Management of Anticoagulation during Extracorporeal Membrane Oxygenation in Children
Abstract
:1. Introduction
2. Coagulation and Fibrinolysis Cascades
3. Coagulation System in Children
4. The Need for Anticoagulation during ECMO
5. Anticoagulation Management with Heparin
6. Heparin Anticoagulation Monitoring
- Activated Clotting Time (ACT)—A point of care coagulation test ACT has been used for a long time during ECMO therapy. It is a simple test that measures the time of whole blood to form a fibrin clot at the bedside by exposing the sample of an activator (Kaolin or Diatomaceous earth). It is an important low-cost bedside test available to monitor anticoagulation with UFH [25]. Although the current ELSO guidelines do not specify a number [12], the suggested ACT range during the ECMO support is 180–220 s. Poor technique in sample collection, hypothermia, hemodilution, presence of exogenously added anticoagulants, thrombocytopenia or platelet dysfunction, and factor deficiencies will interfere with the test results. Compared to the gold standard, the plasma heparin level assay (anti-factor Xa activity) ACT has a poor correlation [26,27]. In children, physiologically low AT levels than adults result in impaired response to heparin, so using ACT only to guide heparin dosing causes inadequate anticoagulation [28,29,30]. In addition, ACT results vary based on the device used [31]. Due to these potential caveats, some centers gradually replaced ACT; even when it is used, it is supplemented by the more definitive tests like the anti-factor Xa assay [32].
- Activated Partial Thromboplastin Time (aPTT)—Activated partial thromboplastin time is a plasma test that measures the hemostasis in the absence of cellular components, especially platelets. A blood specimen should not be drawn through the indwelling catheter with heparin infusion to avoid possible heparin contamination, and the specimen to be transported and stored at 2 °C to 4 °C. The usual aPTT range during ECMO is 60–80 s [12]. In children compared to adults, aPTT poorly correlates with anti-factor Xa levels [33,34]. Adult patients on ECMO with aPTTs of 1.5–2.5 times normal values have shown a good correlation with UFH concentrations of 0.2–0.4 U/mL [35]. APTT is frequently prolonged in children during ECMO despite an age-appropriate UFH dose administration due to developmental differences in hemostasis [36]. Multiple biological variables can affect the heparin monitoring by the aPTT. The individual center-specific laboratory needs to determine the appropriate therapeutic range.
- Anti-factor Xa assay—Recently, the anti-factor Xa assay has become a gold standard test to monitor UFH and low-molecular-weight heparin (LMWH) management even outside the ECMO support [37]. The principle of this essay depends on the heparin’s ability to inhibit factor Xa or thrombin by AT. Therefore, precautions similar to aPTT measurement should be taken to draw the blood sample. In this assay, heparin neutralization is done using protamine sulfate or polybrene. The anti-factor Xa assay estimates UFH activity and does not measure UFH concentration [38]. Recommended therapeutic anti-factor Xa levels are between 0.3–0.7 IU/mL and correlate to a heparin level of 0.2–0.4 U/mL [19]. Many automated coagulation analyzers can estimate heparin activity. Except for AT deficiency, it is not affected by acute phase reactants like factor VIII and fibrinogen or factor deficiencies. In addition, the anti-factor Xa assay eliminates the need to establish aPTT therapeutic range. This assay is also useful in patients with baseline elevated aPTT. However, the anti-factor Xa assay requires prompt sample processing to avoid platelet factor 4 mediated heparin neutralization. It is more expensive than the aPTT and it underestimates heparin activity in the presence of significant AT deficiency. In addition, the test is less sensitive in the presence of free hemoglobin, high bilirubin, and high triglyceride levels [39].
- Viscoelastic Hemostatic Assays (VHAs)—Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are commonly used VHAs. They analyze the viscoelastic properties of blood clot formation on a whole blood sample and graphically display all stages of the development and resolution of the clot. TEG/ROTEM reflects the global hemostatic function, including coagulation cascade integrity, platelet function, and fibrinolysis [42]. Therefore, VHAs are very useful for patients on ECMO as they can have multiple etiologies for the underlying coagulation abnormalities [43]. In addition, they are particularly beneficial and recommended in patients with bleeding during ECMO, cardiac surgery, and trauma [44,45,46,47]. Although VHAs are real-time tests to assess the whole blood coagulation status, they measure hemostasis in vitro, so the results need to be interpreted in relation to the patient clinical condition. Moreover, blood collection site, sample processing (native vs. citrate sample), patient age, and gender should be considered when interpreting the results, as these factors can affect the results [48]. ECMO anticoagulation laboratory monitoring schedule is shown in Table 3 based on recent ELSO guidelines [12]. However, laboratory tests and frequency of monitoring widely vary based on patient clinical status and among the ECMO centers.
7. Heparin-INDUCED Thrombocytopenia (HIT)
8. Heparin Resistance and Antithrombin Replacement during ECMO
9. Fibrinolysis and Management
10. Excessive Bleeding Management during ECMO
11. Non-Heparin Anticoagulants
Direct Thrombin Inhibitors
12. Antiplatelet Therapy
13. Knowledge Gap and Future Perspectives
14. Limitations
15. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Bowen, F.W.; Edmunds, H.L. Coagulation, Anticoagulation and the Interaction of Blood and Artificial Surfaces. In ECMO Extracorporeal Cardiopulmonary Support in Critical Care; ELSO: Ann Arbor, MI, USA, 2000; pp. 67–96. [Google Scholar]
- Wan, S.; LeClerc, J.L.; Vincent, J.L. Inflammatory Response to Cardiopulmonary Bypass: Mechanisms Involved and Possible Therapeutic Strategies. Chest 1997, 112, 676–692. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, V.; Warad, D. Pediatric Coagulation Disorders. Pediatr. Rev. 2016, 37, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Wolberg, A.S. Thrombin Generation and Fibrin Clot Structure. Blood Rev. 2007, 21, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Gue, Y.X.; Gorog, D.A. Importance of Endogenous Fibrinolysis in Platelet Thrombus Formation. Int. J. Mol. Sci. 2017, 18, 1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ignjatovic, V.; Mertyn, E.; Monagle, P. The Coagulation System in Children: Developmental and Pathophysiological Considerations. Semin. Thromb. Hemost. 2011, 37, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.A.; Navaei, A.H.; Hensch, L.; Hui, S.R.; Teruya, J. Hemostatic Management of Extracorporeal Circuits Including Cardiopulmonary Bypass and Extracorporeal Membrane Oxygenation. Semin. Thromb. Hemost. 2020, 46, 62–72. [Google Scholar] [CrossRef]
- Fortenberry, J.D.; Bhardwaj, V.; Niemer, P.; Cornish, J.D.; Wright, J.A.; Bland, L. Neutrophil and Cytokine Activation with Neonatal Extracorporeal Membrane Oxygenation. J. Pediatr. 1996, 128 Pt 1, 670–678. [Google Scholar] [CrossRef]
- Plotz, F.B.; van Oeveren, W.; Bartlett, R.H.; Wildevuur, C.R. Blood Activation During Neonatal Extracorporeal Life Support. J. Thorac. Cardiovasc. Surg. 1993, 105, 823–832. [Google Scholar] [CrossRef]
- McManus, M.L.; Kevy, S.V.; Bower, L.K.; Hickey, P.R. Coagulation Factor Deficiencies During Initiation of Extracorporeal Membrane Oxygenation. J. Pediatr. 1995, 126, 900–904. [Google Scholar] [CrossRef]
- Urlesberger, B.; Zobel, G.; Zenz, W.; Kuttnig-Haim, M.; Maurer, U.; Reiterer, F.; Riccabona, M.; Dacar, D.; Gallisti, S.; Leschnik, B.; et al. Activation of the Clotting System During Extracorporeal Membrane Oxygenation in Term Newborn Infants. J. Pediatr. 1996, 129, 264–268. [Google Scholar] [CrossRef]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 Elso Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022, 68, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ozment, C.P.; Scott, B.L.; Bembea, M.M.; Spinella, P.C. Ecmo subgroup of the Pediatric Acute Lung Injury Pediatric, Network Sepsis Investigators, and Organization the Extracorporeal Life Support. Anticoagulation and Transfusion Management during Neonatal and Pediatric Extracorporeal Membrane Oxygenation: A Survey of Medical Directors in the United States. Pediatr. Crit. Care Med. 2021, 22, 530–541. [Google Scholar] [PubMed]
- Esper, S.A.; Welsby, I.J.; Subramaniam, K.; John Wallisch, W.; Levy, J.H.; Waters, J.H.; Triulzi, D.J.; Hayanga, J.W.A.; Schears, G.J. Adult Extracorporeal Membrane Oxygenation: An International Survey of Transfusion and Anticoagulation Techniques. Vox Sang. 2017, 112, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Pratt, C.W.; Church, F.C. Antithrombin: Structure and Function. Semin. Hematol. 1991, 28, 3–9. [Google Scholar]
- Beurskens, D.M.H.; Huckriede, J.P.; Schrijver, R.; Hemker, H.C.; Reutelingsperger, C.P.; Nicolaes, G.A.F. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb. Haemost. 2020, 120, 1371–1383. [Google Scholar] [CrossRef]
- Hirsh, J.; Bauer, K.A.; Donati, M.B.; Gould, M.; Samama, M.M.; Weitz, J.I. Parenteral Anticoagulants: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008, 133, 141S–159S. [Google Scholar] [CrossRef]
- Fleming, G.M.; Gupta, M.; Cooley, E.; Remenapp, R.; Bartlett, R.H.; Annich, G.M. Maintaining the Standard: A Quality Assurance Study for New Equipment in the Michigan Ecmo Program. ASAIO J. 2007, 53, 556–560. [Google Scholar] [CrossRef]
- Levine, M.N.; Hirsh, J.; Gent, M.; Turpie, A.G.; Cruickshank, M.; Weitz, J.; Anderson, D.; Johnson, M. A Randomized Trial Comparing Activated Thromboplastin Time with Heparin Assay in Patients with Acute Venous Thromboembolism Requiring Large Daily Doses of Heparin. Arch. Intern. Med. 1994, 154, 49–56. [Google Scholar] [CrossRef]
- Shapiro, A. Antithrombin Deficiency in Special Clinical Syndromes--Part I: Neonatal and Pediatric/Physiologic Deficiency: Extracorporeal Membrane Oxygenation. Semin. Hematol. 1995, 32 (Suppl. 2), 33–36. [Google Scholar]
- Pollock, M.E.; Ownings, J.T.; Gosselin, R.C. Atiii Replacement During Infant Extracorporeal Support. Thromb. Hemostatsis 1995, 73, 936. [Google Scholar]
- Thureen, P.J.; Loomis, M.; Manco-Johnson, M.; Brown, M.; Hays, T. Randomized Trial of Albumin versus Plasma for Correction of Atiii Deficiency in Neonatal ECMO. In Proceedings of the Second annual meeting of ELSO (Abst 50); 1990. [Google Scholar]
- Panigada, M.; Cucino, A.; Spinelli, E.; Occhipinti, G.; Panarello, G.; Novembrino, C.; Consonni, D.; Protti, A.; Lissoni, A.; Arcadipane, A.; et al. A Randomized Controlled Trial of Antithrombin Supplementation During Extracorporeal Membrane Oxygenation. Crit. Care Med. 2020, 48, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Philipson, G.; Alvira-Arill, G.; Ryder, J.; Totapally, B.R. Evaluation of Pharmacokinetics and Dosing Strategies of Antithrombin Iii in Neonatal Patients Undergoing Extracorporeal Membrane Oxygenation. In Proceedings of the Pediatric Academic Society Meeting, Denver, CO, Canada, 21–25 April 2022. [Google Scholar]
- Green, T.P.; Isham-Schopf, B.; Steinhorn, R.H.; Smith, C.; Irmiter, R.J. Whole Blood Activated Clotting Time in Infants During Extracorporeal Membrane Oxygenation. Crit. Care Med. 1990, 18, 494–498. [Google Scholar] [CrossRef] [PubMed]
- De Waele, J.J.; Van Cauwenberghe, S.; Hoste, E.; Benoit, D.; Colardyn, F. The Use of the Activated Clotting Time for Monitoring Heparin Therapy in Critically Ill Patients. Intensive Care Med. 2003, 29, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Nankervis, C.A.; Preston, T.J.; Dysart, K.C.; Wilkinson, W.D.; Chicoine, L.G.; Welty, S.E.; Nelin, L.D. Assessing Heparin Dosing in Neonates on Venoarterial Extracorporeal Membrane Oxygenation. ASAIO J. 2007, 53, 111–114. [Google Scholar] [CrossRef]
- Baird, C.W.; Zurakowski, D.; Robinson, B.; Gandhi, S.; Burdis-Koch, L.; Tamblyn, J.; Munoz, R.; Fortich, K.; Pigula, F.A. Anticoagulation and Pediatric Extracorporeal Membrane Oxygenation: Impact of Activated Clotting Time and Heparin Dose on Survival. Ann. Thorac. Surg. 2007, 83, 912–919, discussion 19–20. [Google Scholar] [CrossRef]
- Male, C.; Johnston, M.; Sparling, C.; Brooker, L.; Andrew, M.; Massicotte, P. The Influence of Developmental Haemostasis on the Laboratory Diagnosis and Management of Haemostatic Disorders During Infancy and Childhood. Clin. Lab. Med. 1999, 19, 39–69. [Google Scholar] [CrossRef]
- Owings, J.T.; Pollock, M.E.; Gosselin, R.C.; Ireland, K.; Jahr, J.S.; Larkin, E.C. Anticoagulation of Children Undergoing Cardiopulmonary Bypass Is Overestimated by Current Monitoring Techniques. Arch. Surg. 2000, 135, 1042–1047. [Google Scholar] [CrossRef] [Green Version]
- Perry, D.J.; Fitzmaurice, D.A.; Kitchen, S.; Mackie, I.J.; Mallett, S. Point-of-Care Testing in Haemostasis. Br. J. Haematol. 2010, 150, 501–514. [Google Scholar] [CrossRef]
- Muntean, W. Coagulation and Anticoagulation in Extracorporeal Membrane Oxygenation. Artif. Organs 1999, 23, 979–983. [Google Scholar] [CrossRef]
- Chan, A.K.; Black, L.; Ing, C.; Brandao, L.R.; Williams, S. Utility of Aptt in Monitoring Unfractionated Heparin in Children. Thromb. Res. 2008, 122, 135–136. [Google Scholar] [CrossRef]
- Kuhle, S.; Eulmesekian, P.; Kavanagh, B.; Massicotte, P.; Vegh, P.; Lau, A.; Mitchell, L.G. Lack of Correlation between Heparin Dose and Standard Clinical Monitoring Tests in Treatment with Unfractionated Heparin in Critically Ill Children. Haematologica 2007, 92, 554–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monagle, P. Anticoagulation in the Young. Heart 2004, 90, 808–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, A.K.; Berry, L.R.; Monagle, P.T.; Andrew, M. Decreased Concentrations of Heparinoids Are Required to Inhibit Thrombin Generation in Plasma from Newborns and Children Compared to Plasma from Adults Due to Reduced Thrombin Potential. Thromb. Haemost. 2002, 87, 606–613. [Google Scholar] [PubMed] [Green Version]
- Hirsh, J.; Raschke, R. Heparin and Low-Molecular-Weight Heparin: The Seventh Accp Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004, 126, 188S–203S. [Google Scholar] [CrossRef]
- Newall, F.; Johnston, L.; Ignjatovic, V.; Monagle, P. Unfractionated Heparin Therapy in Infants and Children. Pediatrics 2009, 123, e510–e518. [Google Scholar] [CrossRef]
- Kostousov, V.; Wang, Y.W.; Cotton, B.A.; Wade, C.E.; Holcomb, J.B.; Matijevic, N. Influence of Resuscitation Fluids, Fresh Frozen Plasma and Antifibrinolytics on Fibrinolysis in a Thrombelastography-Based, in-Vitro, Whole-Blood Model. Blood Coagul. Fibrinolysis 2013, 24, 489–497. [Google Scholar] [CrossRef]
- Guzzetta, N.A.; Monitz, H.G.; Fernandez, J.D.; Fazlollah, T.M.; Knezevic, A.; Miller, B.E. Correlations between Activated Clotting Time Values and Heparin Concentration Measurements in Young Infants Undergoing Cardiopulmonary Bypass. Anesth. Analg. 2010, 111, 173–179. [Google Scholar] [CrossRef]
- Raymond, P.D.; Ray, M.J.; Callen, S.N.; Marsh, N.A. Heparin Monitoring During Cardiac Surgery. Part 2: Calculating the Overestimation of Heparin by the Activated Clotting Time. Perfusion 2003, 18, 277–281. [Google Scholar] [CrossRef]
- Agati, S.; Ciccarello, G.; Salvo, D.; Turla, G.; Undar, A.; Mignosa, C. Use of a Novel Anticoagulation Strategy During Ecmo in a Pediatric Population: Single-Center Experience. ASAIO J. 2006, 52, 513–516. [Google Scholar]
- Alexander, D.C.; Butt, W.W.; Best, J.D.; Donath, S.M.; Monagle, P.T.; Shekerdemian, L.S. Correlation of Thromboelastography with Standard Tests of Anticoagulation in Paediatric Patients Receiving Extracorporeal Life Support. Thromb. Res. 2010, 125, 387–392. [Google Scholar] [CrossRef]
- Kozek-Langenecker, S.A.; Ahmed, A.B.; Afshari, A.; Albaladejo, P.; Aldecoa, C.; Barauskas, G.; de Robertis, E.; Faraoni, D.; Filipescu, D.C.; Fries, D.; et al. Management of Severe Perioperative Bleeding: Guidelines from the European Society of Anaesthesiology: First Update 2016. Eur. J. Anaesthesiol. 2017, 34, 332–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossaint, R.; Bouillon, B.; Cerny, V.; Coats, T.J.; Duranteau, J.; Fernandez-Mondejar, E.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Nardi, G.; et al. The European Guideline on Management of Major Bleeding and Coagulopathy Following Trauma: Fourth Edition. Crit. Care 2016, 20, 100. [Google Scholar] [CrossRef] [PubMed]
- Boer, C.; Meesters, M.I.; Milojevic, M.; Benedetto, U.; Bolliger, D.; von Heymann, C.; Jeppsson, A.; Koster, A.; Osnabrugge, R.L.; Ranucci, M.; et al. Task Force on Patient Blood Management for Adult Cardiac Surgery of the European Association for Cardio-Thoracic, Surgery, Anaesthesiology the European Association of Cardiothoracic Anaesthesiology. 2017 Eacts/Eacta Guidelines on Patient Blood Management for Adult Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2018, 32, 88–120. [Google Scholar]
- Thiagarajan, R.R.; Barbaro, R.P.; Rycus, P.T.; McMullan, D.M.; Conrad, S.A.; Fortenberry, J.D.; Paden, M.L.; Elso Member Centers. Extracorporeal Life Support Organization Registry International Report 2016. ASAIO J. 2017, 63, 60–67. [Google Scholar] [CrossRef]
- Ganter, M.T.; Hofer, C.K. Coagulation Monitoring: Current Techniques and Clinical Use of Viscoelastic Point-of-Care Coagulation Devices. Anesth. Analg. 2018, 106, 1366–1375. [Google Scholar] [CrossRef] [Green Version]
- Warkentin, T.E.; Levine, M.N.; Hirsh, J.; Horsewood, P.; Roberts, R.S.; Gent, M.; Kelton, J.G. Heparin-Induced Thrombocytopenia in Patients Treated with Low-Molecular-Weight Heparin or Unfractionated Heparin. N. Engl. J. Med. 1995, 332, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Schmugge, M.; Risch, L.; Huber, A.R.; Benn, A.; Fischer, J.E. Heparin-Induced Thrombocytopenia-Associated Thrombosis in Pediatric Intensive Care Patients. Pediatrics 2002, 109, E10. [Google Scholar] [CrossRef] [Green Version]
- Scott, L.K.; Grier, L.R.; Conrad, S.A. Heparin-Induced Thrombocytopenia in a Pediatric Patient Receiving Extracorporeal Membrane Oxygenation Managed with Argatroban. Pediatr. Crit. Care Med. 2006, 7, 473–475. [Google Scholar] [CrossRef]
- Takemoto, C.M.; Streiff, M.B. Heparin-Induced Thrombocytopenia Screening and Management in Pediatric Patients. Hematol. Am. Soc. Hematol. Educ. Program 2011, 2011, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Durrani, J.; Malik, F.; Ali, N.; Jafri, S.I.M. To Be or Not to Be a Case of Heparin Resistance. J. Community Hosp. Intern. Med. Perspect. 2018, 8, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Penk, J.S.; Reddy, S.; Polito, A.; Cisco, M.J.; Allan, C.K.; Bembea, M.M.; Giglia, T.M.; Cheng, H.H.; Thiagarajan, R.R.; Dalton, H.J. Bleeding and Thrombosis with Pediatric Extracorporeal Life Support: A Roadmap for Management, Research, and the Future from the Pediatric Cardiac Intensive Care Society: Part 1. Pediatr. Crit. Care Med. 2019, 20, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.K.; Lewis, L.; Sommerauer, J.F. Aprotinin in the Management of Life-Threatening Bleeding during Extracorporeal Life Support. Perfusion 2000, 15, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Downard, C.D.; Betit, P.; Chang, R.W.; Garza, J.J.; Arnold, J.H.; Wilson, J.M. Impact of Amicar on Hemorrhagic Complications of Ecmo: A Ten-Year Review. J. Pediatr. Surg. 2003, 38, 1212–1216. [Google Scholar] [CrossRef]
- Van der Staak, F.H.; de Haan, A.F.; Geven, W.B.; Festen, C. Surgical Repair of Congenital Diaphragmatic Hernia During Extracorporeal Membrane Oxygenation: Hemorrhagic Complications and the Effect of Tranexamic Acid. J. Pediatr. Surg. 1997, 32, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Coleman, M.; Davis, J.; Maher, K.O.; Deshpande, S.R. Clinical and Hematological Outcomes of Aminocaproic Acid Use During Pediatric Cardiac Ecmo. J. Extra Corpor. Technol. 2021, 53, 40–45. [Google Scholar]
- Mangano, D.T.; Tudor, I.C.; Dietzel, C.; Group Multicenter Study of Perioperative Ischemia Research, Research Ischemia, and Foundation Education. The Risk Associated with Aprotinin in Cardiac Surgery. N. Engl. J. Med. 2006, 354, 353–365. [Google Scholar] [CrossRef]
- Andrew, M.; Paes, B.; Johnston, M. Development of the Hemostatic System in the Neonate and Young Infant. Am. J. Pediatr. Hematol. Oncol. 1990, 12, 95–104. [Google Scholar] [CrossRef]
- Bulas, D.; Glass, P. Neonatal Ecmo: Neuroimaging and Neurodevelopmental Outcome. Semin. Perinatol. 2005, 29, 58–65. [Google Scholar] [CrossRef]
- Singh, G.; Nahirniak, S.; Arora, R.; Legare, J.F.; Kanji, H.D.; Nagpal, D.; Lamarche, Y.; Fan, E.; Parhar, K.K.S. Transfusion Thresholds for Adult Respiratory Extracorporeal Life Support: An Expert Consensus Document. Can. J. Cardiol. 2020, 36, 1550–1553. [Google Scholar] [CrossRef]
- Nellis, M.E.; Saini, A.; Spinella, P.C.; Davis, P.J.; Steiner, M.E.; Tucci, M.; Cushing, M.; Demaret, P.; Stanworth, S.J.; Leteurtre, S.; et al. Pediatric Plasma and Platelet Transfusions on Extracorporeal Membrane Oxygenation: A Subgroup Analysis of Two Large International Point-Prevalence Studies and the Role of Local Guidelines. Pediatr. Crit. Care Med. 2020, 21, 267–275. [Google Scholar] [CrossRef]
- Dominguez, T.E.; Mitchell, M.; Friess, S.H.; Huh, J.W.; Manno, C.S.; Ravishankar, C.; Gaynor, J.W.; Tabbutt, S. Use of Recombinant Factor Viia for Refractory Hemorrhage During Extracorporeal Membrane Oxygenation. Pediatr. Crit. Care Med. 2005, 6, 348–351. [Google Scholar] [CrossRef]
- Niebler, R.A.; Punzalan, R.C.; Marchan, M.; Lankiewicz, M.W. Activated Recombinant Factor Vii for Refractory Bleeding During Extracorporeal Membrane Oxygenation. Pediatr. Crit. Care Med. 2010, 11, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Bui, J.D.; Despotis, G.D.; Trulock, E.P.; Patterson, G.A.; Goodnough, L.T. Fatal Thrombosis after Administration of Activated Prothrombin Complex Concentrates in a Patient Supported by Extracorporeal Membrane Oxygenation Who Had Received Activated Recombinant Factor Vii. J. Thorac. Cardiovasc. Surg. 2002, 124, 852–854. [Google Scholar] [CrossRef] [Green Version]
- Syburra, T.; Lachat, M.; Genoni, M.; Wilhelm, M.J. Fatal Outcome of Recombinant Factor Viia in Heart Transplantation with Extracorporeal Membrane Oxygenation. Ann. Thorac. Surg. 2010, 89, 1643–1645. [Google Scholar] [CrossRef] [Green Version]
- Velik-Salchner, C.; Sergi, C.; Fries, D.; Moser, P.; Streif, W.; Kolbitsch, C. Use of Recombinant Factor Viia (Novoseven) in Combination with Other Coagulation Products Led to a Thrombotic Occlusion of the Truncus Brachiocephalicus in a Neonate Supported by Extracorporal Membrane Oxygenation. Anesth. Analg. 2005, 101, 924. [Google Scholar] [CrossRef]
- Bates, S.M.; Weitz, J.I. The Mechanism of Action of Thrombin Inhibitors. J. Invasive Cardiol. 2000, 12, 27F–32F. [Google Scholar] [PubMed]
- Young, G.; Yonekawa, K.E.; Nakagawa, P.; Nugent, D.J. Argatroban as an Alternative to Heparin in Extracorporeal Membrane Oxygenation Circuits. Perfusion 2004, 19, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.K.; Tiruvoipati, R.; Chatterjee, S.; Sosnowski, A.; Firmin, R.K. Extracorporeal Membrane Oxygenation with Lepirudin Anticoagulation for Wegener’s Granulomatosis with Heparin-Induced Thrombocytopenia. ASAIO J. 2005, 51, 477–479. [Google Scholar] [CrossRef]
- Nagle, E.L.; Dager, W.E.; Duby, J.J.; Roberts, A.J.; Kenny, L.E.; Murthy, M.S.; Pretzlaff, R.K. Bivalirudin in Pediatric Patients Maintained on Extracorporeal Life Support. Pediatr. Crit. Care Med. 2013, 14, e182–e188. [Google Scholar] [CrossRef]
- Sanfilippo, F.; Curro, J.M.; la Via, L.; Dezio, V.; Martucci, G.; Brancati, S.; Murabito, P.; Pappalardo, F.; Astuto, M. Use of Nafamostat Mesilate for Anticoagulation During Extracorporeal Membrane Oxygenation: A Systematic Review. Artif. Organs, 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Seelhammer, T.G.; Bohman, J.K.; Schulte, P.J.; Hanson, A.C.; Aganga, D.O. Comparison of Bivalirudin Versus Heparin for Maintenance Systemic Anticoagulation During Adult and Pediatric Extracorporeal Membrane Oxygenation. Crit. Care Med. 2021, 49, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Preston, T.J.; Dalton, H.J.; Nicol, K.K.; Ferrall, B.R.; Miller, J.C.; Hayes, D., Jr. Plasma Exchange on Venovenous Extracorporeal Membrane Oxygenation with Bivalirudin Anticoagulation. World J. Pediatr. Congenit. Heart Surg. 2015, 6, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, D.L.; Biever, P.M.; Benk, C.; Ahrens, I.; Bode, C.; Wengenmayer, T. Dual Antiplatelet Therapy (Dapt) Versus No Antiplatelet Therapy and Incidence of Major Bleeding in Patients on Venoarterial Extracorporeal Membrane Oxygenation. PLoS ONE 2016, 11, e0159973. [Google Scholar] [CrossRef]
- Radomski, M.W.; Palmer, R.M.; Moncada, S. The Anti-Aggregating Properties of Vascular Endothelium: Interactions between Prostacyclin and Nitric Oxide. Br. J. Pharmacol. 1987, 92, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, J. Nitric Oxide: Platelet Protectant Properties During Cardiopulmonary Bypass/Ecmo. J. Extra Corpor. Technol. 2002, 34, 144–147. [Google Scholar]
- Addonizio, V.P.; Strauss, J.F.; Macarak, E.J.; Colman, R.W.; Edmunds, H., Jr. Preservation of Platelet Number and Function with Prostaglandin E1 During Total Cardiopulmonary Bypass in Rhesus Monkeys. Surgery 1978, 83, 619–625. [Google Scholar]
- Tayama, E.; Hayashida, N.; Akasu, K.; Kosuga, T.; Fukunaga, S.; Akashi, H.; Kawara, T.; Aoyagi, S. Biocompatibility of Heparin-Coated Extracorporeal Bypass Circuits: New Heparin Bonded Bioline System. Artif. Organs 2000, 24, 618–623. [Google Scholar] [CrossRef]
- Marcolin, R.; Bombino, M.; Fumagalli, R.; Pesenti, A. Veno-Venous Els with Heparin Bonded Circuits. Int. J. Artif. Organs 1995, 18, 624–626. [Google Scholar] [CrossRef]
- Glauber, M.; Szefner, J.; Senni, M.; Gamba, A.; Mamprin, F.; Fiocchi, R.; Somaschini, M.; Ferrazzi, P. Reduction of Haemorrhagic Complications During Mechanically Assisted Circulation with the Use of a Multi-System Anticoagulation Protocol. Int. J. Artif. Organs 1995, 18, 649–655. [Google Scholar] [CrossRef] [Green Version]
Indications |
1. AT deficiency 2. Heparin resistance |
Recombinant AT Dose |
Loading dose (Units) |
Loading Dose is given over 15 min immediately followed by a continuous infusion of the maintenance dose |
Maintenance dose (Units/h) |
Human AT dose |
Loading dose (Units) |
Maintenance dose (q 24 h) Loading Dose × 0.6 |
Complications |
1. Bleeding 2. Anaphylaxis 3. Hematuria |
Monitoring parameters |
AT levels q 12 h Unfractionated heparin assay q 6 h |
Initial Monitoring Time | AT Level | Dose Adjustment | Recheck AT Level |
2 h after initiation of treatment | <80% | Increase 30% | 2 h after each dose adjustment |
80–100% | None | 6 h after initiation of treatment or dose adjustment | |
>100% | Decrease 20% | 2 h after each dose adjustment |
Laboratory Tests | Frequency | Target Range |
---|---|---|
ACT | Every 1 h for first six hours of ECMO, then every 2 h if stable. | Range 180–220 s. If there is excessive bleeding decreases the target as per MD. |
PT/aPTT/INR | Q 6–12 h | PT 10–13 s PTT 1.5–2.5 times normal (60–80 s) PT/INR normal or close to normal <1.5 |
Heparin Assay Unfractionated (Anti-Xa) | Q 6–12 h | 0.3–0.7 IU/mL |
Antithrombin (AT) | Q 12 h, once level is therapeutic and stable: Q 24 h. | 50–80% * Start recombinant AT and follow protocol if low |
Fibrinogen/FDP | Q 12–24 h | Fibrinogen > 150 mg/dL (bleeding patient) >100 mg/dL (nonbleeding patient) FDP 10–40 |
Platelet Count | Q 6 h first 48 h, then Q 12 h. | 50,000–100,000 × 109/L unless VHA indicates need to give >100,000 × 109/L if bleeding. |
Rotem®/TEG® | Daily, PRN for severe bleeding or thrombosis(Compare with Heparinase sample) | Clotting Time (CT) Normal: 5–10 min |
Clot formation time (CFT) Normal: 1–3 min Target: 3× CFT of Heparinase sample | ||
Alpha angle (α) Normal: 53–72 degrees | ||
Max clot firmness/Clot strength (MCF) Normal: 50–70 mm Target: >50 in bleeding | ||
Lysis Index 30min after CT (LY30) Normal: 0–7% |
Indications |
1. In patients at risk for bleeding including all post-operative patients 2. In patients with significant bleeding with normal platelets and coagulation factors |
Dose |
The dose is 50–100 mg/kg bolus over one hour followed by continuous drip of 10–40 mg/kg/h. (Maximum dose 30 gm/day) |
Complications |
Clots in the extracorporeal circuit Anaphylaxis |
Monitoring parameters |
ACT 180–220 s FDP 10–40 mcg/mL Fibrinogen > 200 mg/dL Platelets > 150,000/mL |
Parameter | Goal | Guideline |
---|---|---|
PRBC’s | Hemoglobin 70–90 gm/L | PRBC’s 10 mL/kg (maximum 2 units) |
Platelets | >80,000 >100,000 × 109/L (in bleeding patients) | Platelets 10 mL/kg (maximum 2 units) |
FFP | INR < 1.5 (bleeding patient) INR < 3 (nonbleeding patient) | FFP 10 mL/kg (maximum 2 units) |
Cryoprecipitate | Fibrinogen > 1.5 gm/L (bleeding patient) >1 gm/L(nonbleeding patient) | Number of units = [(200-fibrinogen) (kg)] ÷ 200 1 unit/5 kg (maximum 6 units) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chegondi, M.; Vijayakumar, N.; Totapally, B.R. Management of Anticoagulation during Extracorporeal Membrane Oxygenation in Children. Pediatr. Rep. 2022, 14, 320-332. https://doi.org/10.3390/pediatric14030039
Chegondi M, Vijayakumar N, Totapally BR. Management of Anticoagulation during Extracorporeal Membrane Oxygenation in Children. Pediatric Reports. 2022; 14(3):320-332. https://doi.org/10.3390/pediatric14030039
Chicago/Turabian StyleChegondi, Madhuradhar, Niranjan Vijayakumar, and Balagangadhar R. Totapally. 2022. "Management of Anticoagulation during Extracorporeal Membrane Oxygenation in Children" Pediatric Reports 14, no. 3: 320-332. https://doi.org/10.3390/pediatric14030039
APA StyleChegondi, M., Vijayakumar, N., & Totapally, B. R. (2022). Management of Anticoagulation during Extracorporeal Membrane Oxygenation in Children. Pediatric Reports, 14(3), 320-332. https://doi.org/10.3390/pediatric14030039