Thermithiobacillus plumbiphilus AAFK—Arsenic-Resistant Bacteria Isolated from Arsenopyrite Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Materials
2.2. Study of Bacterial Diversity in the Ore by Molecular Methods
2.3. Culturing
2.4. Identification of the Strain AAFK
2.5. Light Microscopy
2.6. Transmission and Scanning Electron Microscopy
2.7. Chemical Analyses
2.8. Statistics
3. Results
3.1. Diversity of Bacteria in the Arsenopyrite Ore
3.2. Identification of the Isolated Strain and Its Genetic Similarity
3.3. Experiments on the T. plumbiphilus AAFK Resistance to the Arsenic Compounds
3.4. Cellular Structure and Biofilm of T. plumbiphilus AAFK
3.5. Genetic Basis of the T. plumbiphilus AAFK Resistance to the Arsenic Compounds and Sulfur Transformation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, J.; Shi, S.; Liu, G.; Zhang, Q.; Cong, W. Arsenopyrite bioleaching by Acidithiobacillus ferrooxidans in a rotating-drum reactor. Miner. Eng. 2012, 39, 19–22. [Google Scholar] [CrossRef]
- Abashina TYachkula, A.; Shaikin, A.; Vainshtein, M. Approaches to improve the bioleaching of arsenopyrite flotation concentrate with Acidithiobacillus ferrooxidans: A comparison of two strains of different origin. Eng. Proc. 2024, 67, 60. [Google Scholar] [CrossRef]
- Kelly, D.P.; Wood, A.P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2000, 2, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.A.; Kuenen, J.G. The Genus Thiobacillus. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Watanabe, T.; Miura, A.; Shinohara, A.; Kojima, H.; Fukui, M. Thermithiobacillus plumbiphilus sp. nov., a sulfur-oxidizing bacterium isolated from lead sulfide. Int. J. Syst. Evol. Microbiol. 2016, 66, 1986–1989. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Amir, A.; McDonald, D.; Navas-Molina, J.; Kopylova, E.; Morton, J.; Zech Xu, Z.; Kightley, E.; Thompson, L.; Hyde, E.; Gonzalez, A.; et al. Deblur rapidly resolves single-nucleotide community sequence Patterns. mSystems 2017, 2, e00191–e00216. [Google Scholar] [CrossRef]
- Bokulich, N.; Kaehler, B.; Rideout, J.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.; Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Chakraborti, D.; Rahman, M.M.; Das, B.; Murrill, M.; Dey, S.; Mukherjee, S.C.; Dhar, R.K.; Biswas, B.K.; Chowdhury, U.K.; Roy, S.; et al. Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Res. 2010, 44, 5789–5802. [Google Scholar] [CrossRef] [PubMed]
- Barats, A.; Féraud, G.; Potot, C.; Philippini, V.; Travi, Y.; Durrieu, G.; Dubar, M.; Simler, R. Naturally dissolved arsenic concentrations in the Alpine/Mediterranean Var River watershed (France). Sci. Total Environ. 2014, 473–474, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Abashina, T.; Vainshtein, M. Current trends in metal biomining with a focus on genomics aspects and attention to arsenopyrite leaching—A review. Microorganisms 2023, 11, 186. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford method for protein quantitation. In The Protein Protocols Handbook; Walker, J.M., Ed.; Springer Protocols Handbooks; Humana Press: Totowa, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Van de Peer, Y.; DeWachter, R. TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Bioinformatics 1994, 10, 569–570. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013, 14, 60. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar] [CrossRef] [PubMed]
- Luft, J.H. Electron microscopy of cell extraneous coats as revealed by ruthenium red staining. J. Cell Biol. 1964, 23, 54A–55A. [Google Scholar]
- Reynolds, E. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 1963, 17, 208–212. [Google Scholar] [CrossRef]
- Abashina, T.N.; Rozova, O.N.; Vainshtein, M.B. Effect of changing conditions on the composition of the bacterial community of mine waters. Inland Water Biol. 2022, 15, 489–496. [Google Scholar] [CrossRef]
- Chen, A.H.; Robinson-Mosher, A.; Savage, D.F.; Silver, P.A.; Polka, J.K. The bacterial carbon-fixing organelle is formed by shell envelopment of preassembled cargo. PLoS ONE 2013, 8, e76127. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, M.J.; Kesty, N.C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005, 19, 2645–2655. [Google Scholar] [CrossRef]
- MacDonald, I.A.; Kuehn, M.J. Offense and defense: Microbial membrane vesicles play both ways. Res. Microbiol. 2012, 163, 607–618. [Google Scholar] [CrossRef]
- Manning, A.J.; Kuehn, M.J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 2011, 11, 258. [Google Scholar] [CrossRef]
- Chattopadhyay, M.K.; Jaganandham, M.V. Vesicles-mediated resistance to antibiotics in bacteria. Front. Microbiol. 2015, 6, 758. [Google Scholar] [CrossRef] [PubMed]
- Kadurugamuwa, J.L.; Beveridge, T.J. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: Conceptually new antibiotics. J. Bacteriol. 1996, 178, 2767–2774. [Google Scholar] [CrossRef]
- Domingues, S.; Nielsen, K.M. Membrane vesicles and horizontal gene transfer in prokaryotes. Curr. Opin. Microbiol. 2017, 22, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Soler, N.; Gorlas, A.; Cvirkaite-Krupovic, V.; Krupovic, M.; Forterre, P. Extracellular membrane vesicles and nanotubes in Archaea. Microlife 2021, 2, uqab007. [Google Scholar] [CrossRef]
- Sand, W.; Gehrke, T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes in-volving iron (III) ions and acidophilic bacteria. Res. Microbiol. 2006, 157, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Harneit, K.; Göksel, A.; Kock, D.; Klock, J.H.; Gehrke, T.; Sand, W. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 2006, 83, 245–254. [Google Scholar] [CrossRef]
- González, D.M.; Lara, R.H.; Alvarado, K.N.; Valdez-Pérez, D.; Navarro-Contreras, H.R.; Cruz, R.; García-Meza, J.V. Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans. Appl. Microbiol. Biotechnol. 2012, 93, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Fazzini, R.A.B.; Levican, G.; Parada, P. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein licanantase enhances chalcopyrite bioleaching rate. Appl. Microbiol. Biotechnol. 2011, 89, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.-Y.; Tang, D.-P.; Song, P.; Zhou, J.-P.; Li, H.-Y. Characterisation of acylated homoserine lactone derivatives and their influence on biofilms of Acidithiobacillus ferrooxidans BY-3 under arsenic stress. J. Cent. South Univ. 2020, 27, 52–63. [Google Scholar] [CrossRef]
- Baumgarten, T.; Sperling, S.; Seifert, J.; von Bergen, M.; Steiniger, F.; Wick, L.Y.; Heipieper, H.J. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol. 2012, 78, 6217–6224. [Google Scholar] [CrossRef]
- Schooling, S.R.; Beveridge, T.J. Membrane vesicles: An overlooked component of the matrices of biofilms. J. Bacteriol. 2006, 188, 5945–5957. [Google Scholar] [CrossRef]
- Remis, J.P.; Wei, D.; Gorur, A.; Zemla, M.; Haraga, J.; Allen, S.; Witkowska, H.E.; Costerton, J.W.; Berleman, J.E.; Auer, M. Bacterial social networks: Structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ. Microbiol. 2014, 16, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chanda, W.; Zhong, M. The relationship between biofilm and outer membrane vesicles: A novel therapeutic overview. FEMS Microbiol. Lett. 2015, 362, fnv117. [Google Scholar] [CrossRef]
- Schooling, S.R.; Hubley, A.; Beveridge, T.J. Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 2009, 191, 4097–4102. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, Z.; Meng, D.; Liu, X.; Li, X.; Zhang, M.; Tao, J.; Gu, Y.; Zhong, S.; Yin, H. Comparative genomic analysis reveals the distribution, organization, and evolution of metal resistance genes in the genus Acidithiobacillus. Appl. Environ. Microbiol. 2019, 85, e02153–e02218. [Google Scholar] [CrossRef] [PubMed]
- Sunita, M.S.L.; Prashant, S.; Chari, P.B.; Rao, S.N.; Balaravi, P.; Kishor, P.K. Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. Ecotoxicology 2012, 21, 202–212. [Google Scholar] [CrossRef]
- Satyapal, G.K.; Rani, S.; Kumar, M.; Kumar, N. Potential role of arsenic resistant bacteria in bioremediation: Current status and future prospects. J. Microb. Biochem. Technol. 2016, 8, 256–258. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Chan, Z.; Chen, S.; Yang, S. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009. Front. Microbiol. 2015, 6, 986. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.L.; Singh, S.; Chen, W. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr. Opin. Biotechnol. 2009, 20, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, H.; Rosen, B.P. Arsenic metabolism in prokaryotic and eukaryotic microbes. Microbiol. Monogr. 2007, 6, 371–406. [Google Scholar] [CrossRef]
- Glasser, N.R.; Oyala, P.H.; Osborne, T.H.; Santini, J.M.; Newman, D.K. Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic trans-formations. Proc. Natl. Acad. Sci. USA 2018, 115, E8614–E8623. [Google Scholar] [CrossRef]
- van Lis, R.; Nitschke, W.; Duval, S.; Schoepp-Cothenet, B. Arsenics as bioenergetic substrates. Biochim. Biophys. Acta 2013, 1827, 176–188. [Google Scholar] [CrossRef]
- Kabiraj, A.; Biswas, R.; Halder, U.; Bandopadhyay, R. Bacterial arsenic metabolism and its role in arsenic bioremediation. Curr. Microbiol. 2022, 79, 131. [Google Scholar] [CrossRef] [PubMed]
- Yachkula, A.; Rozova, O.; Abashina, T.; Vainshtein, M.; Grouzdev, D.; Bulaev, A. Attempts to stimulate leaching activity of Acidithiobacillus ferrooxidans strain TFBk. Minerals 2022, 12, 1051. [Google Scholar] [CrossRef]
Elements | Concentration, mg/kg | |
---|---|---|
Ore | Flotation Concentrate | |
As | 12,700 | 77,279 |
Fe | 33,600 | 24,740 |
Au | 150 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaikin, A.; Zvonarev, A.; Vainshtein, M.; Abashina, T. Thermithiobacillus plumbiphilus AAFK—Arsenic-Resistant Bacteria Isolated from Arsenopyrite Material. Microbiol. Res. 2025, 16, 14. https://doi.org/10.3390/microbiolres16010014
Shaikin A, Zvonarev A, Vainshtein M, Abashina T. Thermithiobacillus plumbiphilus AAFK—Arsenic-Resistant Bacteria Isolated from Arsenopyrite Material. Microbiology Research. 2025; 16(1):14. https://doi.org/10.3390/microbiolres16010014
Chicago/Turabian StyleShaikin, Artem, Anton Zvonarev, Mikhail Vainshtein, and Tatiana Abashina. 2025. "Thermithiobacillus plumbiphilus AAFK—Arsenic-Resistant Bacteria Isolated from Arsenopyrite Material" Microbiology Research 16, no. 1: 14. https://doi.org/10.3390/microbiolres16010014
APA StyleShaikin, A., Zvonarev, A., Vainshtein, M., & Abashina, T. (2025). Thermithiobacillus plumbiphilus AAFK—Arsenic-Resistant Bacteria Isolated from Arsenopyrite Material. Microbiology Research, 16(1), 14. https://doi.org/10.3390/microbiolres16010014