A Target to Combat Antibiotic Resistance: Biochemical and Biophysical Characterization of 3-Dehydroquinate Dehydratase from Methicillin-Resistant Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. aroD Gene Amplification, Cloning, and Overexpression
2.2. Protein Purification
2.3. Enzyme Activity
2.4. Biochemical Characterization
2.4.1. Amino Acid Sequence Analysis
2.4.2. Kinetic Parameters
2.4.3. Optimum pH
2.4.4. pH Stability
2.4.5. Optimum Temperature
2.4.6. Thermal Stability
2.4.7. Effect of Ions, Surfactants, and Chelating Agents
2.4.8. Structural Characterization
2.5. Thermodynamic Parameters
2.5.1. Activation Energy
2.5.2. Thermal Inactivation Parameters
3. Results and Discussion
3.1. Biochemical Characterization
3.1.1. Sequence Analysis of SaDHQD
3.1.2. Purification of SaDHQD
3.1.3. Kinetic Characterization of SaDHQD
3.1.4. Effect of pH and Temperature on SaDHQD Activity
3.1.5. Effect of Metal Ions and Surfactants on SaDHQD’s Activity
3.1.6. Circular Dichroism and Fluorescence Analysis
3.2. Thermodynamic Parameters
3.3. Design of Potential Inhibitors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes, P.; Martens, E. Antibiotics in late clinical development. Biochem. Pharmacol. 2017, 133, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- WHO Bacterial Priority Pathogens List. Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. 2024. Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 1 November 2024).
- Mahjabeen, F.; Saha, U.; Mostafa, M.N.; Siddique, F.; Ahsan, E.; Fathma, S.; Tasnim, A.; Rahman, T.; Faruq, R.; Sakibuzzaman, M.; et al. An Update on Treatment Options for Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia: A Systematic Review. Cureus 2022, 14, e31486. [Google Scholar] [CrossRef] [PubMed]
- Frlan, R. An Evolutionary Conservation and Druggability Analysis of Enzymes Belonging to the Bacterial Shikimate Pathway. Antibiotics 2022, 11, 675. [Google Scholar] [CrossRef]
- Mir, R.; Jallu, S.; Singh, T.P. The shikimate pathway: Review of amino acid sequence, function and three-dimensional structures of the enzymes. Crit. Rev. Microbiol. 2015, 41, 172–189. [Google Scholar] [CrossRef]
- Nunes, J.E.S.; Duque, M.A.; de Freitas, T.F.; Galina, L.; Timmers, L.F.S.M.; Bizarro, C.V.; Machado, P.; Basso, L.A.; Ducati, R.G. Mycobacterium tuberculosis shikimate pathway enzymes as targets for the rational design of anti-tuberculosis drugs. Molecules 2020, 25, 1259. [Google Scholar] [CrossRef]
- Jennison, A.V.; Verma, N.K. Shigella flexneri infection: Pathogenesis and vaccine development. FEMS Microbiol. Rev. 2004, 28, 43–58. [Google Scholar] [CrossRef]
- Cunningham, A.L.; Mann, B.J.; Qin, A.; Santiago, A.E.; Grassel, C.; Lipsky, M.; Vogel, S.N.; Barry, E.M. Characterization of Schu S4 aro mutants as live attenuated tularemia vaccine candidates. Virulence 2020, 11, 283–294. [Google Scholar] [CrossRef]
- Zhang, P.; Wright, J.A.; Osman, A.A.; Nair, S.P. An aroD Ochre mutation results in a Staphylococcus aureus Small colony variant that can undergo phenotypic switching via two alternative mechanisms. Front. Microbiol. 2017, 8, 1001. [Google Scholar] [CrossRef]
- Nichols, C.E.; Lockyer, M.; Hawkins, A.R.; Stammers, D.K. Crystal structures of Staphylococcus aureus type I dehydroquinase from enzyme turnover experiments. Proteins Struct. Funct. Bioinform. 2004, 56, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Coggins, J.R.; Sawyer, L.; Gourley, D.G.; Shrive, A.K.; Polikarpov, I.; Krell, T.; Hawkins, A.R.; Isaacs, N.W. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nat. Struct. Mol. Biol. 1999, 6, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Cheung, V.W.N.; Xue, B.; Hernandez-Valladares, M.; Go, M.K.; Tung, A.; Aguda, A.H.; Robinson, R.C.; Yew, W.S. Identification of polyketide inhibitors targeting 3-dehydroquinate dehydratase in the shikimate pathway of Enterococcus faecalis. PLoS ONE 2014, 9, e103598. [Google Scholar] [CrossRef] [PubMed]
- Light, S.H.; Minasov, G.; Shuvalova, L.; Duban, M.-E.; Caffrey, M.; Anderson, W.F.; Lavie, A. Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates. J. Biol. Chem. 2011, 286, 3531–3539. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Jaafar, N.R.; Mahadi, N.M.; Mackeen, M.M.; Illias, R.M.; Murad, A.M.A.; Abu Bakar, F.D. Structural and functional characterisation of a cold-active yet heat-tolerant dehydroquinase from Glaciozyma antarctica PI12. J. Biotechnol. 2021, 329, 118–127. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Segel, H.I. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems; Wiley: New York, NY, USA, 1993; pp. 18–80. [Google Scholar]
- Avitia-Domínguez, C.; Sierra-Campos, E.; Salas-Pacheco, J.M.; Nájera, H.; Rojo-Domínguez, A.; Cisneros-Martínez, J.; Téllez-Valencia, A. Inhibition and biochemical characterization of methicillin-resistant staphylococcus aureus shikimate dehydrogenase: An in silico and kinetic study. Molecules 2014, 19, 4491–4509. [Google Scholar] [CrossRef]
- Hernández-Alcántara, G.; Rodríguez-Romero, A.; Reyes-Vivas, H.; Peon, J.; Cabrera, N.; Ortiz, C.; Enríquez-Flores, S.; De la Mora-De la Mora, I.; López-Velázquez, G. Unraveling the mechanisms of tryptophan fluorescence quenching in the triosephosphate isomerase from Giardia lamblia. Biochim. Biophys. Acta Proteins Proteom. 2008, 1784, 1493–1500. [Google Scholar] [CrossRef]
- Patel, A.; Shah, A. Purification and characterization of novel, thermostable and non-processive GH5 family endoglucanase from Fomitopsis meliae CFA 2. Int. J. Biol. Macromol. 2021, 182, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, Z.S. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: A theoretical study. Org. Biomol. Chem. 2012, 10, 7037–7044. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Y.M.; Sun, Q.L.; Jiang, C.Y.; Liu, S.J. Unraveling the kinetic diversity of microbial 3-dehydroquinate dehydratases of shikimate pathway. AMB Express. 2015, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.D.; Hawkins, A.R.; Charles, I.G.; Deka, R.; Coggins, J.R.; Cooper, A.; Kelly, S.M.; Price, N.C. Characterization of the type I dehydroquinase from Salmonella typhi. Biochem. J. 1993, 295, 277–285. [Google Scholar] [CrossRef]
- Light, S.H.; Antanasijevic, A.; Krishna, S.N.; Caffrey, M.; Anderson, W.F.; Lavie, A. Crystal structures of type I dehydroquinate dehydratase in complex with quinate and shikimate suggest a novel mechanism of schiff base formation. Biochemistry 2014, 53, 872–880. [Google Scholar] [CrossRef]
- Mitsuhashi, S.; Davis, B.D. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. Biophys. Acta 1954, 15, 54–61. [Google Scholar] [CrossRef]
- Adachi, O.; Ano, Y.; Toyama, H.; Matsushita, K. A novel 3-dehydroquinate dehydratase catalyzing extracellular formation of 3-dehydroshikimate by oxidative fermentation of Gluconobacter oxydans IFO 3244. Biosci. Biotechnol. Biochem. 2008, 72, 1475–1482. [Google Scholar] [CrossRef]
- Kleanthous, C.; Reilly, M.; Cooper, A.; Kelly, S.; Price, N.C.; Coggins, D.J.R. Stabilization of the shikimate pathway enzyme dehydroquinase by covalently bound ligand. J. Biol. Chem. 1991, 266, 10893–10898. [Google Scholar] [CrossRef]
- Salehi, M. Evaluating the industrial potential of naturally occurring proteases: A focus on kinetic and thermodynamic parameters. Int. J. Biol. Macromol. 2024, 254, 127782. [Google Scholar] [CrossRef]
- Duman, Y.A.; Tekin, N. Kinetic and thermodynamic properties of purified alkaline protease from Bacillus pumilus Y7 and non-covalent immobilization to poly(vinylimidazole)/clay hydrogel. Eng. Life Sci. 2020, 20, 36–49. [Google Scholar] [CrossRef]
- Aguilar, J.G.D.S.; de Castro, R.J.S.; Sato, H.H. Alkaline protease production by Bacillus licheniformis LBA 46 in a bench reactor: Effect of temperature and agitation. Braz. J. Chem. Eng. 2019, 36, 615–625. [Google Scholar] [CrossRef]
- Steinweg, J.M.; Jagadamma, S.; Frerichs, J.; Mayes, M.A. Activation Energy of Extracellular Enzymes in Soils from Different Biomes. PLoS ONE 2013, 8, e59943. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.M.; Aliakbarian, B.; Filho, E.X.F.; Magalhães, P.O.; Junior, A.P.; Converti, A.; Perego, P. Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus. Int. J. Biol. Macromol. 2015, 81, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.; Mahmoud, A.; Jones, K.D.; Taylor, K.E.; Hosseney, E.N.; Mills, P.L.; Escudero, J.M. Kinetics and thermodynamics of thermal inactivation for recombinant Escherichia coli cellulases, cel12B, cel8C, and polygalacturonase, peh28; biocatalysts for biofuel precursor production. J. Biochem. 2021, 169, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Gouzi, H.; Depagne, C.; Coradin, T. Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus. J. Agric. Food Chem. 2012, 60, 500–506. [Google Scholar] [CrossRef]
- Olusesan, A.T.; Azura, L.K.; Forghani, B.; Abu Bakar, F.; Mohamed, A.K.S.; Radu, S.; Manap, M.Y.A.; Saari, N. Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8. N. Biotechnol. 2011, 28, 738–745. [Google Scholar] [CrossRef]
- Batista, K.A.; Batista, G.L.A.; Alves, G.L.; Fernandes, K.F. Extraction, partial purification and characterization of polyphenol oxidase from Solanum lycocarpum fruits. J. Mol. Catal. B Enzym. 2014, 102, 211–217. [Google Scholar] [CrossRef]
- González-Bello, C.; Tizón, L.; Lence, E.; Otero, J.M.; van Raaij, M.J.; Martinez-Guitian, M.; Beceiro, A.; Thompson, P.; Hawkins, A.R. Chemical Modification of a Dehydratase Enzyme Involved in Bacterial Virulence by an Ammonium Derivative: Evidence of its Active Site Covalent Adduct. J. Am. Chem. Soc. 2015, 137, 9333–9343. [Google Scholar] [CrossRef]
- Lence, E.; Maneiro, M.; Sanz-Gaitero, M.; van Raaij, M.J.; Thompson, P.; Hawkins, A.R.; González-Bello, C. Self-Immolation of a Bacterial Dehydratase Enzyme by its Epoxide Product. Chemistry 2020, 26, 8035–8044. [Google Scholar] [CrossRef]
- Millán-Pacheco, C.; Rios-Soto, L.; Corral-Rodríguez, N.; Sierra-Campos, E.; Valdez-Solana, M.; Téllez-Valencia, A.; Avitia-Domínguez, C. Discovery of Potential Noncovalent Inhibitors of Dehydroquinate Dehydratase from Methicillin-Resistant Staphylococcus aureus through Computational-Driven Drug Design. Pharmaceuticals 2023, 16, 1148. [Google Scholar] [CrossRef]
Volume (mL) | Protein (mg) | Total Activity (U) | Specific Activity (U/mg) | Purification (Fold) | Yield (%) | |
---|---|---|---|---|---|---|
Crude extract | 20 | 18.59 | 124.28 | 6.68 | 1.00 | 100.00 |
Affinity chromatography | 3 | 1.02 | 50.20 | 49.34 | 7.48 | 40.4 |
Ions, Surfactants, and Chelating Agents | p * Value at Different Concentrations | |
---|---|---|
1 mM | 5 mM | |
Na+ | 0.1448 | 0.1342 |
K+ | 0.9699 | 0.0064 |
NH4+ | 0.2623 | 0.4330 |
Mg2+ | 0.0380 | 0.0152 |
Ca2+ | 0.0016 | 0.0940 |
Ba2+ | 0.2657 | 0.116 |
Mn2+ | 0.9932 | 0.0005 |
Fe3+ | 0.0343 | 0.2048 |
SDS | 0.0014 | 0.0001 |
Tween-20 | 0.0018 | 0.0115 |
Tritón-X-100 | 0.0001 | 0.0001 |
EDTA | 0.0273 | 0.0002 |
Temperature (K) | kd (h−1) | t1/2 (h) | D (h) | ΔH (kJ/mol) | ΔG (kJ/mol) | ΔS (kJ/mol K) |
---|---|---|---|---|---|---|
283.15 | 0.026 ± 0.003 | 26.66 | 88.56 | 124.25 | 97.10 | 0.096 |
293.15 | 0.050 ± 0.002 | 13.86 | 46.05 | 124.16 | 99.05 | 0.086 |
303.15 | 0.333 ± 0.011 | 2.06 | 6.92 | 124.08 | 97.70 | 0.087 |
313.15 | 0.704 ± 0.027 | 0.985 | 3.27 | 123.99 | 99.07 | 0.080 |
323.15 | 9.533 ± 0.180 | 0.073 | 0.24 | 123.91 | 95.31 | 0.088 |
333.15 | 41.72 ± 1.291 | 0.017 | 0.055 | 123.83 | 94.25 | 0.089 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Téllez-Valencia, A.; Oria-Hernández, J.; Castillo-Villanueva, A.; Sierra-Campos, E.; Valdez-Solana, M.; Cisneros-Martínez, J.; Avitia-Domínguez, C. A Target to Combat Antibiotic Resistance: Biochemical and Biophysical Characterization of 3-Dehydroquinate Dehydratase from Methicillin-Resistant Staphylococcus aureus. Microbiol. Res. 2024, 15, 2316-2329. https://doi.org/10.3390/microbiolres15040155
Téllez-Valencia A, Oria-Hernández J, Castillo-Villanueva A, Sierra-Campos E, Valdez-Solana M, Cisneros-Martínez J, Avitia-Domínguez C. A Target to Combat Antibiotic Resistance: Biochemical and Biophysical Characterization of 3-Dehydroquinate Dehydratase from Methicillin-Resistant Staphylococcus aureus. Microbiology Research. 2024; 15(4):2316-2329. https://doi.org/10.3390/microbiolres15040155
Chicago/Turabian StyleTéllez-Valencia, Alfredo, Jesús Oria-Hernández, Adriana Castillo-Villanueva, Erick Sierra-Campos, Mónica Valdez-Solana, Jorge Cisneros-Martínez, and Claudia Avitia-Domínguez. 2024. "A Target to Combat Antibiotic Resistance: Biochemical and Biophysical Characterization of 3-Dehydroquinate Dehydratase from Methicillin-Resistant Staphylococcus aureus" Microbiology Research 15, no. 4: 2316-2329. https://doi.org/10.3390/microbiolres15040155
APA StyleTéllez-Valencia, A., Oria-Hernández, J., Castillo-Villanueva, A., Sierra-Campos, E., Valdez-Solana, M., Cisneros-Martínez, J., & Avitia-Domínguez, C. (2024). A Target to Combat Antibiotic Resistance: Biochemical and Biophysical Characterization of 3-Dehydroquinate Dehydratase from Methicillin-Resistant Staphylococcus aureus. Microbiology Research, 15(4), 2316-2329. https://doi.org/10.3390/microbiolres15040155