Sex- and Gender-Specific Considerations in Mycotoxin Screening: Assessing Differential Exposure, Health Impacts, and Mitigation Strategies
Abstract
:1. Introduction
2. Sex Differences in Mycotoxin Exposure
2.1. Sex-Specific Effects of Mycotoxins on Reproductive Health, Immune Responses, Cancer Risk, and Pregnancy Outcomes
2.1.1. Impact of Mycotoxins on the Human Reproductive System
2.1.2. Mycotoxins and Pregnancy Outcomes
2.1.3. Sex-Based Variations in Mycotoxin Toxicity and Immune Response
2.1.4. Sex Differences in Cancer Risk Linked to Mycotoxins
2.2. Gender-Based Differences in Dietary Patterns and Their Impact on Mycotoxin Exposure
2.2.1. Gender-Based Differences in Dietary Patterns
2.2.2. Impact of Gender-Based Dietary Patterns on Mycotoxin Exposure
2.2.3. Occupational Exposure to Mycotoxins
2.3. Gender Differences in Occupational Exposure to Mycotoxins
2.4. Gender-Specific Roles and Their Impact on Household Management of Mycotoxin Exposure
3. Techniques for Mycotoxin Screening
Recent Advances in Point-of-Use Mycotoxin Detection
4. Regulatory Challenges and Gender-Sensitive Strategies in Mycotoxin Management
4.1. Regulatory Framework for Mycotoxins: Challenges and the Need for Stricter Enforcement
4.2. Integrating Sex and Gender-Sensitive Strategies in Mycotoxin Management
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins Co-Contamination: Methodological Aspects and Biological Relevance of Combined Toxicity Studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef]
- Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin Contamination and Control Strategy in Human, Domestic Animal and Poultry: A Review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current Situation of Mycotoxin Contamination and Co-Occurrence in Animal Feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Hautbergue, T.; Puel, O.; Tadrist, S.; Meneghetti, L.; Péan, M.; Delaforge, M.; Debrauwer, L.; Oswald, I.P.; Jamin, E.L. Evidencing 98 Secondary Metabolites of Penicillium verrucosum Using Substrate Isotopic Labeling and High-Resolution Mass Spectrometry. J. Chromatogr. B 2017, 1071, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [Google Scholar] [CrossRef]
- De Boevre, M.; Graniczkowska, K.; De Saeger, S. Metabolism of Modified Mycotoxins Studied through In Vitro and In Vivo Models: An Overview. Toxicol. Lett. 2015, 233, 24–28. [Google Scholar] [CrossRef]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; De Saeger, S.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked Mycotoxins: A Review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of Food Processing and Detoxification Treatments on Mycotoxin Contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Alassane-Kpembi, I.; Puel, O.; Pinton, P.; Cossalter, A.-M.; Chou, T.-C.; Oswald, I.P. Co-Exposure to Low Doses of the Food Contaminants Deoxynivalenol and Nivalenol Has a Synergistic Inflammatory Effect on Intestinal Explants. Arch. Toxicol. 2017, 91, 2677–2687. [Google Scholar] [CrossRef] [PubMed]
- Alassane-Kpembi, I.; Puel, O.; Oswald, I.P. Toxicological Interactions between the Mycotoxins Deoxynivalenol, Nivalenol and Their Acetylated Derivatives in Intestinal Epithelial Cells. Arch. Toxicol. 2015, 89, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary Mycotoxins, Co-Exposure, and Carcinogenesis in Humans: Short Review. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A.; Bijak, M. Molecular Aspects of Mycotoxins—A Serious Problem for Human Health. Int. J. Mol. Sci. 2020, 21, 8187. [Google Scholar] [CrossRef]
- Chen, J.; Wen, J.; Tang, Y.; Shi, J.; Mu, G.; Yan, R.; Cai, J.; Long, M. Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021, 26, 5238. [Google Scholar] [CrossRef]
- Gelineau-van Waes, J.; Voss, K.A.; Stevens, V.L.; Speer, M.C.; Riley, R.T. Maternal fumonisin exposure as a risk factor for neural tube defects. Adv. Food Nutr. Res. 2009, 56, 145–181. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Gupta, A.; Pandhi, S.; Sharma, B.; Dhawan, K.; Vasundhara; Mishra, S.; Kumar, M.; Tripathi, A.D.; et al. Deoxynivalenol: An overview on occurrence, chemistry, biosynthesis, health effects and its detection, management, and control strategies in food and feed. Microbiol. Res. 2022, 13, 292–314. [Google Scholar] [CrossRef]
- Khoi, C.S.; Chen, J.H.; Lin, T.Y.; Chiang, C.K.; Hung, K.Y. Ochratoxin A-induced nephrotoxicity: Up-to-date evidence. Int. J. Mol. Sci. 2021, 22, 11237. [Google Scholar] [CrossRef]
- Mahato, D.K.; Devi, S.; Pandhi, S.; Sharma, B.; Maurya, K.K.; Mishra, S.; Dhawan, K.; Selvakumar, R.; Kamle, M.; Mishra, A.K.; et al. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins 2021, 13, 92. [Google Scholar] [CrossRef]
- Roura, E.; Koopmans, S.-J.; Lallès, J.-P.; Le Huerou-Luron, I.; de Jager, N.; Schuurman, T.; Val-Laillet, D. Critical review evaluating the pig as a model for human nutritional physiology. Nutr. Res. Rev. 2016, 29, 60–90. [Google Scholar] [CrossRef]
- Pierron, A.; Mimoun, S.; Murate, L.S.; Loiseau, N.; Lippi, Y.; Bracarense, A.P.F.; Liaubet, L.; Schatzmayr, G.; Berthiller, F.; Moll, W.D.; et al. Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-D-glucoside. Arch. Toxicol. 2016, 90, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porc. Health Manag. 2016, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Dortant, P.M.; Peters-Volleberg, G.W.; Van Loveren, H.; Marquardt, R.R.; Speijers, G.J. Age-related differences in the toxicity of ochratoxin A in female rats. Food Chem. Toxicol. 2001, 39, 55–65. [Google Scholar] [CrossRef] [PubMed]
- García, G.R.; Payros, D.; Pinton, P.; Dogi, C.A.; Laffitte, J.; Neves, M.; González Pereyra, M.L.; Cavaglieri, L.R.; Oswald, I.P. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Arch. Toxicol. 2018; in press. [Google Scholar] [CrossRef]
- Clark, E.S.; Flannery, B.M.; Gardner, E.M.; Pestka, J.J. High sensitivity of aged mice to deoxynivalenol (vomitoxin)-induced anorexia corresponds to elevated proinflammatory cytokine and satiety hormone responses. Toxins 2015, 7, 4199–4215. [Google Scholar] [CrossRef]
- Mennecozzi, M.; Landesmann, B.; Palosaari, T.; Harris, G.; Whelan, M. Sex differences in liver toxicity—Do female and male human primary hepatocytes react differently to toxicants in vitro? PLoS ONE 2015, 10, e0122786. [Google Scholar] [CrossRef]
- Kaminsky, Z.; Wang, S.-C.; Petronis, A. Complex disease, gender and epigenetics. Ann. Med. 2006, 38, 530–544. [Google Scholar] [CrossRef]
- Cote, L.M.; Beasley, V.R.; Bratich, P.M.; Swanson, S.P.; Shivaprasad, H.L.; Buck, W.B. Sex-related reduced weight gains in growing swine fed diets containing deoxynivalenol. J. Anim. Sci. 1985, 61, 942–950. [Google Scholar] [CrossRef]
- Waxman, D.J.; Holloway, M.G. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharmacol. 2009, 76, 215–228. [Google Scholar] [CrossRef]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Hauschild, L.; Vale, M.M.; Lovatto, P.A. Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 2012, 6, 1476–1482. [Google Scholar] [CrossRef]
- Escrivá, L.; Font, G.; Manyes, L. In Vivo Toxicity Studies of Fusarium Mycotoxins in the Last Decade: A Review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Marcelloni, A.M.; Pigini, D.; Chiominto, A.; Gioffrè, A.; Paba, E. Exposure to Airborne Mycotoxins: The Riskiest Working Environments and Tasks. Ann. Work. Expo. Health 2024, 68, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Viegas, C.; Oppliger, A. Occupational Exposure to Mycotoxins: Current Knowledge and Prospects. Ann. Work Expo. Health 2018, 62, 923–941. [Google Scholar] [CrossRef]
- Masella, R.; Malorni, W. Gender-Related Differences in Dietary Habits. Clin. Manag. Issues 2017, 11, 59–62. [Google Scholar] [CrossRef]
- Yu, J.; Pedroso, I.R. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals, and Pets. Toxins 2023, 15, 480. [Google Scholar] [CrossRef]
- Monterrosa, E.C.; Frongillo, E.A.; Drewnowski, A.; de Pee, S.; Vandevijvere, S. Sociocultural Influences on Food Choices and Implications for Sustainable Healthy Diets. Food Nutr. Bull. 2020, 41 (Suppl. 2), 59S–73S. [Google Scholar] [CrossRef]
- Nemec, K. Cultural Awareness of Eating Patterns in the Health Care Setting. Clin. Liver Dis. 2020, 16, 204–207. [Google Scholar] [CrossRef]
- Pechey, R.; Monsivais, P. Socioeconomic Inequalities in the Healthiness of Food Choices: Exploring the Contributions of Food Expenditures. Prev. Med. 2016, 88, 203–209. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- Meeker, J.D. Exposure to Environmental Endocrine Disruptors and Child Development. Arch. Pediatr. Adolesc. Med. 2012, 166, 952–958. [Google Scholar] [CrossRef]
- Lucchese, T.A.; Grunow, N.; Ian Werner, I.; de Jesus, A.L.; Arbex, A.K. Endocrine Disruptors and Fetal Programming. Open J. Endocr. Metab. Dis. 2017, 7, 59–76. [Google Scholar] [CrossRef]
- Li, L.; Wu, X.; Guan, H.; Mao, B.; Wang, H.; Yuan, X.; Chu, Y.; Sun, J.; Ge, R.-S. Zearalenone Inhibits Rat and Human 11β-Hydroxysteroid Dehydrogenase Type 2. BioMed Res. Int. 2015, 2015, 283530. [Google Scholar] [CrossRef] [PubMed]
- Obremski, K.; Gonkowski, S.; Wojtacha, P. Zearalenone-Induced Changes in the Lymphoid Tissue and Mucosal Nerve Fibers in the Porcine Ileum. Pol. J. Vet. Sci. 2015, 18, 357–365. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Endocrine Disorders and Children, Children’s Health and the Environment. Available online: http://www.portal.pmnch.org/ceh/capacity/endocrine.pdf (accessed on 20 July 2024).
- Yum, T.; Lee, S.; Kim, Y. Association Between Precocious Puberty and Some Endocrine Disruptors in Human Plasma. J. Environ. Sci. Health A 2013, 48, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Massart, F.; Meucci, V.; Saggese, G.; Soldani, G. High Growth Rate of Girls with Precocious Puberty Exposed to Estrogenic Mycotoxins. J. Pediatr. 2008, 152, 690–695.e1. [Google Scholar] [CrossRef]
- Massart, F.; Saggese, G. Oestrogenic Mycotoxin Exposures and Precocious Pubertal Development. Int. J. Androl. 2010, 33, 369–376. [Google Scholar] [CrossRef]
- Bandera, E.V.; Chandran, U.; Buckley, B.; Lin, Y.; Isukapalli, S.; Marshall, I.; King, M.; Zarbl, H. Urinary Mycoestrogens, Body Size and Breast Development in New Jersey Girls. Sci. Total Environ. 2011, 409, 5221–5227. [Google Scholar] [CrossRef]
- Rivera-Núñez, Z.; Barrett, E.S.; Szamreta, E.A.; Shapses, S.A.; Qin, B.; Lin, Y.; Zarbl, H.; Buckley, B.; Bandera, E.V. Urinary Mycoestrogens and Age and Height at Menarche in New Jersey Girls. Environ. Health 2019, 18, 24. [Google Scholar] [CrossRef]
- Asci, A.; Durmaz, E.; Erkekoglu, P.; Pasli, D.; Bircan, I.; Kocer-Gumusel, B. Urinary Zearalenone Levels in Girls with Premature Thelarche and Idiopathic Central Precocious Puberty. Minerva Pediatr. 2014, 66, 571–578. [Google Scholar] [PubMed]
- Szuets, P.; Mesterházy, Á.; Falkay, G.; Bartók, T. Early Telarche Symptoms in Children and Their Relations to Zearalenon Contamination in Foodstuffs. Cereal Res. Commun. 1997, 25, 429–436. [Google Scholar] [CrossRef]
- Zheng, W.; Feng, N.; Wang, Y.; Noll, L.; Xu, S.; Liu, X.; Lu, N.; Zou, H.; Gu, J.; Yuan, Y.; et al. Effects of Zearalenone and Its Derivatives on the Synthesis and Secretion of Mammalian Sex Steroid Hormones: A Review. Food Chem. Toxicol. 2019, 126, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Zwierzchowski, W.; Przybyłowicz, M.; Obremski, K.; Zielonka, L.; Skorska-Wyszyńska, E.; Gajecka, M.; Polak, M.; Jakimiuk, E.; Jana, B.; Rybarczyk, L.; et al. Level of Zearalenone in Blood Serum and Lesions in Ovarian Follicles of Sexually Immature Gilts in the Course of Zearalenone Micotoxicosis. Pol. J. Vet. Sci. 2005, 8, 209–218. [Google Scholar] [PubMed]
- Jakimiuk, E.; Rybarczyk, L.; Zwierzchowski, W.; Obremski, K.; Gajęcka, M.; Zielonka, Ł.; Gajęcki, M. Effect of Experimental Long-Term Exposure to Low-Dose Zearalenone Mycotoxicosis on Selected Morphometric Parameters of the Reproductive Tract in Sexually-Immature Gilts. Bull. Vet. Inst. Pulawy 2010, 54, 25–28. [Google Scholar]
- Caserta, D.; Mantovani, A.; Marci, R.; Fazi, A.; Ciardo, F.; La Rocca, C.; Maranghi, F.; Moscarini, M. Environment and Women’s Reproductive Health. Hum. Reprod. Update 2011, 17, 418–433. [Google Scholar] [CrossRef] [PubMed]
- Balló, A.; Busznyákné Székvári, K.; Czétány, P.; Márk, L.; Török, A.; Szántó, Á.; Máté, G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int. J. Mol. Sci. 2023, 24, 1578. [Google Scholar] [CrossRef]
- Ibeh, I.N.; Uraih, N.; Ogonor, J.I. Dietary Exposure to Aflatoxin in Benin City, Nigeria: A Possible Public Health Concern. Int. J. Food Microbiol. 1991, 14, 171–174. [Google Scholar] [CrossRef]
- Uriah, N.; Ibeh, I.N.; Oluwafemi, F. A Study on the Impact of Aflatoxin on Human Reproduction. AJRH 2001, 5, 106–110. [Google Scholar] [CrossRef]
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in Food and Feed: Present Status and Future Concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Frizzell, C.; Ndossi, D.; Kalayou, S.; Eriksen, G.S.; Verhaegen, S.; Sørlie, M.; Elliott, C.T.; Ropstad, E.; Connolly, L. An In Vitro Investigation of Endocrine Disrupting Effects of the Mycotoxin Alternariol. Toxicol. Appl. Pharmacol. 2013, 271, 64–71. [Google Scholar] [CrossRef]
- Kalayou, S.; Hamre, A.G.; Ndossi, D.; Connolly, L.; Sørlie, M.; Ropstad, E.; Verhaegen, S. Using SILAC Proteomics to Investigate the Effect of the Mycotoxin, Alternariol, in the Human H295R Steroidogenesis Model. Cell Biol. Toxicol. 2014, 30, 361–376. [Google Scholar] [CrossRef]
- Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and Toxicological Effects of Patulin. Toxins 2010, 2, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Selmanoglu, G.; Koçkaya, E.A. Investigation of the Effects of Patulin on Thyroid and Testis, and Hormone Levels in Growing Male Rats. Food Chem. Toxicol. 2004, 42, 721–727. [Google Scholar] [CrossRef]
- Selmanoğlu, G. Evaluation of the Reproductive Toxicity of Patulin in Growing Male Rats. Food Chem. Toxicol. 2006, 44, 2019–2024. [Google Scholar] [CrossRef]
- Frizzell, C.; Elliott, C.T.; Connolly, L. Effects of the Mycotoxin Patulin at the Level of Nuclear Receptor Transcriptional Activity and Steroidogenesis in Vitro. Toxicol. Lett. 2014, 229, 366–373. [Google Scholar] [CrossRef]
- Prouillac, C.; Videmann, B.; Mazallon, M.; Lecoeur, S. Induction of Cells Differentiation and ABC Transporters Expression by a Myco-Estrogen, Zearalenone, in Human Choriocarcinoma Cell Line (BeWo). Toxicology 2009, 263, 100–107. [Google Scholar] [CrossRef]
- Prouillac, C.; Koraichi, F.; Videmann, B.; Mazallon, M.; Rodriguez, F.; Baltas, M.; Lecoeur, S. In Vitro Toxicological Effects of Estrogenic Mycotoxins on Human Placental Cells: Structure Activity Relationships. Toxicol. Appl. Pharmacol. 2012, 259, 366–375. [Google Scholar] [CrossRef]
- Aleksunes, L.M.; Barrett, E.S. Impact of Fusarium-Derived Mycoestrogens on Female Reproduction: A Systematic Review. Toxins 2021, 13, 373. [Google Scholar] [CrossRef]
- Partanen, H.A.; El-Nezami, H.S.; Leppänen, J.M.; Myllynen, P.K.; Woodhouse, H.J.; Vähäkangas, K.H. Aflatoxin B1 Transfer and Metabolism in Human Placenta. Toxicol. Sci. 2010, 113, 216–225. [Google Scholar] [CrossRef]
- Warth, B.; Preindl, K.; Manser, P.; Wick, P.; Marko, D.; Buerki-Thurnherr, T. Transfer and Metabolism of the Xenoestrogen Zearalenone in Human Perfused Placenta. Environ. Health Perspect. 2019, 127, 107004. [Google Scholar] [CrossRef]
- Abulu, E.O.; Uriah, N.; Aigbefo, H.S.; Oboh, P.A.; Agbonlahor, D.E. Preliminary Investigation on Aflatoxin in Cord Blood of Jaundiced Neonates. West Afr. J. Med. 1998, 17, 184–187. [Google Scholar]
- Abdulrazzaq, Y.M.; Osman, N.; Ibrahim, A. Fetal Exposure to Aflatoxins in the United Arab Emirates. Ann. Trop. Paediatr. 2002, 22, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Abdulrazzaq, Y.M.; Osman, N.; Yousif, Z.M.; Trad, O. Morbidity in Neonates of Mothers Who Have Ingested Aflatoxins. Ann. Trop. Paediatr. 2004, 24, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Collinson, A.C.; Cheung, Y.B.; Gong, Y.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Aflatoxin Exposure in Utero Causes Growth Faltering in Gambian Infants. Int. J. Epidemiol. 2007, 36, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, F.M.B.; Person, S.D.; Funkhouser, E.; Yatich, N.J.; Stiles, J.K.; Ellis, W.O.; Jiang, Y.; Ehiri, J.E.; Williams, J.H.; Jolly, P.E.; et al. Association between Anemia and Aflatoxin B1 Biomarker Levels among Pregnant Women in Kumasi, Ghana. Am. J. Trop. Med. Hyg. 2010, 83, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.M.; Familusi, J.B.; Sodeinde, O.; Chan, M.C.; Hendrickse, R.G. Detection of Naphthols and Aflatoxins in Nigerian Cord Blood. Ann. Trop. Paediatr. 1994, 14, 3–5. [Google Scholar] [CrossRef]
- Sodeinde, O.; Chan, M.C.; Maxwell, S.M.; Familusi, J.B.; Hendrickse, R.G. Neonatal Jaundice, Aflatoxins and Naphthols: Report of a Study in Ibadan, Nigeria. Ann. Trop. Paediatr. 1995, 15, 107–113. [Google Scholar] [CrossRef]
- Ahmed, H.; Hendrickse, R.G.; Maxwell, S.M.; Yakubu, A.M. Neonatal Jaundice with Reference to Aflatoxins: An Aetiological Study in Zaria, Northern Nigeria. Ann. Trop. Paediatr. 1995, 15, 11–20. [Google Scholar] [CrossRef]
- Shuaib, F.M.B.; Jolly, P.E.; Ehiri, J.E.; Yatich, N.; Jiang, Y.; Funkhouser, E.; Person, S.D.; Wilson, C.; Ellis, W.O.; Wang, J.-S.; et al. Association between Birth Outcomes and Aflatoxin B1 Biomarker Blood Levels in Pregnant Women in Kumasi, Ghana. Trop. Med. Int. Health 2010, 15, 160–167. [Google Scholar] [CrossRef]
- Kristensen, P.; Irgens, L.M.; Andersen, A.; Bye, A.S.; Sundheim, L. Gestational Age, Birth Weight, and Perinatal Death among Births to Norwegian Farmers, 1967–1991. Am. J. Epidemiol. 1997, 146, 329–338. [Google Scholar] [CrossRef]
- Kristensen, P.; Andersen, A.; Irgens, L.M. Hormone-Dependent Cancer and Adverse Reproductive Outcomes in Farmers’ Families—Effects of Climatic Conditions Favoring Fungal Growth in Grain. Scand. J. Work Environ. Health 2000, 26, 331–337. [Google Scholar] [CrossRef]
- Nordby, K.-C.; Irgens, L.M.; Kristensen, P. Immunological Exposures in Norwegian Agriculture and Pre-Eclampsia. Paediatr. Perinat. Epidemiol. 2006, 20, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Carlos, R.L.J.; Leticia, I.G.; Efrain, F.S.E.; Miguel, R.A. Aflatoxigenic Feeding and Its Possible Implications after Pregnancy. Biomed. Pharmacol. J. 2015, 7, 183–193. [Google Scholar] [CrossRef]
- Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H.; Rothman, K.J.; Hendricks, K.A. Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas–Mexico Border. Environ. Health Perspect. 2006, 114, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Prendergast, A.J.; Turner, P.C.; Humphrey, J.H.; Stoltzfus, R.J. Aflatoxin Exposure during Pregnancy, Maternal Anemia, and Adverse Birth Outcomes. Am. J. Trop. Med. Hyg. 2017, 96, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, H.; Mallard, C.; Jacobsson, B. Role of Cytokines in Preterm Labour and Brain Injury. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, L.; Wang, C.C.; Leung, L.K. Effect of Zeranol on Expression of Apoptotic and Cell Cycle Proteins in Murine Placentae. Toxicology 2013, 314, 148–154. [Google Scholar] [CrossRef]
- Andrews-Trevino, J.Y.; Webb, P.; Shively, G.; Rogers, B.L.; Baral, K.; Davis, D.; Paudel, K.; Pokharel, A.; Shrestha, R.; Wang, J.-S.; et al. Relatively Low Maternal Aflatoxin Exposure Is Associated with Small-For-Gestational-Age but Not with Other Birth Outcomes in a Prospective Birth Cohort Study of Nepalese Infants. J. Nutr. 2019, 149, 1818–1825. [Google Scholar] [CrossRef]
- Chilaka, C.A.; Obidiegwu, J.E.; Chilaka, A.C.; Atanda, O.O.; Mally, A. Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts. Toxins 2022, 14, 442. [Google Scholar] [CrossRef]
- Nakavuma, J.L.; Kirabo, A.; Bogere, P.; Nabulime, M.M.; Kaaya, A.N.; Gnonlonfin, B. Awareness of mycotoxins and occurrence of aflatoxins in poultry feeds and feed ingredients in selected regions of Uganda. Food Contam. 2020, 7, 1. [Google Scholar] [CrossRef]
- Wild, C.P.; Miller, J.D.; Groopman, J.D. (Eds.) Mycotoxin Control in Low-and Middle-Income Countries; International Agency for Research on Cancer: Lyon, France, 2015. [Google Scholar]
- Lamason, R.; Zhao, P.; Rawat, R.; Davis, A.; Hall, J.C.; Chae, J.J.; Agarwal, R.; Cohen, P.; Rosen, A.; Hoffman, E.P.; et al. Sexual Dimorphism in Immune Response Genes as a Function of Puberty. BMC Immunol. 2006, 7, 2. [Google Scholar] [CrossRef]
- Imahara, S.D.; Jelacic, S.; Junker, C.E.; O’Keefe, G.E. The Influence of Gender on Human Innate Immunity. Surgery 2005, 138, 275–282. [Google Scholar] [CrossRef]
- Angele, M.K.; Nitsch, S.; Knoferl, M.W.; Ayala, A.; Angele, P.; Schildberg, F.W.; Jauch, K.W.; Chaudry, I.H. Sex-specific p38 MAP kinase activation following trauma-hemorrhage: Involvement of testosterone and estradiol. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E189–E196. [Google Scholar] [CrossRef]
- Wang, M.; Tsai, B.M.; Kher, A.; Baker, L.B.; Wairiuko, G.M.; Meldrum, D.R. Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia-reperfusion. AJP Heart Circ. Physiol. 2004, 288, H221–H226. [Google Scholar] [CrossRef]
- Lucioli, J.; Pinton, P.; Callu, J.; Laffitte, J.; Grosjean, F.; Kolf-Clauw, M.; Oswald, I.P.; Bracarense, A.P.F.R.L. The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: Interest of ex vivo models as an alternative to in vivo experiments. Toxicon 2013, 66, 31–36. [Google Scholar] [CrossRef]
- Kruber, P.; Trump, S.; Behrens, J.; Lehmann, I. T-2 toxin is a cytochrome P450 1A1 inducer and leads to MAPK/p38- but not aryl hydrocarbon receptor-dependent interleukin-8 secretion in the human intestinal epithelial cell line Caco-2. Toxicology 2011, 284, 34–41. [Google Scholar] [CrossRef]
- Mu, P.; Xu, M.; Zhang, L.; Wu, K.; Wu, J.; Jiang, J.; Chen, Q.; Wang, L.; Tang, X.; Deng, Y. Proteomic changes in chicken primary hepatocytes exposed to T-2 toxin are associated with oxidative stress and mitochondrial enhancement. Proteomics 2013, 13, 3175–3188. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Zhang, H.; Wang, J.; Cai, H.; Li, C.; Li, K.; Liu, J.; Guo, X.; Zou, G.; et al. Integrated transcriptional and proteomic analysis with in vitro biochemical assay reveal the important role of CYP3A46 in T-2 toxin hydroxylation in porcine primary hepatocytes. Mol. Cell. Proteom. 2011, 10, M111.008748. [Google Scholar] [CrossRef]
- Kojima, M.; Degawa, M. Sex differences in constitutive mRNA levels of CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46 in the pig liver: Comparison between Meishan and Landrace pigs. Drug Metab. Pharmacokinet. 2016, 31, 185–192. [Google Scholar] [CrossRef]
- Wan, D.; Wang, X.; Wu, Q.; Lin, P.; Pan, Y.; Sattar, A.; Huang, L.; Ahmad, I.; Zhang, Y.; Yuan, Z. Integrated transcriptional and proteomic analysis of growth hormone suppression mediated by trichothecene T-2 toxin in rat GH3 cells. Toxicol. Sci. 2015, 147, 326–338. [Google Scholar] [CrossRef]
- Yang, L.; Price, E.T.; Chang, C.W.; Li, Y.; Huang, Y.; Guo, L.W.; Guo, Y.; Kaput, J.; Shi, L.; Ning, B. Gene expression variability in human hepatic drug metabolizing enzymes and transporters. PLoS ONE 2013, 8, e60368. [Google Scholar] [CrossRef]
- Kato, R.; Yamazoe, Y. Sex-specific cytochrome P450 as a cause of sex-and species-related differences in drug toxicity. Toxicol. Lett. 1992, 64, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J.; Zhou, H.-R.; Moon, Y.; Chung, Y.J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 2004, 153, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Iverson, F.; Armstrong, C.; Nera, E.; Truelove, J.; Fernie, S.; Scott, P.; Stapley, R.; Hayward, S.; Gunner, S. Chronic feeding study of deoxynivalenol in B6C3F1 male and female mice. Teratog. Carcinog. Mutagen. 1996, 15, 283–306. [Google Scholar] [CrossRef]
- Pestka, J.; Clark, E.; Schwartz-Zimmermann, H.; Berthiller, F. Sex is a determinant for deoxynivalenol metabolism and elimination in the mouse. Toxins 2017, 9, 240. [Google Scholar] [CrossRef]
- Clark, E.; Flannery, B.; Pestka, J. Murine anorectic response to deoxynivalenol (vomitoxin) is sex-dependent. Toxins 2015, 7, 2845–2859. [Google Scholar] [CrossRef]
- Chen, L.; Yu, M.; Wu, Q.; Peng, Z.; Wang, D.; Kuča, K.; Yao, P.; Yan, H.; Nüssler, A.K.; Liu, L.; et al. Gender and geographical variability in the exposure pattern and metabolism of deoxynivalenol in humans: A review. J. Appl. Toxicol. 2017, 37, 60–70. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in southern Italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef]
- Ali, N.; Blaszkewicz, M.; Degen, G.H. Assessment of deoxynivalenol exposure among Bangladeshi and German adults by a biomarker-based approach. Toxicol. Lett. 2016, 258, 20–28. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Moltó, J.C.; Mañes, J.; Berrada, H. Exposure assessment approach through mycotoxin/creatinine ratio evaluation in urine by GC–MS/MS. Food Chem. Toxicol. 2014, 72, 69–75. [Google Scholar] [CrossRef]
- Ediage, E.N.; Di Mavungu, J.D.; Song, S.; Wu, A.; Van Peteghem, C.; De Saeger, S. A direct assessment of mycotoxin biomarkers in human urine samples by liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 2012, 741, 58–69. [Google Scholar]
- Clocchiatti, A.; Cora, E.; Zhang, Y.; Dotto, G.P. Sexual dimorphism in cancer. Nat. Rev. Cancer 2016, 16, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Huang, K.; Zhang, B.; Zhu, L.; Xu, W. Aflatoxin B1-induced Epigenetic Alterations: An Overview. Food Chem. Toxicol. 2017, 109, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Kew, M.C. Aflatoxins as a Cause of Hepatocellular Carcinoma. J. Gastrointest. Liver Dis. 2013, 22, 305–310. [Google Scholar]
- Qi, L.-N.; Bai, T.; Chen, Z.-S.; Wu, F.-X.; Chen, Y.-Y.; Xiang, B.-D.; Peng, T.; Han, Z.-G.; Li, L.-Q. The p53 Mutation Spectrum in Hepatocellular Carcinoma from Guangxi, China: Role of Chronic Hepatitis B Virus Infection and Aflatoxin B1 Exposure. Liver Int. 2015, 35, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.L.; Cass, M.; Rokusek, L. Tissue, Sex, and Animal Species Specificity of Aflatoxin B1 Inhibition of Nuclear RNA Polymerase II Activity. Carcinogenesis 1982, 3, 1005–1009. [Google Scholar] [CrossRef]
- Lanza, G.M.; Washburn, K.W.; Wyatt, R.D.; Marks, H.L. Effect of Dietary Aflatoxin Concentration on the Assessment of Genetic Variability of Response in a Random-Bred Population of Chickens. Genetics 1983, 104, 123–131. [Google Scholar] [CrossRef]
- Adav, S.S.; Govindwar, S.P. Effects of Aflatoxin B1 on Liver Microsomal Enzymes in Different Strains of Chickens. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1997, 118, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Woo, L.L.; Egner, P.A.; Belanger, C.L.; Wattanawaraporn, R.; Trudel, L.J.; Croy, R.G.; Groopman, J.D.; Essigmann, J.M.; Wogan, G.N.; Bouhenguel, J.T. Aflatoxin B1-DNA Adduct Formation and Mutagenicity in Livers of Neonatal Male and Female B6C3F1 Mice. Toxicol. Sci. 2011, 122, 38–44. [Google Scholar] [CrossRef]
- Gurtoo, H.L.; Motycka, L. Effect of Sex Difference on the In Vitro and In Vivo Metabolism of Aflatoxin B1 by the Rat. Cancer Res. 1976, 36, 4663–4671. [Google Scholar]
- Gurtoo, H.L.; Motycka, L.E.; Parker, N.B. Sex Dependence of the Metabolic Activation In Vitro of the Mycohepatocarcinogen Aflatoxin B1. J. Med. 1976, 7, 1–12. [Google Scholar]
- Tsuji, K.; Gopalan, P.; Lehmann, K.; Kimura, M.; Horiuchi, A.; Sato, K.; Lotlikar, P.D. Species and Sex Differences of Aflatoxin B1-Induced Glutathione S-Transferase Placental Form in Single Hepatocytes. Cancer Lett. 1992, 66, 249–254. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Moss, E.; Judah, D.; Neal, G. Metabolic Basis of the Species Difference to Aflatoxin B1 Induced Hepatotoxicity. Biochem. Biophys. Res. Commun. 1983, 114, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Waxman, D.J.; O’Connor, C. Growth Hormone Regulation of Sex-Dependent Liver Gene Expression. Mol. Endocrinol. 2006, 20, 2613–2629. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.-N.; Li, L.-Q.; Chen, Y.-Y.; Chen, Z.-H.; Bai, T.; Xiang, B.-D.; Qin, X.; Xiao, K.-Y.; Peng, M.-H.; Liu, Z.-M.; et al. Genome-Wide and Differential Proteomic Analysis of Hepatitis B Virus and Aflatoxin B1 Related Hepatocellular Carcinoma in Guangxi, China. PLoS ONE 2013, 8, e83465. [Google Scholar] [CrossRef]
- Kang, M.-W.; Lee, E.-S.; Yoon, S.; Jo, J.; Lee, J.; Kim, H.; Choi, Y.; Kim, K.; Shim, Y.; Kim, J.; et al. AKR1B10 is Associated with Smoking and Smoking-Related Non-Small-Cell Lung Cancer. J. Int. Med. Res. 2011, 39, 78–85. [Google Scholar] [CrossRef]
- Tsai, F.-J.; Chen, S.-Y.; Liu, Y.-C.; Liao, H.-Y.; Chen, C.-J. The Comparison of CHCA Solvent Compositions for Improving LC-MALDI Performance and Its Application to Study the Impact of Aflatoxin B1 on the Liver Proteome of Diabetes Mellitus Type 1 Mice. PLoS ONE 2017, 12, e0181423. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kaneko, Y.; Cho, T.; Goto, K.; Otsuka, T.; Yamamoto, S.; Goto, S.; Maruyama, H.; Narita, I. Prolactin Upregulates Female-Predominant P450 Gene Expressions and Downregulates Male-Predominant Gene Expressions in Mouse Liver. Drug Metab. Dispos. 2017, 45, 586–592. [Google Scholar] [CrossRef]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin, 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef]
- Kőszegi, T.; Poór, M. Ochratoxin, Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins 2016, 8, 111. [Google Scholar] [CrossRef]
- Castegnaro, M.; Mohr, U.; Pfohl-Leszkowicz, A.; Estève, J.; Steinmann, J.; Tillmann, T.; Michelon, J.; Bartsch, H. Sex- and Strain-Specific Induction of Renal Tumors by Ochratoxin A in Rats Correlates with DNA Adduction. Int. J. Cancer 1998, 77, 70–75. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Pinelli, E.; Bartsch, H.; Mohr, U.; Castegnaro, M. Sex- and Strain-Specific Expression of Cytochrome P450s in Ochratoxin A-Induced Genotoxicity and Carcinogenicity in Rats. Mol. Carcinog. 1998, 23, 76–85. [Google Scholar] [CrossRef]
- Vettorazzi, A.; Trocóniz, I.F.; Gonzalez-Peñas, E.; Corcuera, L.A.; Arbillaga, L.; Gil, A.G.; Nagy, J.M.; Mantle, P.G.; López de Cerain, A. Effects of fasting and gender on ochratoxin A toxicokinetics in F344 rats. Food Chem. Toxicol. 2010, 48, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- Pastor, L.; Vettorazzi, A.; Campión, J.; Cordero, P.; López de Cerain, A. Gene expression kinetics of renal transporters induced by ochratoxin A in male and female F344 rats. Food Chem. Toxicol. 2016, 98, 169–178. [Google Scholar] [CrossRef]
- Heussner, A.H.; O’Brien, E.; Dietrich, D.R. Species- and sex-specific variations in binding of ochratoxin A by renal proteins in vitro. Exp. Toxicol. Pathol. 2002, 54, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, D.; Heussner, A.; O’Brien, E. Ochratoxin A: Comparative pharmacokinetics and toxicological implications (experimental and domestic animals and humans). Food Addit. Contam. 2005, 22, 45–52. [Google Scholar] [CrossRef]
- Shen, X.L.; Zhang, Y.; Xu, W.; Liang, R.; Zheng, J.; Luo, Y.; Wang, Y.; Huang, K. An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK 293 cells. J. Proteome 2013, 78, 398–415. [Google Scholar] [CrossRef]
- Liang, R.; Shen, X.L.; Zhang, B.; Li, Y.; Xu, W.; Zhao, C.; Luo, Y.; Huang, K. Apoptosis signal-regulating kinase 1 promotes ochratoxin A-induced renal cytotoxicity. Sci. Rep. 2015, 5, 8078. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, X.L.; Liang, R.; Li, Y.; Huang, K.; Zhao, C.; Luo, Y.; Xu, W. Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells. J. Proteome 2014, 101, 154–168. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, X.; Zheng, J.; Luo, Y.; Zhao, C.; Hao, J.; Li, X.; Huang, K.; Xu, W. Lipid rafts disruption increases ochratoxin A cytotoxicity to hepatocytes. J. Biochem. Mol. Toxicol. 2016, 30, 71–79. [Google Scholar] [CrossRef]
- Yamazoe, Y.; Koyama, N.; Kumagai, S. Possible role of phosphatidylcholine and sphingomyelin on fumonisin B1-mediated toxicity. Food Saf. 2017, 5, 75–97. [Google Scholar] [CrossRef]
- Howard, P.C.; Eppley, R.M.; Stack, M.E.; Warbritton, A.; Voss, K.A.; Lorentzen, R.J.; Kovach, R.M.; Bucci, T.J. Fumonisin B1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ. Health Perspect. 2001, 109 (Suppl. 2), 277–282. [Google Scholar] [CrossRef]
- Bhandari, N.; He, Q.; Sharma, R.P. Gender-related differences in subacute fumonisin B1 hepatotoxicity in BALB/c mice. Toxicology 2001, 165, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.J.; Sharma, R.P. Gender-dependent immunosuppression following subacute exposure to fumonisin B1. Int. Immunopharmacol. 2001, 1, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Rotter, B.A.; Thompson, B.K.; Prelusky, D.B.; Trenholm, H.L.; Stewart, B.; Miller, J.D.; Savard, M.E. Response of growing swine to dietary exposure to pure fumonisin B1 during an eight-week period: Growth and clinical parameters. Nat. Toxins 1996, 4, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.E.; Taranu, I.; Pascale, F.; Lionide, A.; Burlacu, R.; Bailly, J.-D.; Oswald, I.P. Sex-related differences in the immune response of weanling piglets exposed to low doses of fumonisin extract. Br. J. Nutr. 2006, 95, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Gadzała-Kopciuch, R.; Cendrowski, K.; Cesarz, A.; Kiełbasa, P.; Buszewski, B. Determination of Zearalenone and Its Metabolites in Endometrial Cancer by Coupled Separation Techniques. Anal. Bioanal. Chem. 2011, 401, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pazaiti, A.; Kontos, M.; Fentiman, I.S. ZEN and the Art of Breast Health Maintenance. Int. J. Clin. Pract. 2011, 66, 28–36. [Google Scholar] [CrossRef]
- Fernandez, S.V.; Russo, J. Estrogen and Xenoestrogens in Breast Cancer. Toxicol. Pathol. 2009, 38, 110–122. [Google Scholar] [CrossRef]
- Fucic, A.; Gamulin, M.; Ferencic, Z.; Katic, J.; Krayer von Krauss, M.; Bartonova, A.; Merlo, D.F. Environmental Exposure to Xenoestrogens and Oestrogen Related Cancers: Reproductive System, Breast, Lung, Kidney, Pancreas, and Brain. Environ. Health. 2012, 11 (Suppl. S1), S8. [Google Scholar] [CrossRef]
- Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and Its Metabolites: Effect on Human Health, Metabolism and Neutralisation Methods. Toxicon 2019, 162, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Kuciel-Lisieska, G.; Obremski, K.; Stelmachów, J.; Gajecka, M.; Zielonka, Ł.; Jakimiuk, E.; Gajecki, M. Presence of Zearalenone in Blood Plasma in Women with Neoplastic Lesions in the Mammary Gland. Bull. Vet. Inst. Pulawy 2008, 52, 671–674. [Google Scholar]
- Belhassen, H.; Jiménez-Díaz, I.; Arrebola, J.P.; Ghali, R.; Ghorbel, H.; Olea, N.; Hedili, A. Zearalenone and Its Metabolites in Urine and Breast Cancer Risk: A Case-Control Study in Tunisia. Chemosphere 2015, 128, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pillay, D.; Chuturgoon, A.A.; Nevines, E.; Manickum, T.; Deppe, W.; Dutton, M.F. The Quantitative Analysis of Zearalenone and Its Derivatives in Plasma of Patients with Breast and Cervical Cancer. Clin. Chem. Lab. Med. 2002, 40, 946–951. [Google Scholar] [CrossRef]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Endocrine Disrupting Chemicals and Breast Cancer: A Systematic Review of Epidemiological Studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 6549–6576. [Google Scholar] [CrossRef]
- Pajewska, M.; Łojko, M.; Cendrowski, K.; Sawicki, W.; Kowalkowski, T.; Buszewski, B.; Gadzała-Kopciuch, R. The Determination of Zearalenone and Its Major Metabolites in Endometrial Cancer Tissues. Anal. Bioanal. Chem. 2018, 410, 1571–1582. [Google Scholar] [CrossRef]
- Unicsovics, M.; Molnár, Z.; Mézes, M.; Posta, K.; Nagyéri, G.; Várbíró, S.; Ács, N.; Sára, L.; Szőke, Z. The Possible Role of Mycotoxins in the Pathogenesis of Endometrial Cancer. Toxins 2024, 16, 236. [Google Scholar] [CrossRef]
- Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Aflatoxin B1 and M1: Biological Properties and Their Involvement in Cancer Development. Toxins 2018, 10, 214. [Google Scholar] [CrossRef]
- Caserta, D.; De Marco, M.P.; Besharat, A.R.; Costanzi, F. Endocrine Disruptors and Endometrial Cancer: Molecular Mechanisms of Action and Clinical Implications, a Systematic Review. Int. J. Mol. Sci. 2022, 23, 2956. [Google Scholar] [CrossRef]
- Eze, U.A.; Okonofua, F.E. High Prevalence of Male Infertility in Africa: Are Mycotoxins to Blame? Afr. J. Reprod. Health 2015, 19, 9–17. [Google Scholar]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Lovatto, P.A. Meta-Analysis of the Relationship of Mycotoxins with Biochemical and Hematological Parameters in Broilers. Poult. Sci. 2012, 91, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.I.; Salem, M.H.; Kamel, K.I.; Hassan, G.A.; El-Nouty, F.D. Influence of Ascorbic Acid Supplementation on the Haematological and Clinical Biochemistry Parameters of Male Rabbits Exposed to Aflatoxin B1. J. Environ. Sci. Health Part B 2003, 38, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Eisa, A.; Metwally, A. Effect of Glucomannan on Haematological, Coagulation and Biochemical Parameters in Male Rabbits Fed Aflatoxin-Contaminated Ration. World Mycotoxin J. 2011, 4, 183–188. [Google Scholar] [CrossRef]
- Grzymisławska, M.; Puch, E.A.; Zawada, A.; Grzymisławski, M. Do Nutritional Behaviors Depend on Biological Sex and Cultural Gender? Adv. Clin. Exp. Med. 2020, 29, 165–172. [Google Scholar] [CrossRef]
- Modlinska, K.; Adamczyk, D.; Maison, D.; Pisula, W. Gender Differences in Attitudes to Vegans/Vegetarians and Their Food Preferences, and Their Implications for Promoting Sustainable Dietary Patterns—A Systematic Review. Sustainability 2020, 12, 6292. [Google Scholar] [CrossRef]
- Rosenfeld, D.L.; Tomiyama, A.J. Gender D+ifferences in Meat Consumption and Openness to Vegetarianism. Appetite 2021, 166, 105475. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.A.; Khokhar, S. Changing Dietary Habits of Ethnic Groups in Europe and Implications for Health. Nutr. Rev. 2008, 66, 203–215. [Google Scholar] [CrossRef]
- Jimenez-Morcillo, J.; Clemente-Suárez, V.J. Gender Differences in Body Satisfaction Perception: The Role of Nutritional Habits, Psychological Traits, and Physical Activity in a Strength-Training Population. Nutrients 2023, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- Boraita, R.J.; Ibort, E.G.; Torres, J.M.D.; Alsina, D.A. Gender Differences Relating to Lifestyle Habits and Health-Related Quality of Life of Adolescents. Child Indic. Res. 2020, 13, 1937–1951. [Google Scholar] [CrossRef]
- Jiménez-Morcillo, J.; Rodríguez-Besteiro, S.; Clemente-Suárez, V.J. The Nexus of Training Duration, Body Image, Nutritional Practices, and Mental Health: Insights from a Strength Training Cohort. Behav. Sci. 2024, 14, 267. [Google Scholar] [CrossRef]
- Jacob, J.S.; Panwar, N. Effect of Age and Gender on Dietary Patterns, Mindful Eating, Body Image and 1430 Confidence. BMC Psychol. 2023, 11, 264. [Google Scholar] [CrossRef]
- Rogowicz-Frontczak, A.; Majchrzak, A.; Zozulinska-Ziolkiewicz, D. Insulin Resistance in Endocrine Disorders 1432 Treatment Options. Endokrynol. Pol. 2017, 68, 334–351. [Google Scholar] [CrossRef] [PubMed]
- Raju, C.; Pazhanivelan, S.; Perianadar, I.V.; Kaliaperumal, R.; Sathyamoorthy, N.K.; Sendhilvel, V. Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review. Agriculture 2024, 14, 2018. [Google Scholar] [CrossRef]
- Ruiz-Giralt, A.; Biagetti, S.; Madella, M.; Lancelotti, C. Small-scale farming in drylands: New models for resilient practices of millet and sorghum cultivation. PLoS ONE 2023, 18, e0268120. [Google Scholar] [CrossRef] [PubMed]
- Jacott, C.N.; Boden, S.A. Feeling the heat: Developmental and molecular responses of wheat and barley to high ambient temperatures. J. Exp. Bot. 2020, 71, 5740–5751. [Google Scholar] [CrossRef] [PubMed]
- Boon, B.; Schifferstein, H.N. Seasonality as a consideration, inspiration and aspiration in food design. Int. J. Food Des. 2022, 7, 79–100. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2021: Making Agrifood Systems More Resilient to Shocks and Stresses. Rome, Italy, 2021. Available online: https://openknowledge.fao.org/home (accessed on 29 June 2024).
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Charrondiere, U.R.; Bell, W. Measurement errors in dietary assessment using self-reported 24-hour recalls in low-income countries and strategies for their prevention. Adv. Nutr. 2017, 8, 980–991. [Google Scholar] [CrossRef]
- Feraco, A.; Armani, A.; Amoah, I.; Guseva, E.; Camajani, E.; Gorini, S.; Strollo, R.; Padua, E.; Caprio, M.; Lombardo, M. Assessing Gender Differences in Food Preferences and Physical Activity: A Population-Based Survey. Front. Nutr. 2024, 11, 1348456. [Google Scholar] [CrossRef]
- Hoteit, M.; Khattar, M.; Malli, D.; Antar, E.; Al Hassani, Z.; Abdallah, M.; Hachem, D.; Al Manasfi, E.; Chahine, A.; Tzenios, N.; et al. Dietary Intake among Lebanese Adults: Findings from the Updated LEBANese natiONal Food Consumption Survey (LEBANON-FCS). Nutrients 2024, 16, 1784. [Google Scholar] [CrossRef]
- Lombardo, M.; Aulisa, G.; Padua, E.; Annino, G.; Iellamo, F.; Pratesi, A.; Caprio, M.; Bellia, A. Gender Differences in Taste and Foods Habits. Nutr. Food Sci. 2019, 50, 229–239. [Google Scholar] [CrossRef]
- Weber, M.; Kollmayer, M. Psychological Processes Underlying an Omnivorous, Vegetarian, or Vegan Diet: Gender Role Self-Concept, Human Supremacy Beliefs, and Moral Disengagement from Meat. Sustainability 2022, 14, 8276. [Google Scholar] [CrossRef]
- Hinrichs, K.; Hoeks, J.; Campos, L.; Guedes, D.; Godinho, C.; Matos, M.; Graça, J. Why So Defensive? Negative Affect and Gender Differences in Defensiveness Toward Plant-Based Diets. Food Qual. Prefer. 2022, 102, 104662. [Google Scholar] [CrossRef]
- Ritzel, C.; Mann, S. The Old Man and the Meat: On Gender Differences in Meat Consumption across Stages of Human Life. Food Secur. 2021, 10, 2809. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, K.; Tang, Z.; Fan, K.; Meng, J.; Nie, D.; Zhao, Z.; Wu, Y.; Han, Z. Exposure Assessment of Multiple Mycotoxins and Cumulative Health Risk Assessment: A Biomonitoring-Based Study in the Yangtze River Delta, China. Toxins 2021, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.F.; Krska, R.; Sulyok, M. Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple Mycotoxins and Exposure Assessment for Aflatoxins B1 and G1 in Humans. Toxins 2016, 8, 343. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; White, K.L.; Burley, V.J.; Hopton, R.P.; Rajendram, A.; Fisher, J.; Cade, J.E.; Wild, C.P. A Comparison of Deoxynivalenol Intake and Urinary Deoxynivalenol in UK Adults. Biomarkers 2010, 15, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Burley, V.J.; Rothwell, J.A.; White, K.L.; Cade, J.E.; Wild, C.P. Dietary Wheat Reduction Decreases the Level of Urinary Deoxynivalenol in UK Adults. J. Exp. Sci. Environ. Epidemiol. 2008, 18, 392–399. [Google Scholar] [CrossRef]
- Njumbe Ediage, E.; Diana Di Mavungu, J.; Song, S.; Sioen, I.; De Saeger, S. Multimycotoxin Analysis in Urines to Assess Infant Exposure: A Case Study in Cameroon. Environ. Int. 2013, 57–58, 50–59. [Google Scholar] [CrossRef]
- Hoteit, M.; Abbass, Z.; Daou, R.; Tzenios, N.; Chmeis, L.; Haddad, J.; Chahine, M.; Al Manasfi, E.; Chahine, A.; Poh, O.B.J.; et al. Dietary Exposure and Risk Assessment of Multi-Mycotoxins (AFB1, AFM1, OTA, OTB, DON, T-2, and HT-2) in the Lebanese Food Basket Consumed by Adults: Findings from the Updated Lebanese National Consumption Survey through a Total Diet Study Approach. Toxins 2024, 16, 158. [Google Scholar] [CrossRef]
- Flannigan, B. Mycotoxins in the Air. Int. Biodeterior. 1987, 23, 73–78. [Google Scholar] [CrossRef]
- Brera, C.; Caputi, R.; Miraglia, M.C.; Iavicoli, I.; Salerno, A.; Carelli, G. Exposure Assessment to Mycotoxins in Workplaces: Aflatoxins and Ochratoxin A Occurrence in Airborne Dusts and Human Sera. Microchem. J. 2002, 73, 167–173. [Google Scholar] [CrossRef]
- Brasel, T.L.; Martin, J.M.; Carriker, C.G.; Wilson, S.C.; Straus, D.C. Detection of Airborne Stachybotrys Chartarum Macrocyclic Trichothecene Mycotoxins in the Indoor Environment. Appl. Environ. Microbiol. 2005, 71, 7376–7388. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, K.; Korkalainen, M. Microbial Secondary Metabolites and Knowledge on Inhalation Effects. In Exposure to Microbiological Agents in Indoor and Occupational Environments; Viegas, C., Viegas, S., Quintal Gomes, A., Taubel, M., Sabino, R., Eds.; SpringerNature: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Iavicoli, I.; Brera, C.; Carelli, G.; Caputi, R.; Marinaccio, A.; Miraglia, M. External and Internal Dose in Subjects Occupationally Exposed to Ochratoxin A. Int. Arch. Occup. Environ. Health 2002, 75, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Curtui, V.; Usleber, E.; Gareis, M. Airborne Mycotoxins in Dust from Grain Elevators. Mycotoxin Res. 2007, 23, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Twarużek, M.; Błajet-Kosicka, A.; Grajewski, J. Occupational Exposure to Mould and Microbial Metabolites during Onion Sorting—Insights into an Overlooked Workplace. Environ. Monit. Assess. 2016, 188, 154. [Google Scholar] [CrossRef]
- Viegas, S.; Veiga, L.; Almeida, A.; dos Santos, M.; Carolino, E.; Viegas, C. Occupational Exposure to Aflatoxin B1 in a Portuguese Poultry Slaughterhouse. Ann. Occup. Hyg. 2016, 60, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Boonen, J.; Malysheva, S.V.; Taevernier, L.; Di Mavungu, J.D.; De Saeger, S.; De Spiegeleer, B. Human Skin Penetration of Selected Model Mycotoxins. Toxicology 2012, 301, 21–32. [Google Scholar] [CrossRef]
- Degen, G.H.; Mayer, S.; Blaszkewicz, M. Biomonitoring of Ochratoxin A in Grain Workers. Mycotoxin Res. 2007, 23, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Malik, A.; Ali, S.; Shahid, M.; Bhargava, R. Occupational Exposure to Aspergillus and Aflatoxins Among Food-Grain Workers in India. Int. J. Occup. Environ. Health 2014, 20, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Saad-Hussein, A.; Taha, M.M.; Beshir, S.; Shahy, E.M.; Shaheen, W.; Elhamshary, M. Carcinogenic Effects of Aflatoxin B1 Among Wheat Handlers. Int. J. Occup. Environ. Health 2014, 20, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Föllmann, W.; Ali, N.; Blaszkewicz, M.; Degen, G.H. Biomonitoring of Mycotoxins in Urine: Pilot Study in Mill Workers. J. Toxicol. Environ. Health A 2016, 79, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Taevernier, L.; Veryser, L.; Roche, N.; Peremans, K.; Burvenich, C.; Delesalle, C.; De Spiegeleer, B. Human Skin Permeation of Emerging Mycotoxins (Beauvericin and Enniatins). J. Expo. Sci. Environ. Epidemiol. 2016, 26, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Ferri, F.; Brera, C.; De Santis, B.; Fedrizzi, G.; Bacci, T.; Bedogni, L.; Capanni, S.; Collini, G.; Crespi, E.; Debegnach, F.; et al. Survey on Urinary Levels of Aflatoxins in Professionally Exposed Workers. Toxins 2017, 9, 117. [Google Scholar] [CrossRef]
- Viegas, C.; Pacífico, C.; Faria, T.; de Oliveira, A.C.; Caetano, L.A.; Carolino, E.; Gomes, A.Q.; Viegas, S. Fungal Contamination in Green Coffee Beans. J. Toxicol. Environ. Health A 2017, 80, 719–728. [Google Scholar] [CrossRef]
- Viegas, S.; Veiga, L.; Figueredo, P.; Almeida, A.; Carolino, E.; Sabino, R.; Veríssimo, C.; Viegas, C. Occupational Exposure to Aflatoxin B1 in Swine Production and Possible Contamination Sources. J. Toxicol. Environ. Health A 2013, 76, 944–951. [Google Scholar] [CrossRef]
- Viegas, S.; Veiga, L.; Figueiredo, P. Assessment of Workers’ Exposure to Aflatoxin B1 in a Portuguese Waste Industry. Ann. Occup. Hyg. 2015, 59, 173–181. [Google Scholar]
- Mayer, S. Occupational Exposure to Mycotoxins and Preventive Measures. In Environmental Mycology in Public Health: Fungi and Mycotoxins Risk Assessment and Management; Viegas, C., Pinheiro, A.C., Sabino, R., Viegas, S., Brandão, J., Verissimo, C., Eds.; Academic Press: Waltham, MA, USA, 2015; ISBN 978-0-12-411471-5. [Google Scholar]
- Grenier, B.; Oswald, I.P. Mycotoxin Co-Contamination of Food and Feed: Meta-Analysis of Publications Describing Toxicological Interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Gerding, J.; Cramer, B.; Humpf, H.U. Determination of Mycotoxin Exposure in Germany Using an LC-MS/MS Multibiomarker Approach. Mol. Nutr. Food Res. 2014, 58, 2358–2368. [Google Scholar] [CrossRef]
- Assunção, R.; Silva, M.J.; Alvito, P. Challenges in Risk Assessment of Multiple Mycotoxins in Food. World Mycotoxin J. 2015, 9, 791–811. [Google Scholar] [CrossRef]
- Chen, X.; Abdallah, M.F.; Chen, X.; Rajkovic, A. Current Knowledge of Individual and Combined Toxicities of Aflatoxin B1 and Fumonisin B1 In Vitro. Toxins 2023, 15, 653. [Google Scholar] [CrossRef]
- Fischer, G.; Dott, W. Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch. Microbiol. 2003, 179, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, B.B.; Miller, J.D. Mycotoxins as harmful indoor air contaminants. Appl. Microbiol. Biotechnol. 2005, 66, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Douwes, J.; Sigsgaard, T.; Bønløkke, J.; Roponen, M. Health Effects Associated with Dampness and Mould. WHO Guidelines for Indoor Air Quality: Dampness and Mould; WHO: Geneva, Switzerland, 2009; pp. 63–92. [Google Scholar]
- Almatawah, Q.A.; Al-Rashidi, M.S.; Yassin, M.F.; Varghese, J.S. Microbiological contamination of indoor and outdoor environments in a desert climate. Environ Monit. Assess. 2022, 194, 355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gołofit-Szymczak, M.; Wójcik-Fatla, A.; Stobnicka-Kupiec, A.; Górny, R.L. Filters of automobile air conditioning systems as in-car source of exposure to infections and toxic moulds. Environ. Sci. Pollut. Res. 2023, 30, 108188–108200. [Google Scholar] [CrossRef]
- Farian, E.; Wójcik-Fatla, A. Mycological contamination of cabin filters as a potential source of air pollution inside passenger vehicles. Air Qual. Atmos. Health 2024, 1–15. [Google Scholar] [CrossRef]
- European Union Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2006, 49, 5–24.
- Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations Relating to Mycotoxins in Food. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef]
- Kuiper-Goodman, T. Mycotoxins: Risk Assessment and Legislation. Toxicol. Lett. 1995, 82, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Magan, N.; Aldred, D. Post-Harvest Control Strategies: Minimizing Mycotoxins in the Food Chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.J.; Okoth, S.; Flett, B.C.; van Rensburg, B.J.; Viljoen, A. Mycotoxins—Impact and Management Strategies; IntechOpen: London, UK, 2018. [Google Scholar]
- Magan, N. Mycotoxin Contamination of Food in Europe: Early Detection and Prevention Strategies. Mycopathologia 2006, 162, 245. [Google Scholar] [CrossRef]
- German Federal Institute for Risk Assessment (BfR) Schimmelpilzgifte in Lebensmitteln—So Können Sie Sich Schützen. Available online: https://www.bfr.bund.de/cm/350/schimmelpilzgifte-in-lebensmitteln-so-koennen-sie-sich-schuetzen.pdf (accessed on 16 July 2019).
- United States Department of Agriculture Food Safety and Inspection Service. Molds on Food: Are They Dangerous? Available online: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/molds-food-are-they-dangerous (accessed on 4 May 2021).
- Cai, Y.; McLaughlin, M.; Zhang, K. Advancing the FDA/Office of Regulatory Affairs Mycotoxin Program: New Analytical Method Approaches to Addressing Needs and Challenges. J. AOAC Int. 2020, 103, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Altieri, A.; Galobart, J. Overview of the Activities of the European Food Safety Authority on Mycotoxins in Food and Feed. World Mycotoxin J. 2018, 11, 277–289. [Google Scholar] [CrossRef]
- Harms, H.; Wend, P. The National Monitoring Program: Serving Food Safety and Preventive Consumer Health Protection in Germany for More Than 20 Years. Available online: https://www.bvl.bund.de/SharedDocs/Downloads/01_Lebensmittel/01_lm_mon_dokumente/harms_wend_national_monitoring_program.pdf?__blob=publicationFile&v=3 (accessed on 16 August 2024).
- Ganglbauer, E.; Fitzpatrick, G.; Subasi, Ö.; Güldenpfennig, F. Think Globally, Act Locally: A Case Study of a Free Food Sharing Community and Social Networking. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, Baltimore, MA, USA, 15–19 February 2014; pp. 911–921. [Google Scholar]
- Rombach, M.; Bitsch, V. Food Movements in Germany: Slow Food, Food Sharing, and Dumpster Diving. Int. Food Agribus. Manag. Rev. 2015, 18, 1–24. [Google Scholar]
- Harvey, J.; Smith, A.; Goulding, J.; Illodo, I.B. Food Sharing, Redistribution, and Waste Reduction via Mobile Applications: A Social Network Analysis. Ind. Mark. Manag. 2020, 88, 437–448. [Google Scholar] [CrossRef]
- Schanes, K.; Stagl, S. Food Waste Fighters: What Motivates People to Engage in Food Sharing? J. Clean. Prod. 2019, 211, 1491–1501. [Google Scholar] [CrossRef]
- Carolsfeld, A.L.; Erikson, S.L. Beyond Desperation: Motivations for Dumpster™ Diving for Food in Vancouver. Food Foodways 2013, 21, 245–266. [Google Scholar] [CrossRef]
- Le, V.T.; Vasseghian, Y.; Dragoi, E.-N.; Moradi, M.; Mousavi Khaneghah, A. A Review on Graphene-Based Electrochemical Sensor for Mycotoxins Detection. Food Chem. Toxicol. 2021, 148, 111931. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M.-H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef]
- Turner, N.W.; Bramhmbhatt, H.; Szabo-Vezse, M.; Poma, A.; Coker, R.; Piletsky, S.A. Analytical Methods for Determination of Mycotoxins: An Update (2009–2014). Anal. Chim. Acta 2015, 901, 12–33. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Jiang, Y.; Duan, X.; Qu, H.; Yang, B.; Chen, F.; Sivakumar, D. Natural Occurrence, Analysis, and Prevention of Mycotoxins in Fruits and Their Processed Products. Crit. Rev. Food Sci. Nutr. 2014, 54, 64–83. [Google Scholar] [CrossRef]
- Wacoo, A.P.; Wendiro, D.; Vuzi, P.C.; Hawumba, J.F. Methods for Detection of Aflatoxins in Agricultural Food Crops. J. Appl. Chem. 2014, 2014, 706291. [Google Scholar] [CrossRef]
- Odhav, B.; Naicker, V. Mycotoxins in South African Traditionally Brewed Beers. Food Addit. Contam. 2002, 19, 55–61. [Google Scholar] [CrossRef]
- Singh, J.; Mehta, A. Rapid and Sensitive Detection of Mycotoxins by Advanced and Emerging Analytical Methods: A Review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wu, D.; Liu, J.; Li, X.; Luo, P.; Hu, N.; Wang, H.; Wu, Y. Recent Advances on Toxicity and Determination Methods of Mycotoxins in Foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Juan, C.; Mojemmi, B.; Moltó, J.C.; Bouklouze, A.; Cherrah, Y.; Idrissi, L.; Aouad, R.E.; Mañes, J. Incidence of Ochratoxin A in Rice and Dried Fruits from Rabat and Salé Area, Morocco. Food Addit. Contam. 2007, 24, 285–291. [Google Scholar] [CrossRef]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajšlová, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC–MS-Based Methods to Study the Co-Occurrence and Metabolization of Multiple Mycotoxins in Cereals and Cereal-Based Food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef]
- Pascale, M.; De Girolamo, A.; Lippolis, V.; Stroka, J.; Mol, H.G.J.; Lattanzio, V.M.T. Performance Evaluation of LC-MS Methods for Multimycotoxin Determination. J. AOAC Int. 2019, 102, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Bessaire, T.; Mujahid, C.; Mottier, P.; Desmarchelier, A. Multiple Mycotoxins Determination in Food by LC-MS/MS: An International Collaborative Study. Toxins 2019, 11, 658. [Google Scholar] [CrossRef] [PubMed]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaal, B.; Salama, S.; Al-Qasmi, N.; Jaganjac, M. Mycotoxin Contamination of Food and Feed in the Gulf Cooperation Council Countries and Its Detection. Toxicon 2019, 171, 43–50. [Google Scholar] [CrossRef]
- Song, S.; Liu, N.; Zhao, Z.; Njumbe Ediage, E.; Wu, S.; Sun, C.; De Saeger, S.; Wu, A. Multiplex Lateral Flow Immunoassay for Mycotoxin Determination. Anal. Chem. 2014, 86, 4995–5001. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Q.; Zhang, W. Immunoassays for Aflatoxins. TrAC Trends Anal. Chem. 2009, 28, 1115–1126. [Google Scholar] [CrossRef]
- Thway, T.; Salimi-Moosavi, H. Evaluating the Impact of Matrix Effects on Biomarker Assay Sensitivity. Bioanalysis 2014, 6, 1081–1091. [Google Scholar] [CrossRef]
- Omar, S.S.; Haddad, M.A.; Parisi, S. Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples. Foods 2020, 9, 661. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.; Wei, M.; Gu, H.; Xu, Q.; Zhu, W. Study of Superparamagnetic Nanoparticles as Labels in the Quantitative Lateral Flow Immunoassay. Mater. Sci. Eng. C 2009, 29, 714–718. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Wen, K.; Li, C.; Mujtaba Mari, G.; Jiang, H.; Shi, W.; Shen, J.; Wang, Z. Multiplex Lateral Flow Immunoassays Based on Amorphous Carbon Nanoparticles for Detecting Three Fusarium Mycotoxins in Maize. J. Agric. Food Chem. 2017, 65, 8063–8071. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, L.; Kuang, H.; Xu, C. Visible and Eco-Friendly Immunoassays for the Detection of Cyclopiazonic Acid in Maize and Rice. J. Food Sci. 2020, 85, 105–113. [Google Scholar] [CrossRef]
- Anfossi, L.; Di Nardo, F.; Cavalera, S.; Giovannoli, C.; Spano, G.; Speranskaya, E.S.; Goryacheva, I.Y.; Baggiani, C. A Lateral Flow Immunoassay for Straightforward Determination of Fumonisin Mycotoxins Based on the Quenching of the Fluorescence of CdSe/ZnS Quantum Dots by Gold and Silver Nanoparticles. Microchim. Acta 2018, 185, 94. [Google Scholar] [CrossRef]
- He, Y.; Zhang, S.; Zhang, X.; Baloda, M.; Gurung, A.S.; Xu, H.; Zhang, X.; Liu, G. Ultrasensitive Nucleic Acid Biosensor Based on Enzyme-Gold Nanoparticle Dual Label and Lateral Flow Strip Biosensor. Biosens. Bioelectron. 2011, 26, 2018–2024. [Google Scholar] [CrossRef]
- Parolo, C.; de la Escosura-Muñiz, A.; Merkoçi, A. Enhanced Lateral Flow Immunoassay Using Gold Nanoparticles Loaded with Enzymes. Biosens. Bioelectron. 2013, 40, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New Horizons for Responsive Biomedical Applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef] [PubMed]
- Omidfar, K.; Riahi, F.; Kashanian, S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. Biosensors 2023, 13, 837. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Liu, Z.; Wang, J.; Liang, Z.; Zhou, Z.; Shen, X.; Lei, H.; Li, X. Magnetic Immunochromatographic Assay with Smartphone-Based Readout Device for the On-Site Detection of Zearalenone in Cereals. Food Control 2022, 134, 108760. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, L.; Qin, Z.; Sackrison, J.; Bischof, J.C. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021, 15, 3593–3611. [Google Scholar] [CrossRef]
- Santana Oliveira, I.; da Silva Junior, A.G.; de Andrade, C.A.S.; Lima Oliveira, M.D. Biosensors for Early Detection of Fungi Spoilage and Toxicogenic Mycotoxins in Food. Curr. Opin. Food Sci. 2019, 29, 64–79. [Google Scholar] [CrossRef]
- Evtugyn, G.; Subjakova, V.; Melikishvili, S.; Hianik, T. Affinity Biosensors for Detection of Mycotoxins in Food. Adv. Food Nutr. Res. 2018, 85, 263–310. [Google Scholar]
- Majer-Baranyi, K.; Adányi, N.; Székács, A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins 2023, 15, 645. [Google Scholar] [CrossRef]
- Camardo Leggieri, M.; Mazzoni, M.; Fodil, S.; Moschini, M.; Bertuzzi, T.; Prandini, A.; Battilani, P. An Electronic Nose Supported by an Artificial Neural Network for the Rapid Detection of Aflatoxin B1 and Fumonisins in Maize. Food Control 2021, 123, 107722. [Google Scholar] [CrossRef]
- Lippolis, V.; Ferrara, M.; Cervellieri, S.; Damascelli, A.; Epifani, F.; Pascale, M.; Perrone, G. Rapid Prediction of Ochratoxin A-Producing Strains of Penicillium on Dry-Cured Meat by MOS-Based Electronic Nose. Int. J. Food Microbiol. 2016, 218, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ottoboni, M.; Pinotti, L.; Tretola, M.; Giromini, C.; Fusi, E.; Rebucci, R.; Grillo, M.; Tassoni, L.; Foresta, S.; Gastaldello, S.; et al. Combining E-Nose and Lateral Flow Immunoassays (LFIAs) for Rapid Occurrence/Co-Occurrence Aflatoxin and Fumonisin Detection in Maize. Toxins 2018, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Lippolis, V.; Cervellieri, S.; Damascelli, A.; Pascale, M.; Di Gioia, A.; Longobardi, F.; De Girolamo, A. Rapid Prediction of Deoxynivalenol Contamination in Wheat Bran by MOS-Based Electronic Nose and Characterization of the Relevant Pattern of Volatile Compounds. J. Sci. Food Agric. 2018, 98, 4955–4962. [Google Scholar] [CrossRef] [PubMed]
- Lippolis, V.; Pascale, M.; Cervellieri, S.; Damascelli, A.; Visconti, A. Screening of Deoxynivalenol Contamination in Durum Wheat by MOS-Based Electronic Nose and Identification of the Relevant Pattern of Volatile Compounds. Food Control 2014, 37, 263–271. [Google Scholar] [CrossRef]
- Huang, X.; Tang, X.; Jallow, A.; Qi, X.; Zhang, W.; Jiang, J.; Li, H.; Zhang, Q.; Li, P. Development of an Ultrasensitive and Rapid Fluorescence Polarization Immunoassay for Ochratoxin A in Rice. Toxins 2020, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Eremin, S.A.; Wen, K.; Yu, X.; Li, C.; Ke, Y.; Jiang, H.; Shen, J.; Wang, Z. Fluorescence Polarization Immunoassay Based on a New Monoclonal Antibody for the Detection of the Zearalenone Class of Mycotoxins in Maize. J. Agric. Food Chem. 2017, 65, 2240–2247. [Google Scholar] [CrossRef]
- Lippolis, V.; Pascale, M.; Visconti, A. Optimization of a Fluorescence Polarization Immunoassay for Rapid Quantification of Deoxynivalenol in Durum Wheat–Based Products. J. Food Prot. 2006, 69, 2712–2719. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q.; Mi, T.; Zhao, S.; Wen, K.; Guo, L.; Mi, J.; Zhang, S.; Shi, W.; Shen, J.; et al. Dual-Wavelength Fluorescence Polarization Immunoassay to Increase Information Content per Screen: Applications for Simultaneous Detection of Total Aflatoxins and Family Zearalenones in Maize. Food Control 2018, 87, 100–108. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, X.; Deng, S.; Yan, B.; Dong, Y.; Zhang, K.; Deng, R.; He, Q. Label-Free Fluorescent Aptasensing of Mycotoxins via Aggregation-Induced Emission Dye. Dye Pigment. 2019, 170, 107572. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G. Advances in Luminescent Materials with Aggregation-Induced Emission (AIE) Properties for Biomedical Applications. J. Mater. Chem. B 2018, 6, 4029–4042. [Google Scholar] [CrossRef]
- Hsiao, W.W.W.; Pham, U.K.; Le, T.N.; Lam, X.M.; Chiang, W.H. Advances in Aggregation-Induced Emission Luminogens for Biomedicine: From Luminescence Mechanisms to Diagnostic Applications. Biosens. Bioelectron. 2024, 27, 116942. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lv, L.; Niu, M.; Zhang, D.; Guo, Z. A Label-Free Aptasensor for Turn-On Fluorescent Detection of Aflatoxin B1 Based on an Aggregation-Induced-Emission-Active Probe and Single-Walled Carbon Nanohorns. Foods 2023, 12, 4332. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Li, W.; Ruth, C.J.; Herrman, T.J.; Erickson, D.; Mehta, S. Rapid quantification of aflatoxin in food at the point of need: A monitoring tool for food systems dashboards. Curr. Res. Biotechnol. 2023, 6, 100153. [Google Scholar] [CrossRef]
- Suo, Z.; Niu, X.; Wei, M.; Jin, H.; He, B. Latest strategies for rapid and point of care detection of mycotoxins in food: A review. Anal. Chim. Acta 2023, 1246, 340888. [Google Scholar] [CrossRef] [PubMed]
- Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral Flow (Immuno)Assay: Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey. Anal. Bioanal. Chem. 2009, 393, 569–582. [Google Scholar] [CrossRef]
- Foubert, A.; Beloglazova, N.V.; De Saeger, S. Comparative Study of Colloidal Gold and Quantum Dots as Labels for Multiplex Screening Tests for Multi-Mycotoxin Detection. Anal. Chim. Acta 2017, 955, 48–57. [Google Scholar] [CrossRef]
- Zangheri, M.; Di Nardo, F.; Anfossi, L.; Giovannoli, C.; Baggiani, C.; Roda, A.; Mirasoli, M. A Multiplex Chemiluminescent Biosensor for Type B-Fumonisins and Aflatoxin B1 Quantitative Detection in Maize Flour. Analyst 2015, 140, 358–365. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Han, M.; Zhou, J.; Gong, L.; Niu, Y.; Zhang, Y.; He, L.; Zhang, L. Development and Optimization of a Multiplex Lateral Flow Immunoassay for the Simultaneous Determination of Three Mycotoxins in Corn, Rice, and Peanut. Food Chem. 2016, 213, 478–484. [Google Scholar] [CrossRef]
- Foubert, A.; Beloglazova, N.V.; Gordienko, A.; Tessier, M.D.; Drijvers, E.; Hens, Z.; De Saeger, S. Development of a Rainbow Lateral Flow Immunoassay for the Simultaneous Detection of Four Mycotoxins. J. Agric. Food Chem. 2017, 65, 7121–7130. [Google Scholar] [CrossRef]
- Anfossi, L.; Giovannoli, C.; Giraudi, G.; Biagioli, F.; Passini, C.; Baggiani, C. A Lateral Flow Immunoassay for the Rapid Detection of Ochratoxin A in Wine and Grape Must. J. Agric. Food Chem. 2012, 60, 11491–11497. [Google Scholar] [CrossRef]
- Soares, R.R.G.; Santos, D.R.; Chu, V.; Azevedo, A.M.; Aires-Barros, M.R.; Conde, J.P. A Point-of-Use Microfluidic Device with Integrated Photodetector Array for Immunoassay Multiplexing: Detection of a Panel of Mycotoxins in Multiple Samples. Biosens. Bioelectron. 2017, 87, 823–831. [Google Scholar] [CrossRef]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The Present and Future Role of Microfluidics in Biomedical Research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Uludag, Y.; Esen, E.; Kokturk, G.; Ozer, H.; Muhammad, T.; Olcer, Z.; Basegmez, H.I.O.; Simsek, S.; Barut, S.; Gok, M.Y.; et al. Lab-on-a-Chip Based Biosensor for the Real-Time Detection of Aflatoxin. Talanta 2016, 160, 381–388. [Google Scholar] [CrossRef]
- Abnous, K.; Danesh, N.M.; Alibolandi, M.; Ramezani, M.; Taghdisi, S.M. Amperometric Aptasensor for Ochratoxin A Based on the Use of a Gold Electrode Modified with Aptamer, Complementary DNA, SWCNTs and the Redox Marker Methylene Blue. Microchim. Acta 2017, 184, 1151–1159. [Google Scholar] [CrossRef]
- Hernández, D.B.; Mishra, R.K.; Munoz, R.; Marty, J.L. Low Cost Optical Device for Detection of Fluorescence from Ochratoxin A Using a CMOS Sensor. Sens. Actuators B Chem. 2017, 246, 606–614. [Google Scholar] [CrossRef]
- Li, X.; Yang, F.; Wong, J.X.; Yu, H.Z. Integrated Smartphone-App-Chip System for On-Site Parts-Per-Billion-Level Colorimetric Quantitation of Aflatoxins. Anal. Chem. 2017, 89, 8908–8916. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, S.; Zhu, H.; Wan, X.; Sohan, A.M.F.; Yin, B. A Portable Automated Microfluidic Platform for Point-of-Care Testing for Multiple Mycotoxins in Wine. Foods 2024, 13, 2066. [Google Scholar] [CrossRef]
- Squires, T.M.; Messinger, R.J.; Manalis, S.R. Making It Stick: Convection, Reaction and Diffusion in Surface-Based Biosensors. Nat. Biotechnol. 2008, 26, 417–426. [Google Scholar] [CrossRef]
- Ma, Y.; Mao, Y.; Huang, D.; He, Z.; Yan, J.; Tian, T.; Shi, Y.; Song, Y.; Li, X.; Zhu, Z.; et al. Portable Visual Quantitative Detection of Aflatoxin B1 Using a Target-Responsive Hydrogel and a Distance-Readout Microfluidic Chip. Lab Chip 2016, 16, 3097–3104. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.M.; Soares, R.R.; Chu, V.; Conde, J.P. Multiplexed Capillary Microfluidic Immunoassay with Smartphone Data Acquisition for Parallel Mycotoxin Detection. Biosens. Bioelectron. 2018, 99, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Herr, A.E. Protein Immobilization Techniques for Microfluidic Assays. Biomicrofluidics 2013, 7, 041501. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lustig, W.P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S.J.; Gong, Q.; Rudd, N.D.; Li, J. Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137, 16209–16215. [Google Scholar] [CrossRef] [PubMed]
- Maragos, C.M.; Li, L.; Chen, D. Production and Characterization of a Single Chain Variable Fragment (scFv) Against the Mycotoxin Deoxynivalenol. Food Agric. Immunol. 2012, 23, 51–67. [Google Scholar] [CrossRef]
- Qing, Y.; Li, X.; Chen, S.; Zhou, X.; Luo, M.; Xu, X.; Li, C.; Qiu, J. Differential Pulse Voltammetric Ochratoxin A Assay Based on the Use of an Aptamer and Hybridization Chain Reaction. Microchim. Acta 2017, 184, 863–870. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Cai, S.; Wu, D.; Chen, M.; Wang, S.; Zhang, J. A Fluorescent Aptasensor Based on DNA-Scaffolded Silver-Nanocluster for Ochratoxin A Detection. Biosens. Bioelectron. 2014, 57, 226–231. [Google Scholar] [CrossRef]
- Yao, L.; Chen, Y.; Teng, J.; Zheng, W.; Wu, J.; Adeloju, S.B.; Pan, D.; Chen, W. Integrated Platform with Magnetic Purification and Rolling Circular Amplification for Sensitive Fluorescent Detection of Ochratoxin A. Biosens. Bioelectron. 2015, 74, 534–538. [Google Scholar] [CrossRef]
- Soares, R.R.G.; Novo, P.; Azevedo, A.M.; Fernandes, P.; Chu, V.; Conde, J.P.; Aires-Barros, M.R. Aqueous Two-Phase Systems for Enhancing Immunoassay Sensitivity: Simultaneous Concentration of Mycotoxins and Neutralization of Matrix Interference. J. Chromatogr. A 2014, 1361, 67–76. [Google Scholar] [CrossRef]
- Leong, M.I.; Fuh, M.R.; Huang, S.D. Beyond Dispersive Liquid–Liquid Microextraction. J. Chromatogr. A 2014, 1335, 2–14. [Google Scholar] [CrossRef]
- Soares, R.R.; Azevedo, A.M.; Fernandes, P.; Chu, V.; Conde, J.P.; Aires-Barros, M.R. A Simple Method for Point-of-Need Extraction, Concentration and Rapid Multi-Mycotoxin Immunodetection in Feeds Using Aqueous Two-Phase Systems. J. Chromatogr. A 2017, 1511, 15–24. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, S.; Liu, H.; Wu, X.; Zhang, Q. Nanomechanical Label-Free Detection of Aflatoxin B1 Using a Microcantilever. Sens. Actuators B Chem. 2016, 226, 24–29. [Google Scholar] [CrossRef]
- Bueno, D.; Valdez, L.F.; Gutiérrez Salgado, J.M.; Marty, J.L.; Muñoz, R. Colorimetric Analysis of Ochratoxin A in Beverage Samples. Sensors 2016, 16, 1888. [Google Scholar] [CrossRef]
- Arduini, F.; Neagu, D.; Pagliarini, V.; Scognamiglio, V.; Leonardis, M.A.; Gatto, E.; Amine, A.; Palleschi, G.; Moscone, D. Rapid and Label-Free Detection of Ochratoxin A and Aflatoxin B1 Using an Optical Portable Instrument. Talanta 2016, 150, 440–448. [Google Scholar] [CrossRef]
- Di Nardo, F.; Baggiani, C.; Giovannoli, C.; Spano, G.; Anfossi, L. Multicolor Immunochromatographic Strip Test Based on Gold Nanoparticles for the Determination of Aflatoxin B1 and Fumonisins. Microchim. Acta 2017, 184, 1295–1304. [Google Scholar] [CrossRef]
- Ren, M.; Xu, H.; Huang, X.; Kuang, M.; Xiong, Y.; Xu, H.; Xu, Y.; Chen, H.; Wang, A. Immunochromatographic Assay for Ultrasensitive Detection of Aflatoxin B1 in Maize by Highly Luminescent Quantum Dot Beads. ACS Appl. Mater. Interfaces 2014, 6, 14215–14222. [Google Scholar] [CrossRef]
- Mirasoli, M.; Buragina, A.; Dolci, L.S.; Simoni, P.; Anfossi, L.; Giraudi, G.; Roda, A. Chemiluminescence-based biosensor for fumonisins quantitative detection in maize samples. Biosens. Bioelectron. 2012, 32, 283–287. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Regulation (EU) 2023/915 of 29 May 2023 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Mycotoxins in Foodstuffs. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 18 November 2024).
- European Food Safety Authority. Mycotoxins. Available online: https://www.efsa.europa.eu/en/topics/topic/mycotoxins (accessed on 18 November 2024).
- U.S. Food and Drug Administration. Mycotoxins in Food. U.S. Food and Drug Administration. Available online: https://www.fda.gov/food/natural-toxins-food/mycotoxins (accessed on 18 November 2024).
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Bandyopadhyay, R.; Müller, J.; Vanlauwe, B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017, 72, 110–122. [Google Scholar] [CrossRef]
- Pitt, J.I. (Ed.) Improving Public Health Through Mycotoxin Control; International Agency for Research on Cancer: Lyon, France, 2012; p. 151. [Google Scholar]
- Wagacha, J.M.; Muthomi, J.W. Mycotoxin problem in Africa: Current status, implications to food safety and health, and possible management strategies. Int. J. Food Microbiol. 2008, 124, 1–12. [Google Scholar] [CrossRef]
- TheGlobalEconomy.com Human Flight and Brain Drain in Africa. Available online: https://www.theglobaleconomy.com/rankings/human_flight_brain_drain_index/Africa/ (accessed on 18 November 2024).
- Hove, M.; De Boevre, M.; Lachat, C.; Jacxsens, L.; Nyanga, L.K.; De Saeger, S. Occurrence and Risk Assessment of Mycotoxins in Subsistence armed Maize from Zimbabwe. Food Control 2016, 69, 36–44. [Google Scholar] [CrossRef]
- Badr, M.Z. Challenges Facing Scientific Research in Developing Countries: 2. Environment and Resources. Egypt. J. Basic Clin. Pharmacol. 2018, 8, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, C.; Ortega-Beltran, A.; Bandyopadhyay, R. The need for integrated approaches to address food safety risk: The case of mycotoxins in Africa. In Proceedings of the First FAO/WHO/AU International Food Safety Conference, Addis Ababa, Ethiopia, 12–13 February 2019. [Google Scholar]
- Wild, C.P.; Miller, J.D.; Groopman, J.D. Intervention strategies to reduce human exposure to aflatoxins and fumonisins. In Mycotoxin Control in Low- and Middle-Income Countries; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
Mycotoxin | Physiological Response | Details/Effects | References |
---|---|---|---|
ZEN | Endocrine disruption in placenta and kidneys | Inhibits HSD11B2, pro-inflammatory effects, and estrogen receptor interaction | [42,43] |
ZEN | Growth and puberty disorders | Interferes with pituitary and thyroid hormones and leads to growth disorders and delayed puberty | [45] |
ZEN | Precocious sexual maturation | Higher levels linked to early puberty in girls and boys | [46,47,48,49] |
ZEN | Reproductive issues | Affects sex hormone production (estradiol, progesterone, and testosterone), ovarian folliculogenesis, and can lead to infertility | [52,53,54,55,56] |
ZEN | Placental function disruption | Affects cell fusion, increases hCG, CRH, and COX-2 secretion, and rapid transfer across placental barrier | [68,69,70] |
AFB1 | Male infertility | Found in higher concentrations in infertile men and associated with reduced sperm parameters | [57,58] |
AF | Reduced birth weight | Negative correlation between AF exposure and birth weight and associated with CYP3A enzyme expression | [71,72,73,76] |
AF | Neonatal jaundice | High AFB1 concentrations in jaundiced newborns and correlation with bilirubin levels | [71,73] |
AF | Miscarriages and stillbirths | Higher probability of stillbirths with maternal AF exposure and correlation with grain farming | [79,80,81,82,83] |
AF, ZEN, OTA and Fumonisins | Birth defects | Leads to central nervous system malformations, brain damage, and higher incidence of cryptorchidism, hypospadias, and genitourinary defects | [16,81,149] |
AF, ZEN | Preterm birth | Increases maternal and fetal pro-inflammatory cytokines, leading to preterm contractions and cervical ripening | [72,75,85,86,87,88] |
ZEN, AFB1 | Cancer | Disrupts endocrine system, linked to various cancers (breast, ovarian, cervical, prostate, liver, lung, gastrointestinal, kidney, and gallbladder), and involves mutagenesis and oxidative stress | [150,151,152,153,154,155,156,157,158,159,160,161,162] |
AF | Anemia | Linked to reduced hemoglobin, hematocrit, erythropoiesis, and iron absorption, leading to microcytic anemia | [51,54,85,163,164,165] |
Fumonisins | Pre-eclampsia | Associated with increased inflammatory response and higher blood levels in pre-eclamptic pregnancies | [82,95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thenuwara, G.; Javed, B.; Singh, B.; Byrne, H.J.; Tian, F. Sex- and Gender-Specific Considerations in Mycotoxin Screening: Assessing Differential Exposure, Health Impacts, and Mitigation Strategies. Microbiol. Res. 2024, 15, 2455-2492. https://doi.org/10.3390/microbiolres15040165
Thenuwara G, Javed B, Singh B, Byrne HJ, Tian F. Sex- and Gender-Specific Considerations in Mycotoxin Screening: Assessing Differential Exposure, Health Impacts, and Mitigation Strategies. Microbiology Research. 2024; 15(4):2455-2492. https://doi.org/10.3390/microbiolres15040165
Chicago/Turabian StyleThenuwara, Gayathree, Bilal Javed, Baljit Singh, Hugh J. Byrne, and Furong Tian. 2024. "Sex- and Gender-Specific Considerations in Mycotoxin Screening: Assessing Differential Exposure, Health Impacts, and Mitigation Strategies" Microbiology Research 15, no. 4: 2455-2492. https://doi.org/10.3390/microbiolres15040165
APA StyleThenuwara, G., Javed, B., Singh, B., Byrne, H. J., & Tian, F. (2024). Sex- and Gender-Specific Considerations in Mycotoxin Screening: Assessing Differential Exposure, Health Impacts, and Mitigation Strategies. Microbiology Research, 15(4), 2455-2492. https://doi.org/10.3390/microbiolres15040165