Enterobacter soli Strain AF-22b-4245: Study of the Genome and the Effect on Wheat Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification
2.2. Quantitative Assessment of Potential Properties That Promote Plant Growth
2.2.1. Solubilization of Insoluble Phosphate
2.2.2. Production of Ammonia
2.2.3. Production of Indole-3-Acetic Acid
2.2.4. Siderophore Production
2.2.5. Production of Proline
2.2.6. Production of Salicylic Acid
2.2.7. Production of Gibberellins
2.2.8. Biofilm Formation
2.2.9. Salt and PEG Tolerance
2.2.10. Tolerance to Heavy Metals
2.3. Genome-Wide Sequencing
2.3.1. WGS Methodology
2.3.2. Assembly De Novo
2.3.3. Quality Control and Species Verification
2.3.4. Genome Annotation
2.4. Design of Experiments in Pots
2.4.1. Measurements of Plant Parameters
2.4.2. Gene Selection
2.4.3. Measurement of Gene Expression in Wheat
2.4.4. Statistical Analysis
3. Results
3.1. Screening on Titer Plates
3.2. Whole-Genome Sequencing
3.2.1. Identification of the Species
3.2.2. Genome Annotation
3.3. Experiments on Plants
3.3.1. Absence of Stress Factors
3.3.2. Growing Wheat Under Stress
3.3.3. Growing Wheat in Conditions of Lack of Nutrients
4. Discussion
4.1. The PGPB Properties and Ability of the Strain to Grow Under Stressful Conditions
4.2. Analysis of Genes Involved in the Development of Traits That Contribute to PGPB Properties
4.2.1. Biofilm Formation
4.2.2. Phytohormone Production
4.2.3. Nitrogen Fixation
4.3. The Influence E. soli AF-22b-4245 Strain on Wheat Growth and Gene Expression
4.3.1. Effect on Plant Growth
4.3.2. Gene Expression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Xia, G. The Landscape of Molecular Mechanisms for Salt Tolerance in Wheat. Crop. J. 2018, 6, 42–47. [Google Scholar] [CrossRef]
- Goswami, M.; Deka, S. Plant Growth-Promoting Rhizobacteria—Alleviators of Abiotic Stresses in Soil: A Review. Pedosphere 2020, 30, 40–61. [Google Scholar] [CrossRef]
- Chieb, M.; Gachomo, E.W. The Role of Plant Growth Promoting Rhizobacteria in Plant Drought Stress Responses. BMC Plant Biol. 2023, 23, 407. [Google Scholar] [CrossRef] [PubMed]
- Khumairah, F.H.; Setiawati, M.R.; Fitriatin, B.N.; Simarmata, T.; Alfaraj, S.; Ansari, M.J.; EI Enshasy, H.A.; Sayyed, R.Z.; Najafi, S. Halotolerant Plant Growth-Promoting Rhizobacteria Isolated from Saline Soil Improve Nitrogen Fixation and Alleviate Salt Stress in Rice Plants. Front. Microbiol. 2022, 13, 905210. [Google Scholar] [CrossRef] [PubMed]
- Jha, C.K.; Aeron, A.; Patel, B.V.; Maheshwari, D.K.; Saraf, M. Enterobacter: Role in Plant Growth Promotion. In Bacteria in Agrobiology: Plant Growth Responses; Springer: Berlin/Heidelberg, Germany, 2011; pp. 159–182. [Google Scholar]
- Zhang, G.; Sun, Y.; Sheng, H.; Li, H.; Liu, X. Effects of the Inoculations Using Bacteria Producing ACC Deaminase on Ethylene Metabolism and Growth of Wheat Grown under Different Soil Water Contents. Plant Physiol. Biochem. 2018, 125, 178–184. [Google Scholar] [CrossRef]
- Li, Y.; Gao, M.; Zhang, W.; Liu, Y.; Wang, S.; Zhang, H.; Li, X.; Yu, S.; Lu, L. Halotolerant Enterobacter Asburiae A103 Isolated from the Halophyte Salix Linearistipularis: Genomic Analysis and Growth-Promoting Effects on Medicago Sativa under Alkali Stress. Microbiol. Res. 2024, 289, 127909. [Google Scholar] [CrossRef] [PubMed]
- Manter, D.K.; Hunter, W.J.; Vivanco, J.M. Enterobacter soli sp. nov.: A Lignin-Degrading γ-Proteobacteria Isolated from Soil. Curr. Microbiol. 2011, 62, 1044–1049. [Google Scholar] [CrossRef]
- Shahzad, R.; Waqas, M.; Khan, A.L.; Al-Hosni, K.; Kang, S.-M.; Seo, C.-W.; Lee, I.-J. Indoleacetic Acid Production and Plant Growth Promoting Potential of Bacterial Endophytes Isolated from Rice (Oryza sativa L.) Seeds. Acta Biol. Hung. 2017, 68, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Kailasam, S.; Arumugam, S.; Balaji, K.; Vinodh Kanth, S. Adsorption of Chromium by Exopolysaccharides Extracted from Lignolytic Phosphate Solubilizing Bacteria. Int. J. Biol. Macromol. 2022, 206, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Fritsch, E.F.; Miniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Glickmann, E.; Dessaux, Y. A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Bultreys, A.; Gheysen, I.; Maraite, H.; de Hoffmann, E. Characterization of Fluorescent and Nonfluorescen Peptide Siderophores Produced by Pseudomonas syringae Strains and Their Potential Use in Strain Identification. Appl. Environ. Microbiol. 2001, 67, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Shabnam, N.; Tripathi, I.; Sharmila, P.; Pardha-Saradhi, P. A Rapid, Ideal, and Eco-Friendlier Protocol for Quantifying Proline. Protoplasma 2016, 253, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, G.; Höfte, M. Salicylic Acid Produced by the Rhizobacterium Pseudomonas aeruginosa 7NSK2 Induces Resistance to Leaf Infection by Botrytis cinerea on Bean. Phytopathology 1997, 87, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Abou-Aly, H.E.; Youssef, A.M.; El-Meihy, R.M.; Tawfik, T.A.; El-Akshar, E.A. Evaluation of Heavy Metals Tolerant Bacterial Strains as Antioxidant Agents and Plant Growth Promoters. Biocatal. Agric. Biotechnol. 2019, 19, 101110. [Google Scholar] [CrossRef]
- Zaytsev, E.M.; Britsina, M.V.; Ozeretskovskaya, M.N.; Mertsalova, N.U.; Bazhanova, I.G. Sensitivity of Biofilms of Vaccine and Freshly Isolated Bordetella pertussis Strains to Antibiotics. J. Microbiol. Epidemiol. Immunobiol. 2021, 97, 529–534. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ouk Kim, Y.; Park, S.-C.; Chun, J. OrthoANI: An Improved Algorithm and Software for Calculating Average Nucleotide Identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Astashyn, A.; Tvedte, E.S.; Sweeney, D.; Sapojnikov, V.; Bouk, N.; Joukov, V.; Mozes, E.; Strope, P.K.; Sylla, P.M.; Wagner, L.; et al. Rapid and Sensitive Detection of Genome Contamination at Scale with FCS-GX. Genome Biol. 2024, 25, 60. [Google Scholar] [CrossRef]
- Besemer, J. Heuristic Approach to Deriving Models for Gene Finding. Nucleic Acids Res. 1999, 27, 3911–3920. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef] [PubMed]
- Pompelli, M.F.; Franca, S.C.; Tigre, R.C.; de Oliveira, M.T.; Sacilot, M.; Pereira, E.C. Spectrophotometric Determinations of Chloroplastidic Pigments in Acetone, Ethanol and Dimethylsulphoxide. Rev. Bras. Biol. 2013, 11, 52–58. [Google Scholar]
- Sunkar, R. (Ed.) Plant Stress Tolerance; Humana Press: Totowa, NJ, USA, 2010; Volume 639, ISBN 978-1-60761-701-3. [Google Scholar]
- Barnawal, D.; Bharti, N.; Pandey, S.S.; Pandey, A.; Chanotiya, C.S.; Kalra, A. Plant Growth-promoting Rhizobacteria Enhance Wheat Salt and Drought Stress Tolerance by Altering Endogenous Phytohormone Levels and TaCTR1/TaDREB2 Expression. Physiol. Plant 2017, 161, 502–514. [Google Scholar] [CrossRef]
- Rushton, D.L.; Tripathi, P.; Rabara, R.C.; Lin, J.; Ringler, P.; Boken, A.K.; Langum, T.J.; Smidt, L.; Boomsma, D.D.; Emme, N.J.; et al. WRKY Transcription Factors: Key Components in Abscisic Acid Signalling. Plant Biotechnol. J. 2012, 10, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Feng, W.J.; Peng, H.R.; Ni, Z.F.; Sun, Q.X. TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana. Cereal Res. Commun. 2014, 42, 47–57. [Google Scholar] [CrossRef]
- Wu, X.; Fan, Y.; Wang, R.; Zhao, Q.; Ali, Q.; Wu, H.; Gu, Q.; Borriss, R.; Xie, Y.; Gao, X. Bacillus Halotolerans KKD1 Induces Physiological, Metabolic and Molecular Reprogramming in Wheat under Saline Condition. Front. Plant Sci. 2022, 13, 978066. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, Y.; Liu, D.; Wang, C.; Zhao, Z.; Cui, X.; Liu, Y.; Yang, Y. MAPK-Mediated Auxin Signal Transduction Pathways Regulate the Malic Acid Secretion under Aluminum Stress in Wheat (Triticum aestivum L.). Sci. Rep. 2017, 7, 1620. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Ali, Q.; Jiang, Q.; Wang, R.; Wang, Z.; Mu, G.; Khan, S.A.; Khan, A.R.; Manghwar, H.; Wu, H.; et al. Salt Tolerant Bacillus Strains Improve Plant Growth Traits and Regulation of Phytohormones in Wheat under Salinity Stress. Plants 2022, 11, 2769. [Google Scholar] [CrossRef]
- Bharti, N.; Pandey, S.S.; Barnawal, D.; Patel, V.K.; Kalra, A. Plant Growth Promoting Rhizobacteria Dietzia Natronolimnaea Modulates the Expression of Stress Responsive Genes Providing Protection of Wheat from Salinity Stress. Sci. Rep. 2016, 6, 34768. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, B.; Szala, K.; Przyborowski, M.; Bajguz, A.; Chmur, M.; Gasparis, S.; Orczyk, W.; Nadolska-Orczyk, A. TaCKX2.2 Genes Coordinate Expression of Other TaCKX Family Members, Regulate Phytohormone Content and Yield-Related Traits of Wheat. Int. J. Mol. Sci. 2021, 22, 4142. [Google Scholar] [CrossRef] [PubMed]
- Veronico, P.; Giannino, D.; Melillo, M.T.; Leone, A.; Reyes, A.; Kennedy, M.W.; Bleve-Zacheo, T. A Novel Lipoxygenase in Pea Roots. Its Function in Wounding and Biotic Stress. Plant Physiol. 2006, 141, 1045–1055. [Google Scholar] [CrossRef]
- Pfaffl, M.W. Relative Expression Software Tool (REST(C)) for Group-Wise Comparison and Statistical Analysis of Relative Expression Results in Real-Time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef]
- Jasniewski, A.J.; Lee, C.C.; Ribbe, M.W.; Hu, Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem. Rev. 2020, 120, 5107–5157. [Google Scholar] [CrossRef] [PubMed]
- Belitsky, B.R.; Sonenshein, A.L. Role and Regulation of Bacillus subtilis Glutamate Dehydrogenase Genes. J. Bacteriol. 1998, 180, 6298–6305. [Google Scholar] [CrossRef]
- De Serrano, L.O.; Camper, A.K.; Richards, A.M. An Overview of Siderophores for Iron Acquisition in Microorganisms Living in the Extreme. BioMetals 2016, 29, 551–571. [Google Scholar] [CrossRef]
- Mishra, A.; Baek, K.-H. Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules 2021, 11, 705. [Google Scholar] [CrossRef]
- Gehring, A.M.; Mori, I.; Walsh, C.T. Reconstitution and Characterization of the Escherichia coli Enterobactin Synthetase from EntB, EntE, and EntF. Biochemistry 1998, 37, 2648–2659. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.R.; Earhart, C.F. Escherichia Coli K-12 Envelope Proteins Specifically Required for Ferrienterobactin Uptake. J. Bacteriol. 1986, 166, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Zawadzka, A.M.; Kim, Y.; Maltseva, N.; Nichiporuk, R.; Fan, Y.; Joachimiak, A.; Raymond, K.N. Characterization of a Bacillus subtilis Transporter for Petrobactin, an Anthrax Stealth Siderophore. Proc. Natl. Acad. Sci. USA 2009, 106, 21854–21859. [Google Scholar] [CrossRef]
- Staudenmaier, H.; Van Hove, B.; Yaraghi, Z.; Braun, V. Nucleotide Sequences of the FecBCDE Genes and Locations of the Proteins Suggest a Periplasmic-Binding-Protein-Dependent Transport Mechanism for Iron(III) Dicitrate in Escherichia coli. J. Bacteriol. 1989, 171, 2626–2633. [Google Scholar] [CrossRef] [PubMed]
- Moeck, G.S.; Coulton, J.W.; Postle, K. Cell Envelope Signaling in Escherichia Coli. J. Biol. Chem. 1997, 272, 28391–28397. [Google Scholar] [CrossRef] [PubMed]
- Hantke, K.; Braun, V. Membrane Receptor Dependent Iron Transport in Escherichia coli. FEBS Lett. 1975, 49, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Pick, U. The Respiratory Inhibitor Antimycin A Specifically Binds Fe(III) Ions and Mediates Utilization of Iron by the Halotolerant Alga Dunaliella salina (Chlorophyta). Biometals 2004, 17, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Young, I.G.; Batterham, T.J.; Gibson, F. The Isolation, Identification and Properties of Isochorismic Acid. An Intermediate in the Biosynthesis of 2,3-Dihydroxybenzoic Acid. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 1969, 177, 389–400. [Google Scholar] [CrossRef]
- Zhang, P.; Jin, T.; Kumar Sahu, S.; Xu, J.; Shi, Q.; Liu, H.; Wang, Y. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules 2019, 24, 1411. [Google Scholar] [CrossRef]
- Fierro-Coronado, R.A.; Quiroz-Figueroa, F.R.; García-Pérez, L.M.; Ramírez-Chávez, E.; Molina-Torres, J.; Maldonado-Mendoza, I.E. IAA-Producing Rhizobacteria from Chickpea (Cicer arietinum L.) Induce Changes in Root Architecture and Increase Root Biomass. Can. J. Microbiol. 2014, 60, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Patten, C.L.; Blakney, A.J.C.; Coulson, T.J.D. Activity, Distribution and Function of Indole-3-Acetic Acid Biosynthetic Pathways in Bacteria. Crit. Rev. Microbiol. 2013, 39, 395–415. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Kumar, C.; Archana, G.; Kumar, G.N. Artificial Citrate Operon and Vitreoscilla Hemoglobin Gene Enhanced Mineral Phosphate Solubilizing Ability of Enterobacter Hormaechei DHRSS. Appl. Microbiol. Biotechnol. 2014, 98, 8327–8336. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Shahab, S. Phosphate Solubilization: Their Mechanism Genetics And Application. Internet J. Microbiol. 2009, 9. [Google Scholar]
- Prabhu, N.; Borkar, S.; Garg, S. Phosphate Solubilization by Microorganisms. In Advances in Biological Science Research; Elsevier: Amsterdam, The Netherlands, 2019; pp. 161–176. [Google Scholar]
- Haferburg, G.; Kothe, E. Microbes and Metals: Interactions in the Environment. J. Basic. Microbiol. 2007, 47, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, P.F.; Wennige, S.; Berneburg, M.; Maisch, T. Susceptibility of SodA- and SodB-Deficient Escherichia Coli Mutant towards Antimicrobial Photodynamic Inactivation via the Type l-Mechanism of Action. Photochem. Photobiol. Sci. 2018, 17, 352–362. [Google Scholar] [CrossRef]
- Dietrich, L.E.P.; Teal, T.K.; Price-Whelan, A.; Newman, D.K. Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria. Science 2008, 321, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Bölker, M.; Kahmann, R. The Escherichia Coli Regulatory Protein OxyR Discriminates between Methylated and Unmethylated States of the Phage Mu Mom Promoter. EMBO J. 1989, 8, 2403–2410. [Google Scholar] [CrossRef] [PubMed]
- Osmolovskaya, N.; Shumilina, J.; Kim, A.; Didio, A.; Grishina, T.; Bilova, T.; Keltsieva, O.A.; Zhukov, V.; Tikhonovich, I.; Tarakhovskaya, E.; et al. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. Int. J. Mol. Sci. 2018, 19, 4089. [Google Scholar] [CrossRef] [PubMed]
- El Moukhtari, A.; Cabassa-Hourton, C.; Farissi, M.; Savouré, A. How Does Proline Treatment Promote Salt Stress. Tolerance During Crop Plant Development? Front. Plant Sci. 2020, 11, 1127. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Ebrahimi-Zarandi, M.; Tamanadar, E.; Moradi Pour, M.; Thakur, V.K. Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It. Sustainability 2021, 13, 12758. [Google Scholar] [CrossRef]
- Qurashi, A.W.; Sabri, A.N. Bacterial Exopolysaccharide and Biofilm Formation Stimulate Chickpea Growth and Soil Aggregation under Salt Stress. Braz. J. Microbiol. 2012, 43, 1183–1191. [Google Scholar] [CrossRef]
- Li, P.-S.; Kong, W.-L.; Wu, X.-Q. Salt Tolerance Mechanism of the Rhizosphere Bacterium JZ-GX1 and Its Effects on Tomato Seed Germination and Seedling Growth. Front. Microbiol. 2021, 12, 657238. [Google Scholar] [CrossRef]
- Kang, S.-M.; Radhakrishnan, R.; Lee, S.-M.; Park, Y.-G.; Kim, A.-Y.; Seo, C.-W.; Lee, I.-J. Enterobacter Sp. SE992-Induced Regulation of Amino Acids, Sugars, and Hormones in Cucumber Plants Improves Salt Tolerance. Acta Physiol. Plant 2015, 37, 149. [Google Scholar] [CrossRef]
- Ahmed, B.; Shahid, M.; Syed, A.; Rajput, V.D.; Elgorban, A.M.; Minkina, T.; Bahkali, A.H.; Lee, J. Drought Tolerant Enterobacter sp./Leclercia adecarboxylata Secretes Indole-3-Acetic Acid and Other Biomolecules and Enhances the Biological Attributes of Vigna radiata (L.) R. Wilczek in Water Deficit Conditions. Biology 2021, 10, 1149. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Mohanty, S.; Rath, C.C. Characterization of Endophytic Bacteria Enterobacter Cloacae MG00145 Isolated from Ocimum Sanctum with Indole Acetic Acid (IAA) Production and Plant Growth Promoting Capabilities against Selected Crops. S. Afr. J. Bot. 2020, 134, 17–26. [Google Scholar] [CrossRef]
- Mohamed, B.F.F.; Sallam, N.M.A.; Alamri, S.A.M.; Abo-Elyousr, K.A.M.; Mostafa, Y.S.; Hashem, M. Approving the Biocontrol Method of Potato Wilt Caused by Ralstonia solanacearum (Smith) Using Enterobacter Cloacae PS14 and Trichoderma Asperellum T34. Egypt. J. Biol. Pest. Control 2020, 30, 61. [Google Scholar] [CrossRef]
- Baldani, J.I.; Reis, V.M.; Videira, S.S.; Boddey, L.H.; Baldani, V.L.D. The Art of Isolating Nitrogen-Fixing Bacteria from Non-Leguminous Plants Using N-Free Semi-Solid Media: A Practical Guide for Microbiologists. Plant Soil 2014, 384, 413–431. [Google Scholar] [CrossRef]
- Dilworth, M.J. Acetylene Reduction by Nitrogen-Fixing Preparations from Clostridium pasteurianum. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 1966, 127, 285–294. [Google Scholar] [CrossRef]
- Poly, F.; Monrozier, L.J.; Bally, R. Improvement in the RFLP Procedure for Studying the Diversity of NifH Genes in Communities of Nitrogen Fixers in Soil. Res. Microbiol. 2001, 152, 95–103. [Google Scholar] [CrossRef]
- Dos Santos, P.C.; Fang, Z.; Mason, S.W.; Setubal, J.C.; Dixon, R. Distribution of Nitrogen Fixation and Nitrogenase-like Sequences amongst Microbial Genomes. BMC Genom. 2012, 13, 162. [Google Scholar] [CrossRef]
- Leveau, J.H.J.; Lindow, S.E. Utilization of the Plant Hormone Indole-3-Acetic Acid for Growth by Pseudomonas Putida Strain 1290. Appl. Environ. Microbiol. 2005, 71, 2365–2371. [Google Scholar] [CrossRef]
- Frommel, M.I.; Nowak, J.; Lazarovits, G. Growth Enhancement and Developmental Modifications of in Vitro Grown Potato (Solanum tuberosum spp. tuberosum) as Affected by a Nonfluorescent Pseudomonas sp. Plant Physiol. 1991, 96, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.-Y.; Lin, L.-C.; Lin, T.-K.; Chen, H.-P.; Yang, H.-H.; Peng, K.-C.; Lin, G.-H. Transcriptional Regulation of the Iac Locus from Acinetobacter Baumannii by the Phytohormone Indole-3-Acetic Acid. Antonie Van Leeuwenhoek 2015, 107, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Greenhut, I.V.; Slezak, B.L.; Leveau, J.H.J. Iac Gene Expression in the Indole-3-Acetic Acid-Degrading Soil Bacterium Enterobacter soli LF7. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed]
- Nevo, E.; Chen, G. Drought and Salt Tolerances in Wild Relatives for Wheat and Barley Improvement. Plant Cell Environ. 2010, 33, 670–685. [Google Scholar] [CrossRef]
- Karpenko, V.; Slobodyanyk, G.; Ulianych, O.; Schetyna, S.; Mostoviak, I.; Voitsekhovskyi, V. Combined Application of Microbial Preparation, Mineral Fertilizer and Bioadhesive in Production of Leek. Agron. Res. 2020, 18, 148–162. [Google Scholar]
- Mącik, M.; Gryta, A.; Sas-Paszt, L.; Frąc, M. The Status of Soil Microbiome as Affected by the Application of Phosphorus Biofertilizer: Fertilizer Enriched with Beneficial Bacterial Strains. Int. J. Mol. Sci. 2020, 21, 8003. [Google Scholar] [CrossRef] [PubMed]
- Shamloo-Dashtpagerdi, R.; Tanin, M.J.; Aliakbari, M.; Saini, D.K. Unveiling the Role of the ERD15 Gene in Wheat’s Tolerance to Combined Drought and Salinity Stress: A Meta-analysis of QTL and RNA-Seq Data. Physiol. Plant 2024, 176, e14570. [Google Scholar] [CrossRef]
Gene | Forward Primer Sequence | Reverse Primer Sequence | Ref. |
---|---|---|---|
DREB2 | 5′-CGGAGATGCAGCTTCTTGATT-3′ | 5′-GATCTCGAGCGACGGGTACTT-3′ | [23] |
CTR1 | 5′-GCTGCTCTTGTTGAATCCTGTTG-3′ | 5′-ATCCACAATGCTTGAAAACGAA-3′ | [23] |
WKY26 | 5′-TCTTTGGCTTCTCCTTTCACG-3′ | 5′-TGTTGCTCACTTCTACCACTTG-3′ | [26] |
TaWKY71 | 5′-AAACCCGTCATCTCCAAGC-3′ | 5′-TTGTCCTTGGTCACCTTCTG-3′ | [26] |
POD | 5′-CAGCGACCTGCCAGGCTTTA-3′ | 5′-GTTGGCCCGGAGAGATGTGG-3′ | [29] |
CAT1 | 5′-CCATGAGATCAAGGCCATCT-3′ | 5′-ATCTTACATGCTCGGCTTGG-3′ | [29] |
LPX | 5′-GAGGTTTTCAAGCGGTTCAG-3′ | 5′-TTGTGGTCGGAGGTGTTG-3′ | [31] |
ARF2 | 5′-TTAAGGTGCGTTGGGATGAG-3′ | 5′-TTGGCACGAGAAAGAGGAAG-3′ | [31] |
TaCKX10 | 5′-GCCATTTCAGTTTCCACGAC-3′ | 5′-TCAAGAACACATGCCTCACG-3′ | [31] |
MAPK | 5′-CCTACTGGGTCGTTTACTTGC-3′ | 5′-CGAAATTGGATGCCTTGATGG-3′ | [31] |
ABARE | 5′-TTACACCGTGGAGCTTGAAG-3′ | 5′-TTCACGTTCTCCTTGGACTG-3′ | [33] |
Actin | 5′-TGCCCATTTACGAAGGATACG-3′ | 5′-GTGTTGGGTTCACAATGTCG-3′ | [31] |
Stress Tolerance | ||||
---|---|---|---|---|
1% | 5% | 10% | 15% | |
PEG | 100.00 ± 21.93 | 88.70 ± 2.55 | 58.82 ± 0.95 | 51.94 ± 3.88 |
NaCl | 99.99 ± 27.51 | 44.99 ± 1.99 | 0.40 ± 0.05 | 0.0 ± 0.03 |
Metals | Cu | Pb | Zn | Cd |
51.49 ± 5.48 | 62.33 ± 0.19 | 19.25 ± 1.51 | 0.74 ± 0.10 | |
Production of phytohormones, proline, siderophores, ammonium, biofilms and soluble forms of phosphates | ||||
IAA, µg/mL | GA, µg/mL | SA, µg/mL | Prolin, µg/mL | Ammonia, µg/mL |
79.74 ± 17.54 | 2.42 ± 0.20 | 0.55 ± 0.40 | 45.61 ± 20.10 | 24.26 ± 13.01 |
Biofilm formation | Solubilization of phosphates, µg/ml | Siderophores, % | ||
0.12 ± 0.01 | 134.69 ± 14.8 | 31.31 ± 5.74 |
NCBI GenBank | Enterobacter soli Strain AF-22b-4245 |
---|---|
Species | Enterobacter soli |
BioProject | PRJNA1146973 |
BioSample | SAMN43174172 |
Accession | JBHGCI000000000 |
Total base | 4,973,019 |
GC (%) | 53.6% |
Coverage, min | 70× |
Genes (total) | 4785 |
CDSs (total) | 4698 |
Genes (coding) | 4645 |
CDSs with protein | 4645 |
Genes (RNA) | 87 |
rRNAs | 1, 1, 2 (5S, 16S, 23S) |
complete rRNAs | 1, 1, 1 (5S, 16S, 23S) |
partial rRNAs | 1 (23S) |
tRNAs | 75 |
ncRNAs | 8 |
Pseudo genes | 53 |
CDS (without protein) | 53 |
Pseudo Genes (ambiguous residues) | 0 of 53 |
Pseudo Genes (frameshifted) | 14 of 53 |
Pseudo Genes (incomplete) | 35 of 53 |
Pseudo Genes (internal stop) | 11 of 53 |
Pseudo Genes (multiple problems) | 6 of 53 |
Pseudo Genes (ambiguous residues) | 0 of 53 |
Treatment | Bacteria Addition | Plant Height (cm) | Leaf Fresh Weight (g plant−1) | Root Fresh Weight (g plant−1) | Leaf Dry Weight (g plant−1) | Root Dry Weight (g plant−1) |
---|---|---|---|---|---|---|
CK | no | 25.63 ± 1.83 | 0.61 ± 0.13 | 0.61 ± 0.08 | 0.20 ± 0.04 | 0.29 ± 0.03 |
CK | root | 26.13 ± 1.05 | 0.75 ± 0.04 | 0.84 ± 0.06 * | 0.28 ± 0.05 | 0.26 ± 0.05 |
CK | leaf | 25.69 ± 0.94 | 0.69 ±0.06 | 0.65 ± 0.13 | 0.28 ± 0.03 | 0.24 ± 0.02 |
MF | no | 27.69 ± 1.13 | 0.75 ± 0.07 | 0.72 ± 0.05 | 0.28 ± 0.04 | 0.32 ± 0.06 |
MF | root | 31.60 ± 1.14 **** | 1.04 ± 0.09 **** | 0.88 ± 0.08 ** | 0.36 ± 0.04 *** | 0.41 ± 0.07 * |
MF | leaf | 30.06 ± 1.03 *** | 0.96 ± 0.14 *** | 0.88 ± 0.14 ** | 0.36 ± 0.04 *** | 0.38 ± 0.06 |
Stress | Treatment | Bacteria Addition | Plant Height (cm) | Leaf Fresh Weight (g plant−1) | Root Fresh Weight (g plant−1) | Leaf Dry Weight (g plant−1) | Root Dry Weight (g plant−1) | ChlA/ChlB | Proline |
---|---|---|---|---|---|---|---|---|---|
No | CK | No | 22.1 ± 3.13 | 0.49 ± 0.11 | 0.45 ± 0.10 | 0.14 ± 0.01 | 0.13 ± 0.03 | 1.75 ± 0.08 | 0.23 ± 0.07 |
No | CK | Yes | 25.1 ± 1.03 | 0.78 ± 0.09 | 0.70 ± 0.04 | 0.21 ± 0.01 | 0.21 ± 0.06 | 1.66 ± 0.03 | 0.33 ± 0.04 |
No | MF | No | 28.1 ± 1.63 * | 0.80 ± 0.12 | 0.69 ± 0.13 | 0.28 ± 0.10 | 0.20 ± 0.03 | 1.85 ± 0.07 | 0.33 ± 0.04 |
No | MF | Yes | 36.7 ± 1.57 **** | 1.11 ± 0.18 **** | 0.97 ± 0.16 *** | 0.49 ± 0.18 **** | 0.33 ± 0.13 ** | 1.26 ± 0.36 | 0.45 ± 0.08 |
NaCl | CK | No | 21.8 ± 1.91 | 0.38 ± 0.06 | 0.47 ± 0.08 | 0.14 ± 0.04 | 0.13 ± 0.02 | 1.96 ± 0.08 | 0.20 ± 0.06 |
NaCl | CK | Yes | 25.5 ± 1.81 | 0.69 ± 0.11 | 0.73 ± 0.09 | 0.18 ± 0.01 | 0.21 ± 0.01 | 1.50 ± 0.42 | 0.47 ± 0.18 * |
NaCl | MF | No | 26.2 ± 1.14 | 0.66 ± 0.13 | 0.53 ± 0.13 | 0.23 ± 0.03 | 0.17 ± 0.02 | 1.61 ± 0.05 | 0.36 ± 0.03 |
NaCl | MF | Yes | 28.5 ± 2.61 * | 0.79 ± 0.18 ** | 0.76 ± 0.10 | 0.36 ± 0.03 * | 0.17 ± 0.02 | 1.66 ± 0.24 | 0.37 ± 0.05 |
PEG | CK | No | 21.3 ± 0.46 | 0.31 ± 0.05 | 0.32 ± 0.08 | 0.11 ± 0.01 | 0.16 ± 0.03 | 1.93 ± 0.93 | 0.23 ± 0.06 |
PEG | CK | Yes | 24.8 ± 2.33 | 0.59 ± 0.08 * | 0.53 ± 0.09 * | 0.17 ± 0.03 | 0.29 ± 0.03 | 1.39 ± 0.40 | 0.42 ± 0.18 |
PEG | MF | No | 28.7 ± 2.70 ** | 0.64 ± 0.08 | 0.43 ± 0.15 | 0.22 ± 0.02 | 0.16 ± 0.02 * | 0.98 ± 0.18 ** | 0.58 ± 0.08 *** |
PEG | MF | Yes | 29.0 ± 0.90 ** | 0.74 ± 0.08 ** | 0.63 ± 0.13 | 0.25 ± 0.02 | 0.26 ± 0.03 | 1.21 ± 0.22 * | 0.48 ± 0.07 * |
Nutrition | Bacteria | Plant Height (cm) | Leaf Fresh Weight (g plant−1) | Root Fresh Weight (g plant−1) | Leaf Dry Weight (g plant−1) | Root Dry Weight (g plant−1) | Chl A/Chl B |
---|---|---|---|---|---|---|---|
Water | No | 18.9 ± 1.42 | 0.35 ± 0.02 | 0.65 ± 0.12 | 0.17 ± 0.03 | 0.18 ± 0.02 | 1.83 ± 0.12 |
Water | Yes | 18.8 ± 1.35 | 0.44 ± 0.03 | 0.88 ± 0.05 | 0.19 ± 0.05 | 0.24 ± 0.01 | 1.41 ± 0.30 |
def N | No | 23.6 ± 0.6 | 0.53 ± 0.09 | 0.72 ± 0.05 | 0.18 ± 0.04 | 0.23 ± 0.04 | 1.90 ±0.03 |
def N | Yes | 22.9 ± 1.4 | 0.55 ± 0.06 | 0.99 ± 0.13 | 0.20 ± 0.03 | 0.28 ± 0.04 | 1.96 ± 0.10 |
def Mg | No | 32.1 ± 5.1 | 1.17 ± 0.04 | 1.30 ± 0.22 | 0.38 ± 0.06 | 0.42 ± 0.09 | 1.84 ± 0.09 |
def Mg | Yes | 40.3 ± 0.3 | 1.48 ± 0.06 | 1.57 ± 0.12 | 0.58 ± 0.04 | 0.57 ± 0.07 | 1.68 ± 0.09 |
def P | No | 32.8 ± 2.2 | 1.13 ± 0.08 | 1.36 ± 0.09 | 0.38 ± 0.12 | 0.46 ± 0.06 | 1.91 ± 0.02 |
def P | Yes | 46.2 ± 2.8 | 1.59 ± 0.23 | 1.65 ± 0.26 | 0.56 ± 0.09 | 0.64 ± 0.06 | 1.75 ± 0.06 |
NPMg | No | 38.9 ± 2.9 | 2.05 ± 0.24 | 1.82 ± 0.21 | 0.69 ± 0.01 | 0.68 ± 0.08 | 1.29 ± 0.20 |
NPMg | Yes | 48.1 ± 8.2 | 2.47 ± 0.10 | 1.85 ± 0.35 | 1.04 ± 0.18 | 0.67 ± 0.06 | 1.07 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolova, E.A.; Mishukova, O.V.; Khlistun, I.V.; Tromenschleger, I.N.; Chumanova, E.V.; Voronina, E.N. Enterobacter soli Strain AF-22b-4245: Study of the Genome and the Effect on Wheat Growth. Microbiol. Res. 2025, 16, 34. https://doi.org/10.3390/microbiolres16020034
Sokolova EA, Mishukova OV, Khlistun IV, Tromenschleger IN, Chumanova EV, Voronina EN. Enterobacter soli Strain AF-22b-4245: Study of the Genome and the Effect on Wheat Growth. Microbiology Research. 2025; 16(2):34. https://doi.org/10.3390/microbiolres16020034
Chicago/Turabian StyleSokolova, Ekaterina Alexeevna, Olga Viktorovna Mishukova, Inna Viktorovna Khlistun, Irina Nikolaevna Tromenschleger, Evgeniya Vladimirovna Chumanova, and Elena Nikolaevna Voronina. 2025. "Enterobacter soli Strain AF-22b-4245: Study of the Genome and the Effect on Wheat Growth" Microbiology Research 16, no. 2: 34. https://doi.org/10.3390/microbiolres16020034
APA StyleSokolova, E. A., Mishukova, O. V., Khlistun, I. V., Tromenschleger, I. N., Chumanova, E. V., & Voronina, E. N. (2025). Enterobacter soli Strain AF-22b-4245: Study of the Genome and the Effect on Wheat Growth. Microbiology Research, 16(2), 34. https://doi.org/10.3390/microbiolres16020034