Isolation and Characterization of Lactobacillus gasseri Strains from Women for Potential Vaginal Health Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isolation of LAB
2.2. Measurement of Growth Ability
2.3. Measurement of pH in Culture Medium
2.4. Measurement of Lactic Acid in Culture Medium
2.5. Inhibition of Pathogenic Bacteria and Fungi
2.6. Measurement of Acid and Bile Salt Tolerance and Biofilm Formation
2.7. Measurement of Adhesion Indicators
2.8. Measurement of Cytokine Production in Macrophages
2.9. Measurement of Odor Removal Capacity for Ammonia and Trimethylamine
2.10. Statistical Analysis
3. Results and Discussion
3.1. Growth and pH of L. gasseri Strains
3.2. Lactic Acid Production of L. gasseri Strains
3.3. Antimicrobial Activity Against Vaginal Pathogens
3.4. Genetic Identification of L. gasseri BELG74
3.5. Acid and Bile Resistance, and Biofilm Formation of L. gasseri BELG74
3.6. Adhesion Properties of L. gasseri BELG74
3.7. Anti-Inflammatory Cytokine Modulation by L. gasseri BELG74
3.8. Odor Neutralization Ability of L. gasseri BELG74
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, M.; Rodrigues, U.; Ash, C.; Aguirre, M.; Farrow, J.; Martinez-Murcia, A.; Phillips, B.; Williams, A.; Wallbanks, S. Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett. 1991, 77, 5–12. [Google Scholar] [CrossRef]
- Aureli, P.; Capurso, L.; Castellazzi, A.M.; Clerici, M.; Giovannini, M.; Morelli, L.; Poli, A.; Pregliasco, F.; Salvini, F.; Zuccotti, G.V. Probiotics and health: An evidence-based review. Pharmacol. Res. 2011, 63, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.-R.; So, J.-S.; Oh, K.-H. Characterization and antimicrobial activity of lactic acid bacteria isolated from vaginas of women of childbearing age. Korean J. Microbiol. 2011, 47, 308–315. [Google Scholar]
- Diop, K.; Dufour, J.-C.; Levasseur, A.; Fenollar, F. Exhaustive repertoire of human vaginal microbiota. Hum. Microbiome J. 2019, 11, 100051. [Google Scholar] [CrossRef]
- Miller, E.A.; Beasley, D.E.; Dunn, R.R.; Archie, E.A. Lactobacilli dominance and vaginal pH: Why is the human vaginal microbiome unique? Front. Microbiol. 2016, 7, 1936. [Google Scholar] [CrossRef]
- Ceccarani, C.; Foschi, C.; Parolin, C.; D’Antuono, A.; Gaspari, V.; Consolandi, C.; Laghi, L.; Camboni, T.; Vitali, B.; Severgnini, M. Diversity of vaginal microbiome and metabolome during genital infections. Sci. Rep. 2019, 9, 14095. [Google Scholar] [CrossRef]
- Boskey, E.; Cone, R.; Whaley, K.; Moench, T. Origins of vaginal acidity: High D/L lactate ratio is consistent with bacteria being the primary source. Hum. Reprod. 2001, 16, 1809–1813. [Google Scholar] [CrossRef]
- Acidification, V. Acid Production by Vaginal Flora In Vitro Is. Infect. Immun. 1999, 67, 5170. [Google Scholar]
- Vásquez, A.; Jakobsson, T.; Ahrné, S.; Forsum, U.; Molin, G. Vaginal Lactobacillus flora of healthy Swedish women. J. Clin. Microbiol. 2002, 40, 2746–2749. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. [Google Scholar] [CrossRef]
- Gardner, H.L.; Dukes, C.D. New etiologic agent in nonspecific bacterial vaginitis. Science 1954, 120, 853. [Google Scholar] [CrossRef]
- Tachedjian, G.; Aldunate, M.; Bradshaw, C.S.; Cone, R.A. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res. Microbiol. 2017, 168, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Diaz, D.J.; Jesaveluk, B.; Hayward, J.A.; Tyssen, D.; Alisoltani, A.; Potgieter, M.; Bell, L.; Ross, E.; Iranzadeh, A.; Allali, I. Lactic acid from vaginal microbiota enhances cervicovaginal epithelial barrier integrity by promoting tight junction protein expression. Microbiome 2022, 10, 141. [Google Scholar] [CrossRef]
- Wu, S.; Hugerth, L.W.; Schuppe-Koistinen, I.; Du, J. The right bug in the right place: Opportunities for bacterial vaginosis treatment. NPJ Biofilms Microbiomes 2022, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Cassone, A. Vulvovaginal C andida albicans infections: Pathogenesis, immunity and vaccine prospects. BJOG Int. J. Obstet. Gynaecol. 2015, 122, 785–794. [Google Scholar] [CrossRef]
- O’Hanlon, D.E.; Moench, T.R.; Cone, R.A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 2013, 8, e80074. [Google Scholar] [CrossRef]
- O’May, G.; Macfarlane, G. Health Claims Associated with Probiotics. In Probiotic Dairy Products; Blackwell Publishing Ltd.: Oxford, UK, 2006; pp. 138–166. [Google Scholar]
- Bourlioux, P.; Koletzko, B.; Guarner, F.; Braesco, V. The intestine and its microflora are partners for the protection of the host: Report on the Danone Symposium “The Intelligent Intestine,” held in Paris, June 14, 2002. Am. J. Clin. Nutr. 2003, 78, 675–683. [Google Scholar] [CrossRef]
- Mazahreh, A.S.; Ershidat, O.T.M. The benefits of lactic acid bacteria in yogurt on the gastrointestinal function and health. Pak. J. Nutr. 2009, 8, 1404–1410. [Google Scholar]
- Parolin, C.; Marangoni, A.; Laghi, L.; Foschi, C.; Ñahui Palomino, R.A.; Calonghi, N.; Cevenini, R.; Vitali, B. Isolation of vaginal lactobacilli and characterization of anti-Candida activity. PLoS ONE 2015, 10, e0131220. [Google Scholar] [CrossRef] [PubMed]
- Amabebe, E.; Anumba, D.O. The vaginal microenvironment: The physiologic role of lactobacilli. Front. Med. 2018, 5, 181. [Google Scholar] [CrossRef]
- Motevaseli, E.; Shirzad, M.; Akrami, S.M.; Mousavi, A.-S.; Mirsalehian, A.; Modarressi, M.H. Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate. J. Med. Microbiol. 2013, 62, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Stoeker, L.; Nordone, S.; Gunderson, S.; Zhang, L.; Kajikawa, A.; LaVoy, A.; Miller, M.; Klaenhammer, T.R.; Dean, G.A. Assessment of Lactobacillus gasseri as a candidate oral vaccine vector. Clin. Vaccine Immunol. 2011, 18, 1834–1844. [Google Scholar] [CrossRef]
- Owen, D.H.; Katz, D.F. A vaginal fluid simulant. Contraception 1999, 59, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, S.; Watanabe, A.; Kimura, K.; Kaji, M. Probiotic mechanism of Lactobacillus gasseri OLL2716 strain against Helicobacter pylori. J. Clin. Microbiol. 2012, 50, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Amsel, R.; Totten, P.A.; Spiegel, C.A.; Chen, K.C.; Eschenbach, D.; Holmes, K.K. Nonspecific vaginitis: Diagnostic criteria and microbial and epidemiologic associations. Am. J. Med. 1983, 74, 14–22. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K.; Cao, T.; Duan, Z. Characterization of a Lactobacillus gasseri strain as a probiotic for female vaginitis. Sci. Rep. 2024, 14, 14426. [Google Scholar] [CrossRef] [PubMed]
- Selle, K.; Klaenhammer, T.R. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol. Rev. 2013, 37, 915–935. [Google Scholar] [CrossRef]
- Kim, J.; Muhammad, N.; Jhun, B.H.; Yoo, J.-W. Probiotic delivery systems: A brief overview. J. Pharm. Investig. 2016, 46, 377–386. [Google Scholar] [CrossRef]
- Liu, P.; Lu, Y.; Li, R.; Chen, X. Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Front. Cell. Infect. Microbiol. 2023, 13, 1153894. [Google Scholar] [CrossRef]
- Terraf, M.L.; Juárez Tomás, M.; Nader-Macías, M.; Silva, C. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components. J. Appl. Microbiol. 2012, 113, 1517–1529. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.I.; Jeong, C.H.; Hong, S.W.; Eun, J.-B.; Kim, T.-W. Optimizing conditions in the acid tolerance test for potential probiotics using response surface methodology. Microbiol. Spectr. 2022, 10, e01625-22. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.-S.; Chun, J.; Park, J.; Kim, M.; Hwang, C.Y.; Yoon, D.J.; Siziya, I.N.; Seo, D.-H.; Seo, M.-J. In vitro assessment of probiotic properties for lactic acid bacteria isolated from Korean traditional fermented food, kimchi. Curr. Top. Lact. Acid Bact. Probiotics 2020, 6, 17–24. [Google Scholar] [CrossRef]
- Cianci, A.; Cicinelli, E.; De Leo, V.; Fruzzetti, F.; Massaro, M.G.; Bulfoni, A.; Parazzini, F.; Perino, A. Observational prospective study on Lactobacillus plantarum P 17630 in the prevention of vaginal infections, during and after systemic antibiotic therapy or in women with recurrent vaginal or genitourinary infections. J. Obstet. Gynaecol. 2018, 38, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, I.; Fontaine, E.; Morgan, D.; Sheehan, M.; Lamont, R.; Taylor-Robinson, D. Relationship between hydrogen peroxide-producing strains of lactobacilli and vaginosis-associated bacterial species in pregnant women. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Kos, B.; Šušković, J.; Vuković, S.; Šimpraga, M.; Frece, J.; Matošić, S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 2003, 94, 981–987. [Google Scholar] [CrossRef]
- Sharma, S.; Kanwar, S.S. Adherence potential of indigenous lactic acid bacterial isolates obtained from fermented foods of Western Himalayas to intestinal epithelial Caco-2 and HT-29 cell lines. J. Food Sci. Technol. 2017, 54, 3504–3511. [Google Scholar] [CrossRef]
- Rajab, S.; Tabandeh, F.; Shahraky, M.K.; Alahyaribeik, S. The effect of lactobacillus cell size on its probiotic characteristics. Anaerobe 2020, 62, 102103. [Google Scholar] [CrossRef]
- Krausova, G.; Hyrslova, I.; Hynstova, I. In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation 2019, 5, 100. [Google Scholar] [CrossRef]
- Lin, T.-C.; Hsu, I.-L.; Tsai, W.-H.; Chu, Y.-C.; Kuan, L.-C.; Huang, M.-S.; Yeh, W.-L.; Chen, Y.-H.; Hsu, S.-J.; Chang, W.-W. Improvement of bacterial vaginosis by oral lactobacillus supplement: A randomized, double-blinded trial. Appl. Sci. 2021, 11, 902. [Google Scholar] [CrossRef]
- He, Y.; Niu, X.; Wang, B.; Na, R.; Xiao, B.; Yang, H. Evaluation of the inhibitory effects of Lactobacillus gasseri and Lactobacillus crispatus on the adhesion of seven common lower genital tract infection-causing pathogens to vaginal epithelial cells. Front. Med. 2020, 7, 284. [Google Scholar] [CrossRef]
- Putative adhesion factors in vaginal Lactobacillus gasseri DSM 14869: Functional characterization. Appl. Environ. Microbiol. 2019, 85, e00800–e00819.
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Hambleton, J.; Weinstein, S.L.; Lem, L.; DeFranco, A.L. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Natl. Acad. Sci. USA 1996, 93, 2774–2778. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.; Marrazzo, J. Bacterial vaginosis and the cervicovaginal immune response. Am. J. Reprod. Immunol. 2014, 71, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Marconi, C.; Donders, G.G.; Parada, C.M.; Giraldo, P.C.; da Silva, M.G. Do Atopobium vaginae, Megasphaera sp. and Leptotrichia sp. change the local innate immune response and sialidase activity in bacterial vaginosis? Sex. Transm. Infect. 2013, 89, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Fan, T.; Luo, S.; Zheng, J.; Zhang, L.; Cao, L.; Zhang, Z.; Li, L.; Huang, Z.; Zhang, H. Lactobacillus gasseri LGV03 isolated from the cervico-vagina of HPV-cleared women modulates epithelial innate immune responses and suppresses the growth of HPV-positive human cervical cancer cells. Transl. Oncol. 2023, 35, 101714. [Google Scholar] [CrossRef] [PubMed]
- Gebremariam, H.G.; Qazi, K.R.; Somiah, T.; Pathak, S.K.; Sjölinder, H.; Sverremark Ekström, E.; Jonsson, A.-B. Lactobacillus gasseri suppresses the production of proinflammatory cytokines in Helicobacter pylori-infected macrophages by inhibiting the expression of ADAM17. Front. Immunol. 2019, 10, 2326. [Google Scholar] [CrossRef]
- Lebeer, S.; Claes, I.J.; Vanderleyden, J. Anti-inflammatory potential of probiotics: Lipoteichoic acid makes a difference. Trends Microbiol. 2012, 20, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Noviardi, H.; Iswantini, D.; Mulijani, S.; Wahyudi, S.T.; Khusniati, T. Anti-inflammatory activity of the metabolite extract of Lactobacillus plantarum Su-ls29 on lipopolysaccharide-induced RAW 264.7 macrophage cells. J. Appl. Pharm. Sci. 2024, 14, 148–158. [Google Scholar] [CrossRef]
- Choi, J.H.; Moon, C.M.; Shin, T.-S.; Kim, E.K.; McDowell, A.; Jo, M.-K.; Joo, Y.H.; Kim, S.-E.; Jung, H.-K.; Shim, K.-N. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp. Mol. Med. 2020, 52, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.M.; Borgogna, J.-L.C.; Brotman, R.M.; Ravel, J.; Walk, S.T.; Yeoman, C.J. Vaginal biogenic amines: Biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis? Front. Physiol. 2015, 6, 253. [Google Scholar] [CrossRef]
- Niu, T.; Li, X.; Guo, Y.; Ma, Y. Identification of a lactic acid bacteria to degrade biogenic amines in Chinese rice wine and its enzymatic mechanism. Foods 2019, 8, 312. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Zeng, X.M.; Jiang, M.; Rui, X.; Li, W.; Dong, M.S.; Chen, X.H.; Zhang, Q.Q. Genomic and biogenic amine-reducing characterization of Lactiplantibacillus planatraum JB1 isolated from fermented dry sausage. Food Control 2023, 154, 109971. [Google Scholar] [CrossRef]
- Callejón, S.; Sendra, R.; Ferrer, S.; Pardo, I. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl. Microbiol. Biotechnol. 2014, 98, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Callejón, S.; Sendra, R.; Ferrer, S.; Pardo, I. Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation. Appl. Microbiol. Biotechnol. 2016, 100, 3113–3124. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Tsai, M.-S.; Liang, L.; Jiang, L.; Hung, C.-J.; Jelliffe-Pawlowski, L.; Rand, L.; Snyder, M.; Jiang, C. Vaginal microbiomes show ethnic evolutionary dynamics and positive selection of Lactobacillus adhesins driven by a long-term niche-specific process. Cell Rep. 2024, 43, 114078. [Google Scholar] [CrossRef]
Acid Resistance (%) | Bile Resistance (%) | Biofilm Formation (Negative Control:0.1) |
---|---|---|
92.2 ± 7.07 | 25.3 ± 3.10 | 0.44 ± 0.03 |
Auto-Aggregation (%) | Hydrophobicity (%) | Adhesion Activity (%) |
---|---|---|
52.3.2 ± 7.94 | 92.1 ± 0.24 | 28.8 ± 1.80 |
Material | Test Group | Volatile Nitrogen Compounds (mg/kg) | Inhibition (%) |
---|---|---|---|
NH3 (Ammonia) | Negative Control | 100 | 0 |
BELG74 | 0 | 99.9 | |
C3H9N (Trimethylamine) | Negative Control | 28 | 0 |
BELG74 | 0 | 99.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, E.-C.; Lee, J.S.; Lim, H.J.; Kim, S.-J.; Chung, Y.-J.; Shin, K.-J. Isolation and Characterization of Lactobacillus gasseri Strains from Women for Potential Vaginal Health Applications. Microbiol. Res. 2025, 16, 12. https://doi.org/10.3390/microbiolres16010012
Chung E-C, Lee JS, Lim HJ, Kim S-J, Chung Y-J, Shin K-J. Isolation and Characterization of Lactobacillus gasseri Strains from Women for Potential Vaginal Health Applications. Microbiology Research. 2025; 16(1):12. https://doi.org/10.3390/microbiolres16010012
Chicago/Turabian StyleChung, Eui-Chun, Jong Seo Lee, Hye Ji Lim, Seok-Jin Kim, Youn-Jee Chung, and Kum-Joo Shin. 2025. "Isolation and Characterization of Lactobacillus gasseri Strains from Women for Potential Vaginal Health Applications" Microbiology Research 16, no. 1: 12. https://doi.org/10.3390/microbiolres16010012
APA StyleChung, E.-C., Lee, J. S., Lim, H. J., Kim, S.-J., Chung, Y.-J., & Shin, K.-J. (2025). Isolation and Characterization of Lactobacillus gasseri Strains from Women for Potential Vaginal Health Applications. Microbiology Research, 16(1), 12. https://doi.org/10.3390/microbiolres16010012