Utility of Three-Dimensional Printing for Preoperative Assessment of Children with Extra-Cranial Solid Tumors: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Process
2.2. Inclusion/Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Study Characteristics
3.2. Details of Preoperative Imaging and 3D Printing Process
3.3. Methodological Quality Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fletcher, B.D.; Pratt, C.B. Evaluation of the child with a suspected malignant solid tumor. Pediatr. Clin. N. Am. 1991, 38, 223–248. [Google Scholar] [CrossRef]
- Yang, T.; Lin, S.; Tan, T.; Yang, J.; Pan, J.; Hu, C.; Li, J.; Zou, Y. Impact of 3D Printing Technology on Comprehension of Surgical Anatomy of Retroperitoneal Tumor. World J. Surg. 2018, 42, 2339–2343. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, Á.; Girón-Vallejo, Ó.; Ruiz-Pruneda, R.; Fernandez-Ibieta, M.; García-Calderon, D.; Villamil, V.; Giménez-Aleixandre, M.C.; Montoya-Rangel, C.A.; Hernández Bermejo, J.P. Three-Dimensional Printed Model and Virtual Reconstruction: An Extra Tool for Pediatric Solid Tumors Surgery. Eur. J. Pediatr. Surg. Rep. 2018, 6, e70–e76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellens, L.M.; Meulstee, J.; van de Ven, C.P.; Terwisscha van Scheltinga, C.E.J.; Littooij, A.S.; van den Heuvel-Eibrink, M.M.; Fiocco, M.; Rios, A.C.; Maal, T.; Wijnen, M.H.W.A. Comparison of 3-Dimensional and Augmented Reality Kidney Models With Conventional Imaging Data in the Preoperative Assessment of Children With Wilms Tumors. JAMA Netw. Open 2019, 2, e192633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girón-Vallejo, Ó.; García-Calderón, D.; Ruiz-Pruneda, R.; Cabello-Laureano, R.; Doménech-Abellán, E.; Fuster-Soler, J.L.; Ruiz-Jiménez, J.I. Three-dimensional printed model of bilateral Wilms tumor: A useful tool for planning nephron sparing surgery. Pediatr. Blood Cancer 2018, 65, e26894. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Krishnan, N.; Dhua, A.K.; Jain, V.; Yadav, D.K.; Bajpai, M.; Goel, P. PROSPERO International Prospective Register of Systematic Reviews. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020206022 (accessed on 25 November 2020).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Murad, M.H.; Sultan, S.; Haffar, S.; Bazerbachi, F. Methodological quality and synthesis of case series and case reports. BMJ Evid. Based Med. 2018, 23, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.Y.; Patel, N.A.; Kurtz, K.; Edelman, M.; Koral, K.; Kamdar, D.; Goldstein, T. The use of 3D printing in shared decision making for a juvenile aggressive ossifying fibroma in a pediatric patient. Am. J Otolaryngol. 2019, 40, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Salazar, D.; Huff, T.J.; Cramer, J.; Wong, L.; Linke, G.; Zuniga, J. Use of a three-dimensional printed anatomical model for tumor management in a pediatric patient. SAGE Open Med. Case Rep. 2020, 8, 2050313x20927600. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Tan, T.; Yang, J.; Pan, J.; Hu, C.; Li, J.; Zou, Y. The impact of using three-dimensional printed liver models for patient education. J. Int. Med. Res. 2018, 46, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Krauel, L.; Fenollosa, F.; Riaza, L.; Pérez, M.; Tarrado, X.; Morales, A.; Gomà, J.; Mora, J. Use of 3D Prototypes for Complex Surgical Oncologic Cases. World J. Surg. 2016, 40, 889–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souzaki, R.; Kinoshita, Y.; Ieiri, S.; Kawakubo, N.; Obata, S.; Jimbo, T.; Koga, Y.; Hashizume, M.; Taguchi, T. Preoperative surgical simulation of laparoscopic adrenalectomy for neuroblastoma using a three-dimensional printed model based on preoperative CT images. J. Pediatr. Surg. 2015, 50, 2112–2115. [Google Scholar] [CrossRef] [PubMed]
- Souzaki, R.; Kinoshita, Y.; Ieiri, S.; Hayashida, M.; Koga, Y.; Shirabe, K.; Hara, T.; Maehara, Y.; Hashizume, M.; Taguchi, T. Three-dimensional liver model based on preoperative CT images as a tool to assist in surgical planning for hepatoblastoma in a child. Pediatr. Surg. Int. 2015, 31, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Bagaria, V.; Bhansali, R.; Pawar, P. 3D printing-creating a blueprint for the future of orthopedics: Current concept review and the road ahead! J. Clin. Orthop. Trauma 2018, 9, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. Medical Applications for 3D Printing: Current and Projected Uses. Pharm. Ther. 2014, 39, 704–711. [Google Scholar]
S N | Author/Year | Study Design | n | Type of Tumor |
---|---|---|---|---|
1 | Wellens LM et al./2019 | Cross sectional | 10 | Wilms tumor (3-bilateral) |
2 | Sánchez A, et al./2018 | Case series | 4 | Wilms tumor # (n = 2); Neuroblastoma (n = 2) |
3 | Yang T, et al./2018 | Cross sectional | 7 | Hepatic tumors |
4 | Yang T, et al./2018 | Cross sectional | 1 | Retroperitoneal tumor |
5 | Vallejo OG, et al./2017 | Case report | 1 | Bilateral Wilms tumor |
6 | Krauel L, et al./2015 | Case series | 3 | Neuroblastoma (n = 2); Synovial sarcoma (n = 1) |
7 | Souzaki R, et al./2015 | Case series | 3 * | Neuroblastoma (n = 3) |
8 | Souzaki R, et al./2015 | Case report | 1 | Hepatoblastoma |
S N | Author/Year | Preoperative Imaging | 3D Segmentation Software | 3D Printing Technology | Material Used |
---|---|---|---|---|---|
1 | Wellens LM et al./2019 | MRI (n = 10); CT (n = 3) | Mimics Innovation Suite | 3D printing technology (Z corporation) at Materialise | Composite material |
2 | Sánchez A, et al./2018 | MRI (n = 3); CT (n = 1) | Cella-supplied (Cella Medical Solutions, Spain) | Fused deposit modelling (FDM) and injection printing at BCN technologies | Plastic-derived materials like polylactic acid, acrylonitrile butadiene styrene (ABS), polyvinyl, etc. |
3 | Yang T, et al./2018 | CT | Mimics software | RS6000 rapid prototyping printer (Shanghai Union 3D technology corp.) | Photosensitive resin |
4 | Yang T, et al./2018 | CT | Mimics software | RS6000 rapid prototyping printer (Shanghai Union 3D technology corp.) | Photosensitive resin |
5 | Vallejo OG, et al./2017 | MRI | Cella-supplied (Cella Medical) Solutions, Spain | A combination of material injectors with 3D printers (Cella Medical Solutions) | Polylactic acid-vessels; transparent polyurethane rubber for renal parenchyma and tumor |
6 | Krauel L, et al./2015 | CT and MRI | VRMed DICOM platform | -Polyjet 3D printing using Connex 5000 by Stratasys -SLS 3D model made in Vanguard machine | Epoxy photopolymer-bones, vessels; soft translucent material-tumor |
7 | Souzaki R, et al./2015 | CT | 3D workstation (ZedView, 3D Doctor, FreeForm and CATIA) | Objet 500 connex 3 device (Stratasys) | Acrylic ultraviolet curable resin |
8 | Souzaki R, et al./2015 | CT | 3D workstation (ZedView, 3D Doctor, FreeForm and CATIA) | Objet 500 connex 3 device (Stratasys) | Acrylic ultraviolet curable resin |
Assessment by Observer 1 | ||||||
---|---|---|---|---|---|---|
S N | Author/Year | Domains | ||||
Selection | Ascertainment | Causality | Reporting | |||
1 | Wellens LM et al./2019 | 1 | 1 | 1 | N/A | 1 |
2 | Sánchez A, et al./2018 | 1 | 1 | 1 | 0 | 1 |
3 | Yang T, et al./2018 | 1 | 1 | 1 | N/A | 1 |
4 | Yang T, et al./2018 | 1 | 1 | 1 | N/A | 1 |
5 | Vallejo OG, et al./2017 | 0 | 1 | 1 | 0 | 1 |
6 | Krauel L, et al./2015 | 1 | 1 | 1 | 0 | 1 |
7 | Souzaki R, et al./2015 | 1 | 1 | 1 | 1 | 1 |
8 | Souzaki R, et al./2015 | 0 | 1 | 1 | 1 | 1 |
Assessment by Observer 2 | ||||||
S N | Author/Year | Domains | ||||
Selection | Ascertainment | Causality | Reporting | |||
1 | Wellens LM et al./2019 | 1 | 1 | 1 | N/A | 1 |
2 | Sánchez A, et al./2018 | 1 | 1 | 1 | 0 | 1 |
3 | Yang T, et al./2018 | 1 | 1 | 1 | N/A | 1 |
4 | Yang T, et al./2018 | 1 | 1 | 1 | N/A | 1 |
5 | Vallejo OG, et al./2017 | 0 | 1 | 1 | 1 | 1 |
6 | Krauel L, et al./2015 | 1 | 1 | 1 | 0 | 1 |
7 | Souzaki R, et al./2015 | 1 | 1 | 1 | 0 | 1 |
8 | Souzaki R, et al./2015 | 0 | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anand, S.; Krishnan, N.; Goel, P.; Dhua, A.K.; Jain, V.; Yadav, D.K.; Bajpai, M. Utility of Three-Dimensional Printing for Preoperative Assessment of Children with Extra-Cranial Solid Tumors: A Systematic Review. Pediatr. Rep. 2022, 14, 32-39. https://doi.org/10.3390/pediatric14010006
Anand S, Krishnan N, Goel P, Dhua AK, Jain V, Yadav DK, Bajpai M. Utility of Three-Dimensional Printing for Preoperative Assessment of Children with Extra-Cranial Solid Tumors: A Systematic Review. Pediatric Reports. 2022; 14(1):32-39. https://doi.org/10.3390/pediatric14010006
Chicago/Turabian StyleAnand, Sachit, Nellai Krishnan, Prabudh Goel, Anjan Kumar Dhua, Vishesh Jain, Devendra Kumar Yadav, and Minu Bajpai. 2022. "Utility of Three-Dimensional Printing for Preoperative Assessment of Children with Extra-Cranial Solid Tumors: A Systematic Review" Pediatric Reports 14, no. 1: 32-39. https://doi.org/10.3390/pediatric14010006
APA StyleAnand, S., Krishnan, N., Goel, P., Dhua, A. K., Jain, V., Yadav, D. K., & Bajpai, M. (2022). Utility of Three-Dimensional Printing for Preoperative Assessment of Children with Extra-Cranial Solid Tumors: A Systematic Review. Pediatric Reports, 14(1), 32-39. https://doi.org/10.3390/pediatric14010006