Blocking TNF-α Reduces Leishmania major-Induced Hyperalgesia and Changes the Cytokine Profile in the Paw Skin of BALB/c Mice with a Potential Positive Effect on Parasite Clearance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Parasite Culture and Preparations
2.3. Experimental Animals and Treatment Groups
2.4. Behavioral Measurements—Pain Tests
2.5. Hot Plate Test
2.6. Tail Flick Test
2.7. Tissue Cytokine Measurements
2.8. Statistical Analysis
3. Results
3.1. Pain Thresholds
3.1.1. Effect of Infliximab on Pain Threshold in Uninfected Mice
3.1.2. Effect of Infliximab on L. major-Induced Hyperalgesia in Mice
3.2. Effects of Infliximab on Cytokine Levels in the Paws of L. major-Infected Mice
3.2.1. Effect of Infliximab on Cytokine Levels in Uninfected Mice
3.2.2. Effect of Infliximab on TNF-α Levels
3.2.3. Effect of Infliximab on IL-10 Levels
3.2.4. Effect of Infliximab on IL-17 Levels
3.2.5. Effect of Infliximab on IL-1β Levels
3.2.6. Effect of Infliximab on IFN-γ Levels
3.2.7. Effect of Infliximab on KC Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cervero, F. Spinal Cord Hyperexcitability and Its Role in Pain and Hyperalgesia. Exp. Brain Res. 2009, 196, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.E.; Patapoutian, A. Nociceptors: The Sensors of the Pain Pathway. J. Clin. Investig. 2010, 120, 3760–3772. [Google Scholar] [CrossRef] [PubMed]
- Purves, D. Neuroscience, 3rd ed.; Purves, D., Augustine, G.J., Fitzpatrick, D., All, W.C.H., Lamantia, A.-S., Mcnamara, J.O., Williams, S.M.A., Eds.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2004. [Google Scholar]
- Woolf, C.J.; Ma, Q. Nociceptors—Noxious Stimulus Detectors. Neuron 2007, 55, 353–364. [Google Scholar] [CrossRef]
- Haroutounian, S.; Nikolajsen, L.; Bendtsen, T.F.; Finnerup, N.B.; Kristensen, A.D.; Hasselstrøm, J.B.; Jensen, T.S. Primary Afferent Input Critical for Maintaining Spontaneous Pain in Peripheral Neuropathy. Pain 2014, 155, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Sheikh, Z.; Ahmed, A.S. Nociception and Role of Immune System in Pain. Acta Neurol. Belg. 2015, 115, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Waxman, S.G.; Zamponi, G.W. Regulating Excitability of Peripheral Afferents: Emerging Ion Channel Targets. Nat. Neurosci. 2014, 17, 153–163. [Google Scholar] [CrossRef]
- Cunha, T.M.; Verri, W.A.; Silva, J.S.; Poole, S.; Cunha, F.Q.; Ferreira, S.H. A Cascade of Cytokines Mediates Mechanical Inflammatory Hypernociception in Mice. Proc. Natl. Acad. Sci. USA 2005, 102, 1755–1760. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.T.G.; Verri, W.A.; Cunha, T.M.; Silva, T.A.; Rocha, F.A.C.; Ferreira, S.H.; Cunha, F.Q.; Parada, C.A. Hypernociception Elicited by Tibio-Tarsal Joint Flexion in Mice: A Novel Experimental Arthritis Model for Pharmacological Screening. Pharmacol. Biochem. Behav. 2006, 84, 244–251. [Google Scholar] [CrossRef]
- Verri, W.A.; Cunha, T.M.; Parada, C.A.; Poole, S.; Cunha, F.Q.; Ferreira, S.H. Hypernociceptive Role of Cytokines and Chemokines: Targets for Analgesic Drug Development? Pharmacol. Ther. 2006, 112, 116–138. [Google Scholar] [CrossRef]
- Yamacita-Borin, F.Y.; Zarpelon, A.C.; Pinho-Ribeiro, F.A.; Fattori, V.; Alves-Filho, J.C.; Cunha, F.Q.; Cunha, T.M.; Casagrande, R.; Verri, W.A. Superoxide Anion-Induced Pain and Inflammation Depends on TNFα/TNFR1 Signaling in Mice. Neurosci. Lett. 2015, 605, 53–58. [Google Scholar] [CrossRef]
- Chen, B.L.; Li, Y.Q.; Xie, D.H.; He, Q.L.; Yang, X.X. Blocking TNF-α with Infliximab Alleviates Ovariectomy Induced Mechanical and Thermal Hyperalgesia in Rats. Neurol. Sci. 2012, 33, 527–533. [Google Scholar] [CrossRef]
- Kim, S.H.; Son, C.N.; Lee, H.J.; Cho, H.C.; Jung, S.W.; Hur, J.A.; Baek, W.K.; Jung, H.R.; Hong, J.H. Infliximab Partially Alleviates the Bite Force Reduction in a Mouse Model of Temporomandibular Joint Pain. J. Korean Med. Sci. 2015, 30, 552–558. [Google Scholar] [CrossRef]
- Wolf, S.L.; Winstein, C.J.; Miller, J.P.; Taub, E.; Uswatte, G.; Morris, D.; Giuliani, C.; Light, K.E.; Nichols-Larsen, D. Effect of Constraint-Induced Movement Therapy on Upper Extremity Function 3 to 9 Months after Stroke: The EXCITE Randomized Clinical Trial. JAMA 2006, 296, 2095–2104. [Google Scholar] [CrossRef]
- Alexander, J.; Satoskar, A.R.; Russell, D.G. Leishmania Species: Models of Intracellular Parasitism. J. Cell Sci. 1999, 112 Pt 18, 2993–3002. [Google Scholar] [CrossRef] [PubMed]
- Wyler, D.J. In Vitro Parasite-Monocyte Interactions in Human Leishmaniasis. Evidence for an Active Role of the Parasite in Attachment. J. Clin. Investig. 1982, 70, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Atri, C.; Guerfali, F.Z.; Laouini, D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int. J. Mol. Sci. 2018, 19, 1801. [Google Scholar] [CrossRef] [PubMed]
- Noben-Trauth, N.; Lira, R.; Nagase, H.; Paul, W.E.; Sacks, D.L. The Relative Contribution of IL-4 Receptor Signaling and IL-10 to Susceptibility to Leishmania Major. J. Immunol. 2003, 170, 5152–5158. [Google Scholar] [CrossRef]
- Tomiotto-Pellissier, F.; da Bortoleti, B.T.S.; Assolini, J.P.; Gonçalves, M.D.; Carloto, A.C.M.; Miranda-Sapla, M.M.; Conchon-Costa, I.; Bordignon, J.; Pavanelli, W.R. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front. Immunol. 2018, 9, 2529. [Google Scholar] [CrossRef] [PubMed]
- Solbach, W.; Laskay, T. The Host Response to Leishmania Infection. Adv. Immunol. 2000, 74, 275–317. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.; Mathur, K.R.; Saha, B. Immune Response to Leishmania Infection. Indian J. Med. Res. 2004, 6, 238–258. [Google Scholar]
- Stout, D.R.; Bottomly, K. Antigen-Specific Activation of Effector Macrophages by IFN-Gamma Producing (TH1) T Cell Clones. Failure of IL-4-Producing (TH2) T Cell Clones to Activate Effector Function in Macrophages. J. Immunol. 1989, 3, 760–765. [Google Scholar] [CrossRef]
- Kanaan, S.A.; Saadé, N.E.; Karam, M.; Khansa, H.; Jabbur, S.J.; Jurjus, A.R. Hyperalgesia and Upregulation of Cytokines and Nerve Growth Factor by Cutaneous Leishmaniasis in Mice. Pain 2000, 85, 477–482. [Google Scholar] [CrossRef]
- Karam, M.C.; Hamdan, H.G.; Abi Chedid, N.A.; Bodman-Smith, K.B.; Eales-Reynolds, L.J.E.; Baroody, G.M. Leishmania Major: Low Infection Dose Causes Short-Lived Hyperalgesia and Cytokines Upregulation in Mice. Exp. Parasitol. 2006, 113, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, S.A.; Safieh-Garabedian, B.; Karam, M.; Khansa, H.; Jabbur, S.J.; Jurjus, A.R.; Saade, N.E. Thymulin Reduces the Hyperalgesia and Cytokine Upregulation Induced by Cutaneous Leishmaniasis in Mice. Brain Behav. Immun. 2002, 16, 450–460. [Google Scholar] [CrossRef]
- Karam, M.C.; Hamdan, H.G.; Abi Chedid, N.A.; Bodman-Smith, K.B.; Baroody, G.M. Interleukin-10 Reduces Hyperalgesia and the Level of Interleukin-1beta in BALB/c Mice Infected with Leishmania Major with No Major Effect on the Level of Interleukin-6. J. Neuroimmunol. 2007, 183, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.C.; Merckbawi, R.; Salman, S.; Mobasheri, A. Atenolol Reduces Leishmania Major-Induced Hyperalgesia and TNF-α Without Affecting IL-1β or Keratinocyte Derived Chemokines (KC). Front. Pharmacol. 2016, 7, 22. [Google Scholar] [CrossRef]
- Moynes, D.M.; Vanner, S.J.; Lomax, A.E. Participation of Interleukin 17A in Neuroimmune Interactions. Brain Behav. Immun. 2014, 41, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, Y.; Lao, L.; Saito, R.; Li, A.; Bäckman, C.M.; Berman, B.M.; Ren, K.; Wei, P.K.; Zhang, R.X. Spinal Interleukin-17 Promotes Thermal Hyperalgesia and NMDA NR1 Phosphorylation in an Inflammatory Pain Rat Model. Pain 2013, 154, 294–305. [Google Scholar] [CrossRef]
- Ebbinghaus, M.; Natura, G.; Segond Von Banchet, G.; Hensellek, S.; Böttcher, M.; Hoffmann, B.; Salah, F.S.; Gajda, M.; Kamradt, T.; Schaible, H.G. Interleukin-17A Is Involved in Mechanical Hyperalgesia but Not in the Severity of Murine Antigen-Induced Arthritis. Sci. Rep. 2017, 7, 10334. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M. Ethical Guidelines for Investigations of Experimental Pain in Conscious Animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Salako, M.A.; Kulbe, H.; Ingemarsdotter, C.K.; Pirlo, K.J.; Williams, S.L.; Lockley, M.; Balkwill, F.R.; McNeish, I.A. Inhibition of the Inflammatory Cytokine TNF-α Increases Adenovirus Activity in Ovarian Cancer via Modulation of CIAP1/2 Expression. Mol. Ther. 2011, 19, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, S.A.; Saadé, N.E.; Haddad, J.J.; Abdelnoor, A.M.; Atweh, S.F.; Jabbur, S.J.; Safieh-Garabedian, B. Endotoxin-Induced Local Inflammation and Hyperalgesia in Rats and Mice: A New Model for Inflammatory Pain. Pain 1996, 66, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Dinic, M.; Pecikoza, U.; Djokic, J.; Stepanovic-Petrovic, R.; Milenkovic, M.; Stevanovic, M.; Filipovic, N.; Begovic, J.; Golic, N.; Lukic, J. Exopolysaccharide Produced by Probiotic Strain Lactobacillus Paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats. Front. Pharmacol. 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Dai, J.; Hou, S.; Su, L.; Zhang, D.; Guo, H.; Hu, S.; Wang, H.; Rao, Z.; Guo, Y.; et al. Structural Basis for Treating Tumor Necrosis Factor α (TNFα)-Associated Diseases with the Therapeutic Antibody Infliximab. J. Biol. Chem. 2013, 288, 13799–13807. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.; Schmidt, C.; George, A. Hyperalgesia in Experimental Neuropathy Is Dependent on the TNF Receptor 1. Exp. Neurol. 1998, 151, 138–142. [Google Scholar] [CrossRef]
- Charles, P.; Elliott, M.J.; Davis, D.; Potter, A.; Kalden, J.R.; Antoni, C.; Breedveld, F.C.; Smolen, J.S.; Eberl, G.; de Woody, K.; et al. Regulation of Cytokines, Cytokine Inhibitors, and Acute-Phase Proteins Following Anti-TNF-α Therapy in Rheumatoid Arthritis. J. Immunol. 1999, 163, 1521–1528. [Google Scholar] [CrossRef]
- Schulz, M.; Dotzlaw, H.; Neeck, G. Ankylosing Spondylitis and Rheumatoid Arthritis: Serum Levels of TNF-α and Its Soluble Receptors during the Course of Therapy with Etanercept and Infliximab. Biomed. Res. Int. 2014, 2014, 675108. [Google Scholar] [CrossRef]
- Nowlan, M.L.; Drewe, E.; Bulsara, H.; Esposito, N.; Robins, R.A.; Tighe, P.J.; Powell, R.J.; Todd, I. Systemic Cytokine Levels and the Effects of Etanercept in TNF Receptor-Associated Periodic Syndrome (TRAPS) Involving a C33Y Mutation in TNFRSF1A. Rheumatology 2006, 45, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Koltzenburg, M.; Bennett, D.L.; Shelton, D.L.; McMahon, S.B. Neutralization of Endogenous NGF Prevents the Sensitization of Nociceptors Supplying Inflamed Skin. Eur. J. Neurosci. 1999, 11, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Takei, Y.; Laskey, R. Tumor Necrosis Factor Alpha Regulates Responses to Nerve Growth Factor, Promoting Neural Cell Survival but Suppressing Differentiation of Neuroblastoma Cells. Mol. Biol. Cell 2008, 19, 855–864. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.S.; Mizokami, S.S.; Fanti, J.R.; Costa, I.N.; Bordignon, J.; Felipe, I.; Pavanelli, W.R.; Verri, W.A.; Conchon Costa, I. Glucantime Reduces Mechanical Hyperalgesia in Cutaneous Leishmaniasis and Complete Freund’s Adjuvant Models of Chronic Inflammatory Pain. J. Pharm. Pharmacol. 2018, 70, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Ozer, E.K.; Goktas, M.T.; Kilinc, I.; Toker, A.; Bariskaner, H.; Ugurluoglu, C.; Iskit, A.B. Infliximab Alleviates the Mortality, Mesenteric Hypoperfusion, Aortic Dysfunction, and Multiple Organ Damage in Septic Rats. Can. J. Physiol. Pharmacol. 2017, 95, 866–872. [Google Scholar] [CrossRef]
- Barker, J.S.; Wu, Z.; Hunter, D.D.; Dey, R.D. Ozone Exposure Initiates a Sequential Signaling Cascade in Airways Involving Interleukin-1beta Release, Nerve Growth Factor Secretion, and Substance P Upregulation. J. Toxicol. Environ. Health A 2015, 78, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Azid, N.A.; Boer, J.C.; Lim, J.; Chen, X.; Plebanski, M.; Mohamud, R. The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Front. Immunol. 2018, 9, 2572. [Google Scholar] [CrossRef] [PubMed]
- Schaible, H.G. Nociceptive Neurons Detect Cytokines in Arthritis. Arthritis Res. Ther. 2014, 16, 470. [Google Scholar] [CrossRef] [PubMed]
- Nashleanas, M.; Scott, P. Activated T Cells Induce Macrophages to Produce NO and Control Leishmania Major in the Absence of Tumor Necrosis Factor Receptor P55. Infect. Immun. 2000, 68, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Charmoy, M.; Hurrell, B.P.; Romano, A.; Lee, S.H.; Ribeiro-Gomes, F.; Riteau, N.; Mayer-Barber, K.; Tacchini-Cottier, F.; Sacks, D.L. The Nlrp3 Inflammasome, IL-1β, and Neutrophil Recruitment Are Required for Susceptibility to a Nonhealing Strain of Leishmania Major in C57BL/6 Mice. Eur. J. Immunol. 2016, 46, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Matos, I.; Mizenina, O.; Lubkin, A.; Steinman, R.M.; Idoyaga, J. Targeting Leishmania Major Antigens to Dendritic Cells In Vivo Induces Protective Immunity. PLoS ONE 2013, 8, e67453. [Google Scholar] [CrossRef]
- Voronov, E.; Dotan, S.; Gayvoronsky, L.; White, R.M.; Cohen, I.; Krelin, Y.; Benchetrit, F.; Elkabets, M.; Huszar, M.; El-On, J.; et al. IL-1-Induced Inflammation Promotes Development of Leishmaniasis in Susceptible BALB/c Mice. Int. Immunol. 2010, 22, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lombana, C.; Gimblet, C.; Bacellar, O.; Oliveira, W.W.; Passos, S.; Carvalho, L.P.; Goldschmidt, M.; Carvalho, E.M.; Scott, P. IL-17 Mediates Immunopathology in the Absence of IL-10 Following Leishmania Major Infection. PLoS Pathog. 2013, 9, e1003243. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Rodriguez, E.V.; Napolitani, G.; Lanzavecchia, A.; Sallusto, F. Interleukins 1beta and 6 but Not Transforming Growth Factor-Beta Are Essential for the Differentiation of Interleukin 17-Producing Human T Helper Cells. Nat. Immunol. 2007, 8, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Lopez Kostka, S.; Dinges, S.; Griewank, K.; Iwakura, Y.; Udey, M.C.; von Stebut, E. IL-17 Promotes Progression of Cutaneous Leishmaniasis in Susceptible Mice. J. Immunol. 2009, 182, 3039–3046. [Google Scholar] [CrossRef] [PubMed]
- Anantharajah, A.; Faure, E.; Buyck, J.M.; Sundin, C.; Lindmark, T.; Mecsas, J.; Yahr, T.L.; Tulkens, P.M.; Mingeot-Leclercq, M.P.; Guery, B.; et al. Inhibition of the Injectisome and Flagellar Type III Secretion Systems by INP1855 Impairs Pseudomonas Aeruginosa Pathogenicity and Inflammasome Activation. J. Infect. Dis. 2016, 214, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Isailovic, N.; Daigo, K.; Mantovani, A.; Selmi, C. Interleukin-17 and Innate Immunity in Infections and Chronic Inflammation. J. Autoimmun. 2015, 60, 1–11. [Google Scholar] [CrossRef]
- Jungnickel, C.; Schmidt, L.H.; Bittigkoffer, L.; Wolf, L.; Wolf, A.; Ritzmann, F.; Kamyschnikow, A.; Herr, C.; Menger, M.D.; Spieker, T.; et al. IL-17C Mediates the Recruitment of Tumor-Associated Neutrophils and Lung Tumor Growth. Oncogene 2017, 36, 4182–4190. [Google Scholar] [CrossRef]
- Oualha, R.; Barhoumi, M.; Marzouki, S.; Harigua-Souiai, E.; Ahmed, M.B.; Guizani, I. Infection of Human Neutrophils with Leishmania Infantum or Leishmania Major Strains Triggers Activation and Differential Cytokines Release. Front. Cell. Infect. Microbiol. 2019, 9, 153. [Google Scholar] [CrossRef] [PubMed]
Group Number | Parasitic Injections (s.c. 4 × 106 Parasites) | Antibody Treatment (i.p.) |
---|---|---|
1 | None | None |
2 | None | 5 mg/kg |
3 | None | 10 mg/kg |
4 | None | 20 mg/kg |
5 | L. major | None |
6 | L. major | 5 mg/kg |
7 | L. major | 10 mg/kg |
8 | L. major | 20 mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaatar, M.T.; Salman, S.; Hoblos, R.; Roufayel, R.; Fajloun, Z.; Sabatier, J.-M.; Karam, M. Blocking TNF-α Reduces Leishmania major-Induced Hyperalgesia and Changes the Cytokine Profile in the Paw Skin of BALB/c Mice with a Potential Positive Effect on Parasite Clearance. Microbiol. Res. 2025, 16, 8. https://doi.org/10.3390/microbiolres16010008
Zaatar MT, Salman S, Hoblos R, Roufayel R, Fajloun Z, Sabatier J-M, Karam M. Blocking TNF-α Reduces Leishmania major-Induced Hyperalgesia and Changes the Cytokine Profile in the Paw Skin of BALB/c Mice with a Potential Positive Effect on Parasite Clearance. Microbiology Research. 2025; 16(1):8. https://doi.org/10.3390/microbiolres16010008
Chicago/Turabian StyleZaatar, Muriel Tahtouh, Sara Salman, Reem Hoblos, Rabih Roufayel, Ziad Fajloun, Jean-Marc Sabatier, and Marc Karam. 2025. "Blocking TNF-α Reduces Leishmania major-Induced Hyperalgesia and Changes the Cytokine Profile in the Paw Skin of BALB/c Mice with a Potential Positive Effect on Parasite Clearance" Microbiology Research 16, no. 1: 8. https://doi.org/10.3390/microbiolres16010008
APA StyleZaatar, M. T., Salman, S., Hoblos, R., Roufayel, R., Fajloun, Z., Sabatier, J.-M., & Karam, M. (2025). Blocking TNF-α Reduces Leishmania major-Induced Hyperalgesia and Changes the Cytokine Profile in the Paw Skin of BALB/c Mice with a Potential Positive Effect on Parasite Clearance. Microbiology Research, 16(1), 8. https://doi.org/10.3390/microbiolres16010008