Effect of Carotenoid Composition on Stability and Light-Induced Oxidative Damage of the LH2 Complexes Isolated from Ectothiorhodospira haloalkaliphila
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation, Purification, and Characterization of LH2-Containing Preparations
2.2. Registration of Organic Hydroperoxides Photoproduced in LH2 Preparations
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, X.; Ritz, T.; Damjanović, A.; Autenrieth, F.; Schulten, K. Photosynthetic apparatus of purple bacteria. Q. Rev. Biophys. 2002, 35, 1–62. [Google Scholar] [CrossRef]
- Cogdell, R.J.; Gall, A.; Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Q. Rev. Biophys. 2006, 39, 227–324. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.C.; Martin, D.S.; Liu, L.-N.; Canniffe, D.P. Composition, organisation and function of purple photosynthetic machinery. In Microbial Photosynthesis; Springer: Singapore, 2020; pp. 73–114. [Google Scholar]
- Thornber, J.P.; Sokoloff, M.K. Photochemical reactions of purple bacteria as revealed by studies of three spectrally different carotenobacteriochlorophyll-protein complexes isolated from Chromatium, strain D. Biochemistry 1970, 9, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Sener, M.; Strumpfer, J.; Singharoy, A.; Hunter, C.N.; Schulten, K. Overall energy conversion efficiency of a photosynthetic vesicle. Elife 2016, 5, e09541. [Google Scholar] [CrossRef]
- Lokstein, H.; Renger, G.; Götze, J.P. Photosynthetic light-harvesting (antenna) complexes—Structures and functions. Molecules 2021, 26, 3378. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Tani, K.; Madigan, M.T.; Wang-Otomo, Z.-Y. Advances in the spectroscopic and structural characterization of core light-harvesting complexes from purple phototrophic bacteria. J. Phys. Chem. B 2023, 127, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Moskalenko, A.; Erokhin, Y.E. Isolation of the pigment–lipoprotein complexes from purple bacteriaby preparative polyacrylamide gel electrophoresis. Mikrobiologiya 1974, 43, 654–657. [Google Scholar]
- Gabrielsen, M.; Gardiner, A.T.; Cogdell, R.J. Peripheral complexes of purple bacteria. In The Purple Phototrophic Bacteria; Springer: Dordrecht, The Netherlands, 2009; pp. 135–153. [Google Scholar]
- Gardiner, A.T.; Nguyen-Phan, T.C.; Cogdell, R.J. A comparative look at structural variation among RC–LH1 ‘Core’ complexes present in anoxygenic phototrophic bacteria. Photosynth. Res. 2020, 145, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Swainsbury, D.J.; Qian, P.; Hitchcock, A.; Hunter, C.N. The structure and assembly of reaction centre-light-harvesting 1 complexes in photosynthetic bacteria. Biosci. Rep. 2023, 43, BSR20220089. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-N.; Bracun, L.; Li, M. Structural diversity and modularity of photosynthetic RC− LH1 complexes. Trends Microbiol. 2024, 32, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Bahatyrova, S.; Frese, R.N.; Siebert, C.A.; Olsen, J.D.; van Der Werf, K.O.; Van Grondelle, R.; Niederman, R.A.; Bullough, P.A.; Otto, C.; Hunter, C.N. The native architecture of a photosynthetic membrane. Nature 2004, 430, 1058–1062. [Google Scholar] [CrossRef]
- Şener, M.K.; Olsen, J.D.; Hunter, C.N.; Schulten, K. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc. Natl. Acad. Sci. USA 2007, 104, 15723–15728. [Google Scholar] [CrossRef]
- Niederman, R.A. Structure, function and formation of bacterial intracytoplasmic membranes. In Complex Intracellular Structures in Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 193–227. [Google Scholar]
- Sturgis, J.N.; Niederman, R.A. Organization and assembly of light-harvesting complexes in the purple bacterial membrane. In The Purple Phototrophic Bacteria; Springer: Berlin/Heidelberg, Germany, 2009; pp. 253–273. [Google Scholar]
- Gardiner, A.T.; Naydenova, K.; Castro-Hartmann, P.; Nguyen-Phan, T.C.; Russo, C.J.; Sader, K.; Hunter, C.N.; Cogdell, R.J.; Qian, P. The 2.4 Å cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Sci. Adv. 2021, 7, eabe4650. [Google Scholar] [CrossRef] [PubMed]
- Koepke, J.; Hu, X.; Muenke, K.; Schulten, K.; Michel, H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 1996, 4, 581. [Google Scholar] [CrossRef]
- Leiger, K.; Linnanto, J.M.; Rätsep, M.; Timpmann, K.; Ashikhmin, A.A.; Moskalenko, A.A.; Fufina, T.Y.; Gabdulkhakov, A.G.; Freiberg, A. Controlling Photosynthetic Excitons by Selective Pigment Photooxidation. J. Phys. Chem. B 2019, 123, 29–38. [Google Scholar] [CrossRef]
- Burtseva, A.; Baymukhametov, T.; Ilyasov, I.; Bolshakov, M.; Moskalenko, A.; Boyko, K.; Ashikhmin, A. Structural Study of the Light-Harvesting Complex LH2 from the Purple Sulfur Bacteria Ectothiorhodospira haloalkaliphila by Cryoelectronic Microscopy. Crystallogr. Rep. 2023, 68, 879–885. [Google Scholar] [CrossRef]
- McLuskey, K.; Prince, S.; Cogdell, R.; Isaacs, N. The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 2001, 40, 8783–8789. [Google Scholar] [CrossRef]
- McDermott, G.; Prince, S.; Freer, A.; Hawthornthwaite-Lawless, A.Á.; Papiz, M.; Cogdell, R.; Isaacs, N. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 1995, 374, 517–521. [Google Scholar] [CrossRef]
- Qian, P.; Swainsbury, D.J.; Croll, T.I.; Castro-Hartmann, P.; Divitini, G.; Sader, K.; Hunter, C.N. Cryo-EM structure of the Rhodobacter sphaeroides light-harvesting 2 complex at 2.1 Å. Biochemistry 2021, 60, 3302–3314. [Google Scholar] [CrossRef] [PubMed]
- Papiz, M.Z.; Prince, S.M.; Howard, T.; Cogdell, R.J.; Isaacs, N.W. The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: New structural features and functionally relevant motions. J. Mol. Biol. 2003, 326, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- Prince, S.; Howard, T.; Myles, D.; Wilkinson, C.; Papiz, M.; Freer, A.; Cogdell, R.; Isaacs, N. Detergent structure in crystals of the integral membrane light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050. J. Mol. Biol. 2003, 326, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Foote, C.S.; Chang, Y.C.; Denny, R.W. Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J. Am. Chem. Soc. 1970, 92, 5216–5218. [Google Scholar] [CrossRef] [PubMed]
- Moskalenko, A.A.; Karapetyan, N.V. Structural role of carotenoids in photosynthetic membranes. Z. Naturforschung C 1996, 51, 763–771. [Google Scholar] [CrossRef]
- Theiss, C.; Leupold, D.; Moskalenko, A.A.; Razjivin, A.P.; Eichler, H.J.; Lokstein, H. Femtosecond spectroscopy of native and carotenoidless purple-bacterial LH2 clarifies functions of carotenoids. Biophys. J. 2008, 94, 4808–4811. [Google Scholar] [CrossRef] [PubMed]
- Telfer, A.; Pascal, A.; Gall, A. Carotenoids in photosynthesis. In Carotenoids: Volume 4: Natural Functions; Birkhäuser: Basel, Switzerland, 2008; pp. 265–308. [Google Scholar]
- Hashimoto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and photosynthesis. In Carotenoids in Nature: Biosynthesis, Regulation and Function; Springer: Cham, Switzerland, 2016; pp. 111–139. [Google Scholar]
- Frank, H.; Cogdell, R. Carotenoids in photosynthesis. Photochem. Photobiol. 1996, 63, 257–264. [Google Scholar] [CrossRef]
- Britton, G. Functions of Intact Carotenoids. In Carotenoids. Natural Functions; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhauser Verlag: Basel, Switzerland, 2008; pp. 265–308. [Google Scholar]
- Wright, A.; Bubb, W.A.; Hawkins, C.L.; Davies, M.J. Singlet Oxygen–mediated Protein Oxidation: Evidence for the Formation of Reactive Side Chain Peroxides on Tyrosine Residues. Photochem. Photobiol. 2002, 76, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J. Reactive species formed on proteins exposed to singlet oxygen. Photochem. Photobiol. Sci. 2004, 3, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Angerhofer, A.; Bornhäuser, F.; Aust, V.; Hartwich, G.; Scheer, H. Triplet energy transfer in bacterial photosynthetic reaction centres. Biochim. Biophys. Acta (BBA)-Bioenerg. 1998, 1365, 404–420. [Google Scholar] [CrossRef]
- Scheer, H. An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Springer: Dordrecht, The Netherlands, 2006; pp. 1–26. [Google Scholar]
- Makhneva, Z.K.; Ashikhmin, A.A.; Bolshakov, M.A.; Moskalenko, A.A. Carotenoids are Probably Involved in Singlet Oxygen Generation in the Membranes of Purple Photosynthetic Bacteria under Light Irradiation. Microbiology 2020, 89, 164–173. [Google Scholar] [CrossRef]
- Makhneva, Z.K.; Bolshakov, M.A.; Moskalenko, A.A. Carotenoids Do Not Protect Bacteriochlorophylls in Isolated Light-Harvesting LH2 Complexes of Photosynthetic Bacteria from Destructive Interactions with Singlet Oxygen. Molecules 2021, 26, 5120. [Google Scholar] [CrossRef] [PubMed]
- Makhneva, Z.K.; Moskalenko, A.A. Carotenoids in LH2 Complexes from Allochromatium vinosum under Illumination Are Able to Generate Singlet Oxygen Which Oxidizes BChl850. Microbiology 2022, 91, 409–416. [Google Scholar] [CrossRef]
- Makhneva, Z.; Bolshakov, M.; Ashikhmin, A.; Moskalenko, A. Rhodopin Incorporated into the Allochromatium vinosum LH2 Complex Is Able to Generate Singlet Oxygen under Illumination. Microbiology 2024, 93, 305–313. [Google Scholar] [CrossRef]
- Klenina, I.; Gryaznov, A.; Makhneva, Z.; Proskuryakov, I. Singlet-triplet Fission of Carotenoid Excitation in the Purple Phototrophic Bacteria Thermochromatium tepidum. Dokl. Biochem. Biophys. 2019, 485, 135–137. [Google Scholar] [CrossRef]
- Klenina, I.B.; Makhneva, Z.K.; Moskalenko, A.A.; Proskuryakov, I.I. Selective Excitation of Carotenoids of the Allochromatium vinosum Light-Harvesting LH2 Complexes Leads to Oxidation of Bacteriochlorophyll. Biochemistry 2022, 87, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Ashikhmin, A.; Benditkis, A.; Moskalenko, A.; Krasnovsky, A. Phytofluene as a highly efficient UVA photosensitizer of singlet oxygen generation. Biochemistry 2020, 85, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Ashikhmin, A.A.; Benditkis, A.S.; Moskalenko, A.A.; Krasnovsky, A.A., Jr. ζ-Carotene: Generation and quenching of singlet oxygen, comparison with phytofluene. Biochemistry 2022, 87, 1169–1178. [Google Scholar] [PubMed]
- Benditkis, A.; Ashikhmin, A.; Moskalenko, A.; Krasnovsky, A., Jr. Photogeneration and quenching of singlet molecular oxygen by bacterial C40 carotenoids with long chain of conjugated double bonds. Photosynth. Res. 2024, 159, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Yanykin, D.; Paskhin, M.; Ashikhmin, A.A.; Bolshakov, M.A. Carotenoid-dependent singlet oxygen photogeneration in light-harvesting complex 2 of Ectothiorhodospira haloalkaliphila leads to the formation of organic hydroperoxides and damage to both pigments and protein matrix. PeerJ 2024, 12, e16615. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, J.F.; Trüper, H.G. Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch. Microbiol. 1977, 114, 115–121. [Google Scholar] [CrossRef]
- Moskalenko, A.; Toropygina, O.; Makhneva, Z. Behavior of carotenoids in Rhodospirillum rubrum cells under cultivation with diphenylamine. Dokl Akad Nauk 1997, 355, 259–261. [Google Scholar]
- Bol’shakov, M.; Ashikhmin, A.; Makhneva, Z.; Moskalenko, A. Effect of illumination intensity and inhibition of carotenoid biosynthesis on assembly of peripheral light-harvesting complexes in purple sulfur bacteria Allochromatium vinosum ATCC 17899. Microbiology 2016, 85, 420–429. [Google Scholar] [CrossRef]
- Makhneva, Z.K.; Bol’shakov, M.A.; Ashikhmin, A.A.; Erokhin, Y.E.; Moskalenko, A.A. Influence of blue light on the structure stability of antenna complexes from Allochromatium minutissimum with different content of carotenoids. Biochem. Suppl. Ser. A Membr. Cell Biol. 2009, 3, 123–127. [Google Scholar] [CrossRef]
- Khorobrykh, S.A.; Khorobrykh, A.A.; Yanykin, D.V.; Ivanov, B.N.; Klimov, V.V.; Mano, J.i. Photoproduction of catalase-insensitive peroxides on the donor side of manganese-depleted photosystem II: Evidence with a specific fluorescent probe. Biochemistry 2011, 50, 10658–10665. [Google Scholar] [CrossRef] [PubMed]
- Yanykin, D.; Khorobrykh, A.; Terentyev, V.; Klimov, V. Two pathways of photoproduction of organic hydroperoxides on the donor side of photosystem 2 in subchloroplast membrane fragments. Photosynth. Res. 2017, 133, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Moskalenko, A.; Makhneva, Z. Light-harvesting complexes from purple sulfur bacteria Allochromatium minutissimum assembled without carotenoids. J. Photochem. Photobiol. B Biol. 2012, 108, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ashikhmin, A.; Makhneva, Z.; Moskalenko, A. The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis. Photosynth. Res. 2014, 119, 291–303. [Google Scholar] [CrossRef]
- Bystranowska, D.; Szewczuk, Z.; Lisowski, M.; Sitkiewicz, E.; Dobryszycki, P.; Ożyhar, A.; Kochman, M. Intramolecular cross-linking in the native JHBP molecule. Arch. Biochem. Biophys. 2012, 517, 12–19. [Google Scholar] [CrossRef]
- Correia, M.; Neves-Petersen, M.T.; Jeppesen, P.B.; Gregersen, S.; Petersen, S.B. UV-Light Exposure of Insulin: Pharmaceutical Implications upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis. PLoS ONE 2012, 7, e50733. [Google Scholar] [CrossRef]
- Correia, M.; Neves-Petersen, M.T.; Parracino, A.; di Gennaro, A.K.; Petersen, S.B. Photophysics, Photochemistry and Energetics of UV Light Induced Disulphide Bridge Disruption in apo-α-Lactalbumin. J. Fluoresc. 2012, 22, 323–337. [Google Scholar] [CrossRef]
- Correia, M.; Thiagarajan, V.; Coutinho, I.; Gajula, G.P.; Petersen, S.B.; Neves-Petersen, M.T. Modulating the structure of EGFR with UV light: New possibilities in cancer therapy. PLoS ONE 2014, 9, e111617. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.; Snabe, T.; Thiagarajan, V.; Petersen, S.B.; Campos, S.R.R.; Baptista, A.M.; Neves-Petersen, M.T. Photonic Activation of Plasminogen Induced by Low Dose UVB. PLoS ONE 2015, 10, e0116737. [Google Scholar] [CrossRef] [PubMed]
- Neves-Petersen, M.T.; Gryczynski, Z.; Lakowicz, J.; Fojan, P.; Pedersen, S.; Petersen, E.; Bjørn Petersen, S. High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Protein Sci. 2002, 11, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Makhneva, Z.; Ashikhmin, A.; Bolshakov, M.; Moskalenko, A. Bacteriochlorophyll interaction with singlet oxygen in membranes of purple photosynthetic bacteria: Does the protective function of carotenoids exist? Dokl. Biochem. Biophys. 2019, 486, 216–219. [Google Scholar] [CrossRef]
- Lindahl, M.; Yang, D.H.; Andersson, B. Regulatory proteolysis of the major light-harvesting chlorophyll a/b protein of photosystem II by a light-induced membrane-associated enzymic system. Eur. J. Biochem. 1995, 231, 503–509. [Google Scholar] [PubMed]
- Zolla, L.; Rinalducci, S. Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry 2002, 41, 14391–14402. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Okajima, H.; Hino, T. Photosensitized oxygenation of Nb-methoxycarbonyltryptophan methyl ester and Nb-methoxycarbonyltryptamine. Isolation and novel transformations of a 3a-hydroxyperoxypyrroloindole. J. Am. Chem. Soc. 1976, 98, 635–637. [Google Scholar] [CrossRef]
- Saito, I.; Matsuura, T.; Nakagawa, M.; Hino, T. Peroxidic intermediates in photosensitized oxygenation of tryptophan derivatives. Acc. Chem. Res. 1977, 10, 346–352. [Google Scholar] [CrossRef]
- Tomita, M.; Irie, M.; Ukita, T. Sensitized photooxidation of histidine and its derivatives. Prod. Mech. React. Biochem. 1969, 8, 5149–5160. [Google Scholar]
- Kang, P.; Foote, C.S. Synthesis of a 13C, 15N labeled imidazole and characterization of the 2, 5-endoperoxide and its decomposition. Tetrahedron Lett. 2000, 41, 9623–9626. [Google Scholar] [CrossRef]
- Giles, S. A Computational Investigation of a Biologically Relevant Rearrangement: Significance of Molecular Structure and Orbital Interactions as Related to the Transformation of a Model Endoperoxide into a Hydroperoxide Product. J. Young Investig. 2007, 16. [Google Scholar]
- Liu, F.; Lu, W.; Fang, Y.; Liu, J. Evolution of oxidation dynamics of histidine: Non-reactivity in the gas phase, peroxides in hydrated clusters, and pH dependence in solution. Phys. Chem. Chem. Phys. 2014, 16, 22179–22191. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Song, B.; Yuan, J.; Feng, Z.; Jia, G.; Li, C. Luminescence and Raman spectroscopic studies on the damage of tryptophan, histidine and carnosine by singlet oxygen. J. Photochem. Photobiol. A Chem. 2007, 189, 39–45. [Google Scholar] [CrossRef]
- Nakane, K.; Sato, S.; Niwa, T.; Tsushima, M.; Tomoshige, S.; Taguchi, H.; Ishikawa, M.; Nakamura, H. Proximity histidine labeling by umpolung strategy using singlet oxygen. J. Am. Chem. Soc. 2021, 143, 7726–7731. [Google Scholar] [CrossRef] [PubMed]
- Nakane, K.; Nagasawa, H.; Fujimura, C.; Koyanagi, E.; Tomoshige, S.; Ishikawa, M.; Sato, S. Switching of Photocatalytic Tyrosine/Histidine Labeling and Application to Photocatalytic Proximity Labeling. Int. J. Mol. Sci. 2022, 23, 11622. [Google Scholar] [CrossRef]
- Krieger-Liszkay, A. Singlet oxygen production in photosynthesis. J. Exp. Bot. 2004, 56, 337–346. [Google Scholar] [CrossRef]
- Kramer, H.; Mathis, P. Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures. Biochim. Biophys. Acta (BBA)-Bioenerg. 1980, 593, 319–329. [Google Scholar] [CrossRef]
- Santabarbara, S.; Bordignon, E.; Jennings, R.C.; Carbonera, D. Chlorophyll triplet states associated with photosystem II of thylakoids. Biochemistry 2002, 41, 8184–8194. [Google Scholar] [CrossRef]
- Rinalducci, S.; Pedersen, J.Z.; Zolla, L. Formation of radicals from singlet oxygen produced during photoinhibition of isolated light-harvesting proteins of photosystem II. Biochim. Biophys. Acta (BBA)-Bioenerg. 2004, 1608, 63–73. [Google Scholar] [CrossRef]
- Egorov, S.Y.; Krasnovsky, A.A., Jr. Laser-induced luminescence of singlet molecular oxygen: Generation by drugs and pigments of biological importance. Laser Appl. Life Sci. 1991, 1403, 611–621. [Google Scholar]
- Krasnovsky Jr, A.; Cheng, P.; Blankenship, R.; Moore, T.; Gust, D. The photophysics of monomeric bacteriochlorophylls c and d and their derivatives: Properties of triplet state and singlet oxygen photogeneration and quenching. Photochem. Photobiol. 1993, 57, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Borland, C.; McGarvey, D.; Truscott, T.; Codgell, R.; Land, E.J. Photophysical studies of bacteriochlorophyll a and bacteriopheophytin a—Singlet oxygen generation. J. Photochem. Photobiol. B Biol. 1987, 1, 93–101. [Google Scholar] [CrossRef]
- Hoebeke, M.; Damoiseau, X. Determination of the singlet oxygen quantum yield of bacteriochlorin a: A comparative study in phosphate buffer and aqueous dispersion of dimiristoyl-l-α-phosphatidylcholine liposomes. Photochem. Photobiol. Sci. 2002, 1, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Foote, C. Singlet Oxygen; Wasserman, H.H., Murray, R.W., Eds.; Academic: Cambridge, MA, USA, 1979. [Google Scholar]
- Smith, K.A.; Ardelt, B.K.; Huner, N.P.A.; Krol, M.; Myscich, E.; Low, P.S. Identification and Partial Characterization of the Denaturation Transition of the Light Harvesting Complex II of Spinach Chloroplast Membranes 1. Plant Physiol. 1989, 90, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.; Whitelam, G.C. The shade avoidance syndrome: Multiple responses mediated by multiple phytochromes. Plant Cell Environ. 1997, 20, 840–844. [Google Scholar] [CrossRef]
- Gryaznov, A.A.; Klenina, I.B.; Makhneva, Z.K.; Moskalenko, A.A.; Proskuryakov, I.I. Singlet-triplet division of excitation of carotenoids of light harvesting complexes of Thermochromatium tepidum. Biophysics 2019, 64, 1045–1051. (In Russian) [Google Scholar] [CrossRef]
- Gradinaru, C.C.; Kennis, J.T.; Papagiannakis, E.; Van Stokkum, I.H.; Cogdell, R.J.; Fleming, G.R.; Niederman, R.A.; Van Grondelle, R. An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. USA 2001, 98, 2364–2369. [Google Scholar] [CrossRef] [PubMed]
- Makhneva, Z.; Bolshakov, M.; Moskalenko, A. Heterogeneity of carotenoid content and composition in LH2 of the purple sulphur bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition. Photosynth. Res. 2008, 98, 633–641. [Google Scholar] [CrossRef]
- Hu, H.; Li, C.; Lyu, C.; Meng, X.; Li, B.; Shu, C. Effect of protein oxidation on the structural characteristics of hazelnut protein isolate. Food Sci. Technol. 2023, 43, e103922. [Google Scholar] [CrossRef]
- Xu, W.; Bao, Y.; Zhou, Y.; Hong, H.; Gao, R. Effect of protein oxidation on the structure and emulsifying properties of fish gelatin. Food Res. Int. 2024, 195, 114963. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Q.; Mao, X.; Zhang, J. Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins. Foods 2024, 13, 1513. [Google Scholar] [CrossRef]
- Li, S.; Huang, Y.; An, F.; Huang, Q.; Geng, F.; Ma, M. Hydroxyl radical-induced early stage oxidation improves the foaming and emulsifying properties of ovalbumin. Poult. Sci. 2019, 98, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Shi, T.; Xiong, Z.; Yuan, L.; Hong, H.; Gao, R.; Bao, Y. Oxidation affects dye binding of myofibrillar proteins via alteration in net charges mediated by a reduction in isoelectric point. Food Res. Int. 2023, 163, 112204. [Google Scholar] [CrossRef] [PubMed]
Detected Carotenoid | Content of Carotenoid in LH2 Preparations, Molecules per One LH2 | ||||
---|---|---|---|---|---|
LH2-Control | LH2-DPA | LH2-Neu | LH2-Sph | LH2-Rho | |
Didehydrorhodopin | 0.81 | — | — | — | 0.22 |
Rhodopin | 0.81 | — | — | — | 5.46 |
Spirilloxanthin | 2.36 | — | — | — | 0.07 |
Anhydrorhodovibrin | 2.64 | — | — | — | — |
Lycopene | 1.38 | — | 0.07 | — | — |
Spheroidene | — | — | — | 4.16 | — |
Neurosporene | — | <0.01 | 6.78 | — | — |
ζ—carotene | — | 0.22 | 0.02 | — | — |
Phytoene | — | <0.01 | — | — | — |
Phytofluene | — | 0.17 | — | — | — |
ζ–Potential, mV | |||||
---|---|---|---|---|---|
LH2–Control | LH2–DPA | LH2–Neu | LH2–Sph | LH2–Rho | |
Before illumination | −28.8 a ± 1.4 | −12.7 d± 0.8 | −23.8 b ± 1.3 | −23.2 b ± 1.4 | −15.8 c ± 0.9 |
After illumination | −25.7 b ± 1.6 | −11.9 d± 0.8 | −24.2 b ± 0.7 | −23.3 b ± 0.8 | −15.5 c ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanykin, D.V.; Paskhin, M.O.; Shumeyko, S.A.; Ashikhmin, A.A.; Bolshakov, M.A. Effect of Carotenoid Composition on Stability and Light-Induced Oxidative Damage of the LH2 Complexes Isolated from Ectothiorhodospira haloalkaliphila. Microbiol. Res. 2025, 16, 36. https://doi.org/10.3390/microbiolres16020036
Yanykin DV, Paskhin MO, Shumeyko SA, Ashikhmin AA, Bolshakov MA. Effect of Carotenoid Composition on Stability and Light-Induced Oxidative Damage of the LH2 Complexes Isolated from Ectothiorhodospira haloalkaliphila. Microbiology Research. 2025; 16(2):36. https://doi.org/10.3390/microbiolres16020036
Chicago/Turabian StyleYanykin, Denis V., Mark O. Paskhin, Sergey A. Shumeyko, Aleksandr A. Ashikhmin, and Maxim A. Bolshakov. 2025. "Effect of Carotenoid Composition on Stability and Light-Induced Oxidative Damage of the LH2 Complexes Isolated from Ectothiorhodospira haloalkaliphila" Microbiology Research 16, no. 2: 36. https://doi.org/10.3390/microbiolres16020036
APA StyleYanykin, D. V., Paskhin, M. O., Shumeyko, S. A., Ashikhmin, A. A., & Bolshakov, M. A. (2025). Effect of Carotenoid Composition on Stability and Light-Induced Oxidative Damage of the LH2 Complexes Isolated from Ectothiorhodospira haloalkaliphila. Microbiology Research, 16(2), 36. https://doi.org/10.3390/microbiolres16020036