossRef]
- Lu, Y.-T.; Li, M.-Y.; Cheng, K.-T.; Tan, C.M.; Su, L.-W.; Lin, W.-Y.; Shih, H.-T.; Chiou, T.-J.; Yang, J.-Y. Transgenic Plants That Express the Phytoplasma Effector SAP11 Show Altered Phosphate Starvation and Defense Responses. Plant Physiol. 2014, 164, 1456–1469. [Google Scholar] [CrossRef]
- Mittelberger, C.; Moser, M.; Hause, B.; Janik, K. ‘Candidatus Phytoplasma Mali’ SAP11-Like Protein Modulates Expression of Genes Involved in Energy Production, Photosynthesis, and Defense in Nicotiana occidentalis Leaves. BMC Plant Biol. 2024, 24, 393. [Google Scholar] [CrossRef] [PubMed]
- Al-Subhi, A.M.; Al-Sadi, A.M.; Al-Yahyai, R.A.; Chen, Y.; Mathers, T.; Orlovskis, Z.; Moro, G.; Mugford, S.; Al-Hashmi, K.S.; Hogenhout, S.A. Witches’ Broom Disease of Lime Contributes to Phytoplasma Epidemics and Attracts Insect Vectors. Plant Dis. 2021, 105, 2637–2648. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.-W.; Ma, W. Phytohormone Pathways as Targets of Pathogens to Facilitate Infection. Plant Mol. Biol. 2016, 91, 713–725. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Melotto, M.; Yao, J.; He, S.Y. Jasmonate Signaling and Manipulation by Pathogens and Insects. J. Exp. Bot. 2017, 68, 1371–1385. [Google Scholar] [CrossRef]
- Todd, J.N.A.; Carreón-Anguiano, K.G.; Islas-Flores, I.; Canto-Canché, B. Fungal Effectoromics: A World in Constant Evolution. Int. J. Mol. Sci. 2022, 23, 13433. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.-T.; Tyler, B.M.; Setubal, J.C. Protein Secretion Systems in Bacterial-Host Associations, and Their Description in the Gene Ontology. BMC Microbiol. 2009, 9, S2. [Google Scholar] [CrossRef]
- Costa, T.R.D.; Felisberto-Rodrigues, C.; Meir, A.; Prevost, M.S.; Redzej, A.; Trokter, M.; Waksman, G. Secretion Systems in Gram-Negative Bacteria: Structural and Mechanistic Insights. Nat. Rev. Microbiol. 2015, 13, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Bocian-Ostrzycka, K.M.; Grzeszczuk, M.J.; Banaś, A.M.; Jagusztyn-Krynicka, E.K. Bacterial Thiol Oxidoreductases—From Basic Research to New Antibacterial Strategies. Appl. Microbiol. Biotechnol. 2017, 101, 3977–3989. [Google Scholar] [CrossRef] [PubMed]
- Braet, J.; Catteeuw, D.; Van Damme, P. Recent Advancements in Tracking Bacterial Effector Protein Translocation. Microorganisms 2022, 10, 260. [Google Scholar] [CrossRef]
- Whisson, S.C.; Boevink, P.C.; Moleleki, L.; Avrova, A.O.; Morales, J.G.; Gilroy, E.M.; Armstrong, M.R.; Grouffaud, S.; Van West, P.; Chapman, S.; et al. A Translocation Signal for Delivery of Oomycete Effector Proteins into Host Plant Cells. Nature 2007, 450, 115–118. [Google Scholar] [CrossRef]
- Saraiva, M.; Ściślak, M.E.; Ascurra, Y.T.; Ferrando, T.M.; Zic, N.; Henard, C.; Van West, P.; Trusch, F.; Vleeshouwers, V.G.A.A. The Molecular Dialog between Oomycete Effectors and Their Plant and Animal Hosts. Fungal Biol. Rev. 2023, 43, 100289. [Google Scholar] [CrossRef]
- Roine, E.; Wei, W.; Yuan, J.; Nurmiaho-Lassila, E.-L.; Kalkkinen, N.; Romantschuk, M.; He, S.Y. Hrp Pilus: An Hrp-Dependent Bacterial Surface Appendage Produced by Pseudomonas syringae Pv. Tomato DC3000. Proc. Natl. Acad. Sci. USA 1997, 94, 3459–3464. [Google Scholar] [CrossRef]
- Kubori, T.; Matsushima, Y.; Nakamura, D.; Uralil, J.; Lara-Tejero, M.; Sukhan, A.; Galán, J.E.; Aizawa, S.-I. Supramolecular Structure of the Salmonella typhimurium Type III Protein Secretion System. Science 1998, 280, 602–605. [Google Scholar] [CrossRef]
- Coburn, B.; Sekirov, I.; Finlay, B.B. Type III Secretion Systems and Disease. Clin. Microbiol. Rev. 2007, 20, 535–549. [Google Scholar] [CrossRef]
- Munkvold, K.R.; Martin, M.E.; Bronstein, P.A.; Collmer, A. A Survey of the Pseudomonas syringae Pv. Tomato DC3000 Type III Secretion System Effector Repertoire Reveals Several Effectors That Are Deleterious When Expressed in Saccharomyces cerevisiae. Mol. Plant Microbe Interact. 2008, 21, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.; Bonas, U. How Xanthomonas Type III Effectors Manipulate the Host Plant. Curr. Opin. Microbiol. 2009, 12, 37–43. [Google Scholar] [CrossRef]
- Landry, D.; González-Fuente, M.; Deslandes, L.; Peeters, N. The Large, Diverse, and Robust Arsenal of Ralstonia solanacearum Type III Effectors and Their in Planta Functions. Mol. Plant Pathol. 2020, 21, 1377–1388. [Google Scholar] [CrossRef]
- Olawole, O.I.; Liu, Q.; Chen, C.; Gleason, M.L.; Beattie, G.A. The Contributions to Virulence of the Effectors Eop1 and DspE Differ Between Two Clades of Erwinia tracheiphila Strains. Mol. Plant-Microbe Interact. 2021, 34, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Camuel, A.; Gully, D.; Pervent, M.; Teulet, A.; Nouwen, N.; Arrighi, J.; Giraud, E. Genetic and Transcriptomic Analysis of the Bradyrhizobium T3SS -triggered Nodulation in the Legume Aeschynomene evenia. New Phytol. 2024. Early View. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Wen, Y.; Yang, Y.; Liu, S.; Li, Z. Chlamydia trachomatis T3SS Effector CT622 Induces Proinflammatory Cytokines Through TLR2/TLR4-Mediated MAPK/NF-κB Pathways in THP-1 Cells. J. Infect. Dis. 2024, 229, 1637–1647. [Google Scholar] [CrossRef]
- Büttner, D.; He, S.Y. Type III Protein Secretion in Plant Pathogenic Bacteria. Plant Physiol. 2009, 150, 1656–1664. [Google Scholar] [CrossRef]
- Arnold, R.; Brandmaier, S.; Kleine, F.; Tischler, P.; Heinz, E.; Behrens, S.; Niinikoski, A.; Mewes, H.-W.; Horn, M.; Rattei, T. Sequence-Based Prediction of Type III Secreted Proteins. PLoS Pathog. 2009, 5, e1000376. [Google Scholar] [CrossRef]
- Samudrala, R.; Heffron, F.; McDermott, J.E. Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion Systems. PLoS Pathog. 2009, 5, e1000375. [Google Scholar] [CrossRef]
- Hobbs, C.K.; Porter, V.L.; Stow, M.L.S.; Siame, B.A.; Tsang, H.H.; Leung, K.Y. Computational Approach to Predict Species-Specific Type III Secretion System (T3SS) Effectors Using Single and Multiple Genomes. BMC Genom. 2016, 17, 1048. [Google Scholar] [CrossRef]
- Hui, X.; Chen, Z.; Lin, M.; Zhang, J.; Hu, Y.; Zeng, Y.; Cheng, X.; Ou-Yang, L.; Sun, M.; White, A.P.; et al. T3SEpp: An Integrated Prediction Pipeline for Bacterial Type III Secreted Effectors. Msystems 2020, 5, e00288-20. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Peng, N.; Xie, Y.; Kumar, N.; Gao, W.; Miao, Y. MolPhase, an Advanced Prediction Algorithm for Protein Phase Separation. EMBO J. 2024, 43, 1898–1918. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Q.; Sun, M.; Guo, D. High-Accuracy Prediction of Bacterial Type III Secreted Effectors Based on Position-Specific Amino Acid Composition Profiles. Bioinformatics 2011, 27, 777–784. [Google Scholar] [CrossRef]
- Sato, Y.; Takaya, A.; Yamamoto, T. Meta-Analytic Approach to the Accurate Prediction of Secreted Virulence Effectors in Gram-Negative Bacteria. BMC Bioinform. 2011, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, M.; Bao, H.; Zhang, Q.; Guo, D. Effective Identification of Bacterial Type III Secretion Signals Using Joint Element Features. PLoS ONE 2013, 8, e59754. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Bao, H.; White, A.P. T3_MM: A Markov Model Effectively Classifies Bacterial Type III Secretion Signals. PLoS ONE 2013, 8, e58173. [Google Scholar] [CrossRef]
- Jing, R.; Wen, T.; Liao, C.; Xue, L.; Liu, F.; Yu, L.; Luo, J. DeepT3 2.0: Improving Type III Secreted Effector Predictions by an Integrative Deep Learning Framework. NAR Genom. Bioinform. 2021, 3, lqab086. [Google Scholar] [CrossRef]
- Voth, D.E.; Broederdorf, L.J.; Graham, J.G. Bacterial Type IV Secretion Systems: Versatile Virulence Machines. Future Microbiol. 2012, 7, 241–257. [Google Scholar] [CrossRef]
- Melville, S.; Craig, L. Type IV Pili in Gram-Positive Bacteria. Microbiol. Mol. Biol. Rev. 2013, 77, 323–341. [Google Scholar] [CrossRef]
- Costa, T.R.D.; Harb, L.; Khara, P.; Zeng, L.; Hu, B.; Christie, P.J. Type IV Secretion Systems: Advances in Structure, Function, and Activation. Mol. Microbiol. 2021, 115, 436–452. [Google Scholar] [CrossRef]
- Venturi, V.; Bez, C. Novel T4ASS Effector with Quorum Quenching Activity. ISME J. 2023, 17, 1523–1525. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Nan, C.; Hu, F. Accurate Prediction of Bacterial Type IV Secreted Effectors Using Amino Acid Composition and PSSM Profiles. Bioinformatics 2013, 29, 3135–3142. [Google Scholar] [CrossRef]
- Meyer, D.F.; Noroy, C.; Moumène, A.; Raffaele, S.; Albina, E.; Vachiéry, N. Searching Algorithm for Type IV Secretion System Effectors 1.0: A Tool for Predicting Type IV Effectors and Exploring Their Genomic Context. Nucleic Acids Res. 2013, 41, 9218–9229. [Google Scholar] [CrossRef]
- Noroy, C.; Lefrançois, T.; Meyer, D.F. Searching Algorithm for Type IV Effector Proteins (S4TE) 2.0: Improved Tools for Type IV Effector Prediction, Analysis and Comparison in Proteobacteria. PLoS Comput. Biol. 2019, 15, e1006847. [Google Scholar] [CrossRef] [PubMed]
- Esna Ashari, Z.; Brayton, K.A.; Broschat, S.L. Prediction of T4SS Effector Proteins for Anaplasma Phagocytophilum Using OPT4e, a New Software Tool. Front. Microbiol. 2019, 10, 1391. [Google Scholar] [CrossRef]
- Chen, T.; Wang, X.; Chu, Y.; Wang, Y.; Jiang, M.; Wei, D.-Q.; Xiong, Y. T4SE-XGB: Interpretable Sequence-Based Prediction of Type IV Secreted Effectors Using eXtreme Gradient Boosting Algorithm. Front. Microbiol. 2020, 11, 580382. [Google Scholar] [CrossRef]
- Han, H.; Ding, C.; Cheng, X.; Sang, X.; Liu, T. iT4SE-EP: Accurate Identification of Bacterial Type IV Secreted Effectors by Exploring Evolutionary Features from Two PSI-BLAST Profiles. Molecules 2021, 26, 2487. [Google Scholar] [CrossRef] [PubMed]
- Allsopp, L.P.; Bernal, P. Killing in the Name of: T6SS Structure and Effector Diversity. Microbiology 2023, 169, 001367. [Google Scholar] [CrossRef]
- Monjarás Feria, J.; Valvano, M.A. An Overview of Anti-Eukaryotic T6SS Effectors. Front. Cell Infect. Microbiol. 2020, 10, 584751. [Google Scholar] [CrossRef]
- Wu, C.-F.; Smith, D.A.; Lai, E.-M.; Chang, J.H. The Agrobacterium Type VI Secretion System: A Contractile Nanomachine for Interbacterial Competition. In Current Topics in Microbiology and Immunology; Gelvin, S.B., Ed.; Springer International Publishing: Cham, Switzerland, 2018; Volume 418, pp. 215–231. ISBN 978-3-030-03256-2. [Google Scholar]
- Wang, J.; Yang, B.; Leier, A.; Marquez-Lago, T.T.; Hayashida, M.; Rocker, A.; Zhang, Y.; Akutsu, T.; Chou, K.-C.; Strugnell, R.A.; et al. Bastion6: A Bioinformatics Approach for Accurate Prediction of Type VI Secreted Effectors. Bioinformatics 2018, 34, 2546–2555. [Google Scholar] [CrossRef]
- Sen, R.; Nayak, L.; De, R.K. PyPredT6: A Python-Based Prediction Tool for Identification of Type VI Effector Proteins. J. Bioinform. Comput. Biol. 2019, 17, 1950019. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.M.; Shalom, M.; Zlotkin, D.; Blum, N.; Levy, A. Identification of Type VI Secretion System Effector-Immunity Pairs Using Structural Bioinformatics. Mol. Syst. Biol. 2024, 20, 702–718. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; Oh, E.-J.; Song, E.; Park, I.W.; Lee, Y.; Sohn, K.H.; Choi, D.; Oh, C.-S. An Apoplastic Effector Pat-1Cm of the Gram-Positive Bacterium Clavibacter Michiganensis Acts as Both a Pathogenicity Factor and an Immunity Elicitor in Plants. Front. Plant Sci. 2022, 13, 888290. [Google Scholar] [CrossRef]
- Kamboyi, H.K.; Paudel, A.; Shawa, M.; Sugawara, M.; Zorigt, T.; Chizimu, J.Y.; Kitao, T.; Furuta, Y.; Hang’ombe, B.M.; Munyeme, M.; et al. EsxA, a Type VII Secretion System-Dependent Effector, Reveals a Novel Function in the Sporulation of Bacillus cereus ATCC14579. BMC Microbiol. 2024, 24, 351. [Google Scholar] [CrossRef]
- Fiore-Donno, A.M.; Bonkowski, M. Different Community Compositions between Obligate and Facultative Oomycete Plant Parasites in a Landscape-Scale Metabarcoding Survey. Biol. Fertil. Soils 2021, 57, 245–256. [Google Scholar] [CrossRef]
- Del Campo, J.; Carlos-Oliveira, M.; Čepička, I.; Hehenberger, E.; Horák, A.; Karnkowska, A.; Kolisko, M.; Lara, E.; Lukeš, J.; Pánek, T.; et al. The Protist Cultural Renaissance. Trends Microbiol. 2024, 32, 128–131. [Google Scholar] [CrossRef]
- Rossmann, S.; Lysøe, E.; Skogen, M.; Talgø, V.; Brurberg, M.B. DNA Metabarcoding Reveals Broad Presence of Plant Pathogenic Oomycetes in Soil From Internationally Traded Plants. Front. Microbiol. 2021, 12, 637068. [Google Scholar] [CrossRef] [PubMed]
- Larroque, M.; Barriot, R.; Bottin, A.; Barre, A.; Rougé, P.; Dumas, B.; Gaulin, E. The Unique Architecture and Function of Cellulose-Interacting Proteins in Oomycetes Revealed by Genomic and Structural Analyses. BMC Genom. 2012, 13, 605. [Google Scholar] [CrossRef]
- Chepsergon, J.; Motaung, T.E.; Moleleki, L.N. “Core” RxLR Effectors in Phytopathogenic Oomycetes: A Promising Way to Breeding for Durable Resistance in Plants? Virulence 2021, 12, 1921–1935. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Wang, W.; Xu, L.; Welsh, L.R.J.; Gierlinski, M.; Whisson, S.C.; Hemsley, P.A.; Boevink, P.C.; Birch, P.R.J. Uptake of Oomycete RXLR Effectors into Host Cells by Clathrin-Mediated Endocytosis. Plant Cell 2023, 35, 2504–2526. [Google Scholar] [CrossRef]
- McGowan, J.; Fitzpatrick, D.A. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. Msphere 2017, 2, e00408-17. [Google Scholar] [CrossRef] [PubMed]
- Schornack, S.; Van Damme, M.; Bozkurt, T.O.; Cano, L.M.; Smoker, M.; Thines, M.; Gaulin, E.; Kamoun, S.; Huitema, E. Ancient Class of Translocated Oomycete Effectors Targets the Host Nucleus. Proc. Natl. Acad. Sci. USA 2010, 107, 17421–17426. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Garcés, D.; Camborde, L.; Pel, M.J.C.; Jauneau, A.; Martinez, Y.; Néant, I.; Leclerc, C.; Moreau, M.; Dumas, B.; Gaulin, E. CRN 13 Candidate Effectors from Plant and Animal Eukaryotic Pathogens Are DNA-binding Proteins Which Trigger Host DNA Damage Response. New Phytol. 2016, 210, 602–617. [Google Scholar] [CrossRef]
- Tabima, J.F.; Grünwald, N.J. effectR: An Expandable R Package to Predict Candidate RxLR and CRN Effectors in Oomycetes Using Motif Searches. Mol. Plant Microbe Interact. 2019, 32, 1067–1076. [Google Scholar] [CrossRef]
- Nur, M.; Wood, K.; Michelmore, R. EffectorO: Motif-Independent Prediction of Effectors in Oomycete Genomes Using Machine Learning and Lineage Specificity. Mol. Plant Microbe Interact. 2023, 36, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Lei, C.; Zhou, K.; Huang, Y.; Fu, C.; Yang, S.; Zhang, Z. POOE: Predicting Oomycete Effectors Based on a Pre-Trained Large Protein Language Model. Msystems 2024, 9, e01004-23. [Google Scholar] [CrossRef]
- Kirdat, K.; Tiwarekar, B.; Sathe, S.; Yadav, A. From Sequences to Species: Charting the Phytoplasma Classification and Taxonomy in the Era of Taxogenomics. Front. Microbiol. 2023, 14, 1123783. [Google Scholar] [CrossRef]
- Wei, W.; Zhao, Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. Biology 2022, 11, 1119. [Google Scholar] [CrossRef]
- Weintraub, P.G.; Beanland, L. Insect Vectors of Phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef]
- Ermacora, P.; Osler, R. Symptoms of Phytoplasma Diseases. In Methods in Molecular Biology; Musetti, R., Pagliari, L., Eds.; Springer: New York, NY, USA, 2019; Volume 1875, pp. 53–67. ISBN 978-1-4939-8836-5. [Google Scholar]
- Carreón-Anguiano, K.G.; Vila-Luna, S.E.; Sáenz-Carbonell, L.; Canto-Canche, B. PhyEffector, the First Algorithm That Identifies Classical and Non-Classical Effectors in Phytoplasmas. Biomimetics 2023, 8, 550. [Google Scholar] [CrossRef]
- Oshima, K.; Maejima, K.; Namba, S. Genomic and Evolutionary Aspects of Phytoplasmas. Front. Microbiol. 2013, 4, 230. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Correa, V.R.; Toruño, T.Y.; Ammar, E.-D.; Kamoun, S.; Hogenhout, S.A. AY-WB Phytoplasma Secretes a Protein That Targets Plant Cell Nuclei. Mol. Plant Microbe Interact. 2009, 22, 18–30. [Google Scholar] [CrossRef]
- Chung, W.-C.; Chen, L.-L.; Lo, W.-S.; Lin, C.-P.; Kuo, C.-H. Comparative Analysis of the Peanut Witches’-Broom Phytoplasma Genome Reveals Horizontal Transfer of Potential Mobile Units and Effectors. PLoS ONE 2013, 8, e62770. [Google Scholar] [CrossRef]
- Cho, S.-T.; Kung, H.-J.; Huang, W.; Hogenhout, S.A.; Kuo, C.-H. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front. Microbiol. 2020, 11, 1531. [Google Scholar] [CrossRef]
- Music, M.S.; Samarzija, I.; Hogenhout, S.A.; Haryono, M.; Cho, S.-T.; Kuo, C.-H. The Genome of ‘Candidatus Phytoplasma Solani’ Strain SA-1 Is Highly Dynamic and Prone to Adopting Foreign Sequences. Syst. Appl. Microbiol. 2019, 42, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Stergiopoulos, I.; De Wit, P.J.G.M. Fungal Effector Proteins. Annu. Rev. Phytopathol. 2009, 47, 233–263. [Google Scholar] [CrossRef]
- Kaladhar, V.C.; Singh, Y.; Nair, A.M.; Kumar, K.; Singh, A.K.; Verma, P.K. A Small Cysteine-Rich Fungal Effector, BsCE66 Is Essential for the Virulence of Bipolaris Sorokiniana on Wheat Plants. Fungal Genet. Biol. 2023, 166, 103798. [Google Scholar] [CrossRef]
- Wang, D.; Tian, L.; Zhang, D.; Song, J.; Song, S.; Yin, C.; Zhou, L.; Liu, Y.; Wang, B.; Kong, Z.; et al. Functional Analyses of Small Secreted Cysteine-rich Proteins Identified Candidate Effectors in Verticillium dahliae. Mol. Plant Pathol. 2020, 21, 667–685. [Google Scholar] [CrossRef]
- Cortázar, A.R.; Aransay, A.M.; Alfaro, M.; Oguiza, J.A.; Lavín, J.L. SECRETOOL: Integrated Secretome Analysis Tool for Fungi. Amino Acids 2014, 46, 471–473. [Google Scholar] [CrossRef]
- Sperschneider, J.; Gardiner, D.M.; Dodds, P.N.; Tini, F.; Covarelli, L.; Singh, K.B.; Manners, J.M.; Taylor, J.M. EffectorP: Predicting Fungal Effector Proteins from Secretomes Using Machine Learning. New Phytol. 2016, 210, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Sperschneider, J.; Dodds, P.N.; Gardiner, D.M.; Singh, K.B.; Taylor, J.M. Improved Prediction of Fungal Effector Proteins from Secretomes with EffectorP 2.0: Prediction of Fungal Effectors with EffectorP 2.0. Mol. Plant Pathol. 2018, 19, 2094–2110. [Google Scholar] [CrossRef] [PubMed]
- Carreón-Anguiano, K.G.; Todd, J.N.A.; Chi-Manzanero, B.H.; Couoh-Dzul, O.J.; Islas-Flores, I.; Canto-Canché, B. WideEffHunter: An Algorithm to Predict Canonical and Non-Canonical Effectors in Fungi and Oomycetes. Int. J. Mol. Sci. 2022, 23, 13567. [Google Scholar] [CrossRef] [PubMed]
- Sperschneider, J.; Dodds, P.N. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. Int. J. Mol. Sci. 2022, 35, 146–156. [Google Scholar] [CrossRef]
- Wang, C.; Wang, P.; Han, S.; Wang, L.; Zhao, Y.; Juan, L. FunEffector-Pred: Identification of Fungi Effector by Activate Learning and Genetic Algorithm Sampling of Imbalanced Data. IEEE Access 2020, 8, 57674–57683. [Google Scholar] [CrossRef]
- Jones, D.A.B.; Rozano, L.; Debler, J.W.; Mancera, R.L.; Moolhuijzen, P.M.; Hane, J.K. An Automated and Combinative Method for the Predictive Ranking of Candidate Effector Proteins of Fungal Plant Pathogens. Sci. Rep. 2021, 11, 19731. [Google Scholar] [CrossRef]
- Carreón-Anguiano, K.G.; Islas-Flores, I.; Vega-Arreguín, J.; Sáenz-Carbonell, L.; Canto-Canché, B. EffHunter: A Tool for Prediction of Effector Protein Candidates in Fungal Proteomic Databases. Biomolecules 2020, 10, 712. [Google Scholar] [CrossRef]
- Belluco, S.; Bertola, M.; Montarsi, F.; Di Martino, G.; Granato, A.; Stella, R.; Martinello, M.; Bordin, F.; Mutinelli, F. Insects and Public Health: An Overview. Insects 2023, 14, 240. [Google Scholar] [CrossRef]
- Ofuya, T.I.; Okunlola, A.I.; Mbata, G.N. A Review of Insect Pest Management in Vegetable Crop Production in Nigeria. Insects 2023, 14, 111. [Google Scholar] [CrossRef]
- Sharma, S.; Kooner, R.; Arora, R. Insect Pests and Crop Losses. In Breeding Insect Resistant Crops for Sustainable Agriculture; Arora, R., Sandhu, S., Eds.; Springer: Singapore, 2017; pp. 45–66. ISBN 978-981-10-6055-7. [Google Scholar]
- García-Lara, S.; Saldivar, S.O.S. Insect Pests. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 432–436. ISBN 978-0-12-384953-3. [Google Scholar]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Villarroel, C.A.; Jonckheere, W.; Alba, J.M.; Glas, J.J.; Dermauw, W.; Haring, M.A.; Van Leeuwen, T.; Schuurink, R.C.; Kant, M.R. Salivary Proteins of Spider Mites Suppress Defenses in Nicotiana benthamiana and Promote Mite Reproduction. Plant J. 2016, 86, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-J.; Lu, J.-B.; Li, Q.; Bao, Y.-Y.; Zhang, C.-X. Combined Transcriptomic/Proteomic Analysis of Salivary Gland and Secreted Saliva in Three Planthopper Species. J. Proteomics 2018, 172, 25–35. [Google Scholar] [CrossRef]
- Portillo Lemus, L.; Tricard, J.; Duclercq, J.; Coulette, Q.; Giron, D.; Hano, C.; Huguet, E.; Lamblin, F.; Cherqui, A.; Sallé, A. Salivary Proteins of Phloeomyzus Passerinii, a Plant-Manipulating Aphid, and Their Impact on Early Gene Responses of Susceptible and Resistant Poplar Genotypes. Plant Sci. 2020, 294, 110468. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.K.; Varma, M.; Vadassery, J. In Silico Identification of Effector Proteins from Generalist Herbivore Spodoptera Litura. BMC Genom. 2020, 21, 819. [Google Scholar] [CrossRef] [PubMed]
- Nicolis, V.F.; Burger, N.F.V.; Botha, A.-M. Whole-Body Transcriptome Mining for Candidate Effectors from Diuraphis Noxia. BMC Genom. 2022, 23, 493. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, H.-J.; Liu, Z.-Q.; Wan, Y.; Xu, H.-J.; Zhang, J.-L. LC‒MS/MS and Transcriptome Analyses Reveal Saliva Components of the Seed-Feeding Truebug Pyrrhocoris Apterus. Crop Health 2023, 1, 20. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Q.; Hu, X.; Liu, B.; Wang, Y. A Method for Identification of Biotype-Specific Salivary Effector Candidates of Aphid. Insects 2023, 14, 760. [Google Scholar] [CrossRef]
- Palomares-Rius, J.E.; Hasegawa, K.; Siddique, S.; Vicente, C.S.L. Editorial: Protecting Our Crops—Approaches for Plant Parasitic Nematode Control. Front. Plant Sci. 2021, 12, 726057. [Google Scholar] [CrossRef]
- Pulavarty, A.; Egan, A.; Karpinska, A.; Horgan, K.; Kakouli-Duarte, T. Plant Parasitic Nematodes: A Review on Their Behaviour, Host Interaction, Management Approaches and Their Occurrence in Two Sites in the Republic of Ireland. Plants 2021, 10, 2352. [Google Scholar] [CrossRef]
- Khan, M.R. Nematode Pests of Agricultural Crops, a Global Overview. In Novel Biological and Biotechnological Applications in Plant Nematode Management; Khan, M.R., Ed.; Springer Nature: Singapore, 2023; pp. 3–45. ISBN 978-981-9928-92-7. [Google Scholar]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 Plant-parasitic Nematodes in Molecular Plant Pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Jagdale, S.; Rao, U.; Giri, A.P. Effectors of Root-Knot Nematodes: An Arsenal for Successful Parasitism. Front. Plant Sci. 2021, 12, 800030. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.O.; Hussey, R.S.; Pepi, L.E.; Azadi, P.; Mitchum, M.G. Discovery of Novel Effector Protein Candidates Produced in the Dorsal Gland of Adult Female Root-Knot Nematodes. Mol. Plant-Microbe Interact. 2023, 36, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Bali, S.; Gleason, C. Unveiling the Diversity: Plant Parasitic Nematode Effectors and Their Plant Interaction Partners. Mol. Plant-Microbe Interact. 2024, 37, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Macharia, T.N.; Duong, T.A.; Moleleki, L.N. In Silico Secretome Analyses of the Polyphagous Root-Knot Nematode Meloidogyne Javanica: A Resource for Studying M. Javanica Secreted Proteins. BMC Genom. 2023, 24, 296. [Google Scholar] [CrossRef]
- Da Rocha, M.; Bournaud, C.; Dazenière, J.; Thorpe, P.; Bailly-Bechet, M.; Pellegrin, C.; Péré, A.; Grynberg, P.; Perfus-Barbeoch, L.; Eves-van Den Akker, S.; et al. Genome Expression Dynamics Reveal the Parasitism Regulatory Landscape of the Root-Knot Nematode Meloidogyne incognita and a Promoter Motif Associated with Effector Genes. Genes 2021, 12, 771. [Google Scholar] [CrossRef] [PubMed]
- Pennington, H.G.; Jones, R.; Kwon, S.; Bonciani, G.; Thieron, H.; Chandler, T.; Luong, P.; Morgan, S.N.; Przydacz, M.; Bozkurt, T.; et al. The Fungal Ribonuclease-like Effector Protein CSEP0064/BEC1054 Represses Plant Immunity and Interferes with Degradation of Host Ribosomal RNA. PLoS Pathog. 2019, 15, e1007620. [Google Scholar] [CrossRef]
- Ghareeb, H.; Drechsler, F.; Löfke, C.; Teichmann, T.; Schirawski, J. SUPPRESSOR OF APICAL DOMINANCE 1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis. Plant Physiol. 2015, 169, 2789–2804. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, A.; Rutter, W.; Wang, S.; Akhunova, A.; Bolus, S.; Chao, S.; Anderson, N.; De Soto, M.F.; Rouse, M.; Szabo, L.; et al. Variation in the AvrSr35 Gene Determines Sr35 Resistance against Wheat Stem Rust Race Ug99. Science 2017, 358, 1604–1606. [Google Scholar] [CrossRef]
- Godfrey, D.; Böhlenius, H.; Pedersen, C.; Zhang, Z.; Emmersen, J.; Thordal-Christensen, H. Powdery Mildew Fungal Effector Candidates Share N-Terminal Y/F/WxC-Motif. BMC Genom. 2010, 11, 317. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, J.; Qi, Y.; Li, J.; Amin, R.; Yang, W.; Liu, D. Predicating the Effector Proteins Secreted by Puccinia triticina Through Transcriptomic Analysis and Multiple Prediction Approaches. Front. Microbiol. 2020, 11, 538032. [Google Scholar] [CrossRef]
- Kanarek, K.; Fridman, C.M.; Bosis, E.; Salomon, D. The RIX Domain Defines a Class of Polymorphic T6SS Effectors and Secreted Adaptors. Nat. Commun. 2023, 14, 4983. [Google Scholar] [CrossRef] [PubMed]
- Kandolo, O.; Cherrak, Y.; Filella-Merce, I.; Le Guenno, H.; Kosta, A.; Espinosa, L.; Santucci, P.; Verthuy, C.; Lebrun, R.; Nilges, M.; et al. Acinetobacter Type VI Secretion System Comprises a Non-Canonical Membrane Complex. PLoS Pathog. 2023, 19, e1011687. [Google Scholar] [CrossRef]
- Gao, X.; Ren, Z.; Zhao, W.; Li, W. Candidatus Phytoplasma Ziziphi Encodes Non-Classically Secreted Proteins That Suppress Hypersensitive Cell Death Response in Nicotiana benthamiana. Phytopathol. Res. 2023, 5, 11. [Google Scholar] [CrossRef]
- Boonrod, K.; Munteanu, B.; Jarausch, B.; Jarausch, W.; Krczal, G. An Immunodominant Membrane Protein (Imp) of ‘Candidatus Phytoplasma Mali’ Binds to Plant Actin. Mol. Plant Microbe Interact. 2012, 25, 889–895. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Zhou, S.; Zhang, X.; Zhu, Y.; Chen, B.; Huang, X.; Yang, X.; Zhou, G.; Zhang, T. The Antigenic Membrane Protein (Amp) of Rice Orange Leaf Phytoplasma Suppresses Host Defenses and Is Involved in Pathogenicity. Int. J. Mol. Sci. 2023, 24, 4494. [Google Scholar] [CrossRef]
- Debonneville, C.; Mandelli, L.; Brodard, J.; Groux, R.; Roquis, D.; Schumpp, O. The Complete Genome of the “Flavescence Dorée” Phytoplasma Reveals Characteristics of Low Genome Plasticity. Biology 2022, 11, 953. [Google Scholar] [CrossRef] [PubMed]
- Mejias, J.; Truong, N.M.; Abad, P.; Favery, B.; Quentin, M. Plant Proteins and Processes Targeted by Parasitic Nematode Effectors. Front. Plant Sci. 2019, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Vieira, P.; Gleason, C. Plant-Parasitic Nematode Effectors—Insights into Their Diversity and New Tools for Their Identification. Curr. Opin. Plant Biol. 2019, 50, 37–43. [Google Scholar] [CrossRef]
- Pisarz, F.; Glatter, T.; Süss, D.-T.M.; Heermann, R.; Regaiolo, A. The Type VI Secretion Systems of the Insect Pathogen Photorhabdus luminescens Are Involved in Interbacterial Competition, Motility and Secondary Metabolism. Microbe 2024, 3, 100067. [Google Scholar] [CrossRef]
- Seong, K.; Krasileva, K.V. Prediction of Effector Protein Structures from Fungal Phytopathogens Enables Evolutionary Analyses. Nat. Microbiol. 2023, 8, 174–187. [Google Scholar] [CrossRef]
- Wood, K.J.; Nur, M.; Gil, J.; Fletcher, K.; Lakeman, K.; Gann, D.; Gothberg, A.; Khuu, T.; Kopetzky, J.; Naqvi, S.; et al. Effector Prediction and Characterization in the Oomycete Pathogen Bremia lactucae Reveal Host-Recognized WY Domain Proteins That Lack the Canonical RXLR Motif. PLoS Pathog. 2020, 16, e1009012. [Google Scholar] [CrossRef] [PubMed]
- Strohmayer, A.; Schwarz, T.; Braun, M.; Krczal, G.; Boonrod, K. The Effect of the Anticipated Nuclear Localization Sequence of ‘Candidatus Phytoplasma Mali’ SAP11-like Protein on Localization of the Protein and Destabilization of TCP Transcription Factor. Microorganisms 2021, 9, 1756. [Google Scholar] [CrossRef] [PubMed]
- Tayal, S.; Bhatia, V.; Mehrotra, T.; Bhatnagar, S. ImitateDB: A Database for Domain and Motif Mimicry Incorporating Host and Pathogen Protein Interactions. Amino Acids 2022, 54, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Stergiopoulos, I.; Van Den Burg, H.A.; Ökmen, B.; Beenen, H.G.; Van Liere, S.; Kema, G.H.J.; De Wit, P.J.G.M. Tomato Cf Resistance Proteins Mediate Recognition of Cognate Homologous Effectors from Fungi Pathogenic on Dicots and Monocots. Proc. Natl. Acad. Sci. USA 2010, 107, 7610–7615. [Google Scholar] [CrossRef]
- Lazar, N.; Mesarich, C.H.; Petit-Houdenot, Y.; Talbi, N.; Li De La Sierra-Gallay, I.; Zélie, E.; Blondeau, K.; Gracy, J.; Ollivier, B.; Blaise, F.; et al. A New Family of Structurally Conserved Fungal Effectors Displays Epistatic Interactions with Plant Resistance Proteins. PLoS Pathog. 2022, 18, e1010664. [Google Scholar] [CrossRef]
- Rozano, L.; Jones, D.A.B.; Hane, J.K.; Mancera, R.L. Template-Based Modelling of the Structure of Fungal Effector Proteins. Mol. Biotechnol. 2024, 66, 784–813. [Google Scholar] [CrossRef]
Algorithms | Description | Sensitivity/Specificity/Accuracy | Reference |
---|---|---|---|
T4EffPred | Machine learning trained with AtlasT4SS and SecRet4. This algorithm is able to identify T4ASS and T4BSS effectors | 0.70/0.98/0.93 | [53] |
S4TE | Machine learning based on 13 sequence characteristics | 0.80/0.65/0.55 for Legionella and Coxiella species | [54] |
S4TE 2.0 | Web interface version of S4TE 1.0 | 0.75/0.91/0.90 for Legionella and Coxiella species | [55] |
OPT4e | Graphical user interface that integrates previously developed bioinformatics tools | --/--/0.94 for Anaplasma phagocytophilum | [56] |
T4SE-XGB | Algorithms based on 20 different types of features of T4Es | 0.82/--/0.94 | [57] |
iT4SE-EP | Uses PSI-BLAST Profiles | 0.89/0.96/0.96 | [58] |
Algorithms | Description | Sensitivity/Specificity/Accuracy | Reference |
---|---|---|---|
Bastion6 | Machine learning. SVM classifier | --/--/0.94 | [62] |
PyPredT6 | Python-based algorithm using 837 protein features | 0.91/0.90/0.89 | [63] |
Foldseek | Protein structure-based algorithm | --/--/0.90 | [64] |
Algorithms | Description | Sensitivity/Specificity/Accuracy | Reference |
---|---|---|---|
EffectR | Hidden Markov model to identify characteristic motifs of oomycete effectors | ----- | [76] |
EffectorO | Machine learning based on biochemical properties of the effector N-terminal combined with lineage-specific distribution | --/0.82/0.84 | [77] |
POOE | ProtTrans-based support vector machine learning algorithm | --/0.94/0.89 | [78] |
Algorithms | Description | Sensitivity/Specificity/Accuracy | Reference |
---|---|---|---|
Secretool | Pipeline integrating SinalP, TargetP, PredGPI, TMHMM, and WolfPsort. This pipeline retrieves the secretome from the total proteome | ---- | [93] |
EffectorP 1.0 | Machine learning algorithm suitable for effector identification in non-pathogenic fungi | 0.84/0.83/0.86 | [94] |
EffectorP 2.0 | Machine learning algorithm suitable for effector identification in pathogenic fungi | 0.87/0.81/0.90 | [95] |
EffectorP 3.0 | Machine learning algorithm for effector subcellular localization | --/--/85 | [97] |
FunEffector-Pred | Similar to EffectorP 1.0 but trained with balanced positive and negative datasets | 0.86/--/0.92 | [98] |
Predector | Machine learning algorithm that ranks candidate effector proteins | --/--/0.59 | [99] |
EffHunter | Pipeline integrating SignalP 4.1, Phobius, TMHMM, and WoLFPSORT. Suitable for identification of fungal canonical effectors (<400 amino acids, at least four cysteines) | 0.7/1.0/0.99 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Briones, C.D.l.; Carreón-Anguiano, K.G.; Vila-Luna, S.E.; Todd, J.N.A.; Islas-Flores, I.; Sáenz-Carbonell, L.; Gamas-Trujillo, P.A.; Canto-Canché, B. Algorithms for Effector Prediction in Plant Pathogens and Pests: Achievements and Current Challenges. Microbiol. Res. 2024, 15, 2162-2183. https://doi.org/10.3390/microbiolres15040145
Santos-Briones CDl, Carreón-Anguiano KG, Vila-Luna SE, Todd JNA, Islas-Flores I, Sáenz-Carbonell L, Gamas-Trujillo PA, Canto-Canché B. Algorithms for Effector Prediction in Plant Pathogens and Pests: Achievements and Current Challenges. Microbiology Research. 2024; 15(4):2162-2183. https://doi.org/10.3390/microbiolres15040145
Chicago/Turabian StyleSantos-Briones, César De los, Karla Gisel Carreón-Anguiano, Sara E. Vila-Luna, Jewel Nicole Anna Todd, Ignacio Islas-Flores, Luis Sáenz-Carbonell, Pablo Alejandro Gamas-Trujillo, and Blondy Canto-Canché. 2024. "Algorithms for Effector Prediction in Plant Pathogens and Pests: Achievements and Current Challenges" Microbiology Research 15, no. 4: 2162-2183. https://doi.org/10.3390/microbiolres15040145
APA StyleSantos-Briones, C. D. l., Carreón-Anguiano, K. G., Vila-Luna, S. E., Todd, J. N. A., Islas-Flores, I., Sáenz-Carbonell, L., Gamas-Trujillo, P. A., & Canto-Canché, B. (2024). Algorithms for Effector Prediction in Plant Pathogens and Pests: Achievements and Current Challenges. Microbiology Research, 15(4), 2162-2183. https://doi.org/10.3390/microbiolres15040145