Motion and Form Perception in Childhood-Onset Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Assessment
2.2. Motion and Form Perception
2.3. Data Analysis
3. Results
3.1. Differences between COS and Controls in Motion and Form Perception
3.2. Correlations between Visual Perception and Clinical Measures
3.3. Bayesian Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Driver, D.I.; Gogtay, N.; Rapoport, J.L. Childhood Onset Schizophrenia and Early Onset Schizophrenia Spectrum Disorders. Child Adolesc. Psychiatr. Clin. N. Am. 2013, 22, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Gochman, P.; Miller, R.; Rapoport, J.L. Childhood-onset schizophrenia: The challenge of diagnosis. Curr. Psychiatry Rep. 2011, 13, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Driver, D.I.; Thomas, S.; Gogtay, N.; Rapoport, J.L. Childhood-Onset Schizophrenia and Early-onset Schizophrenia Spectrum Disorders: An Update. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 71–90. [Google Scholar] [CrossRef]
- Giannitelli, M.; Consoli, A.; Raffin, M.; Jardri, R.; Levinson, D.F.; Cohen, D.; Laurent-Levinson, C. An overview of medical risk factors for childhood psychosis: Implications for research and treatment. Schizophr. Res. 2018, 192, 39–49. [Google Scholar] [CrossRef]
- Kendhari, J.; Shankar, R.; Young-Walker, L. A Review of Childhood-Onset Schizophrenia. Focus 2016, 14, 328–332. [Google Scholar] [CrossRef]
- Díaz-Caneja, C.M.; Pina-Camacho, L.; Rodríguez-Quiroga, A.; Fraguas, D.; Parellada, M.; Arango, C. Predictors of outcome in early-onset psychosis: A systematic review. NPJ Schizophr. 2015, 1, 14005. [Google Scholar] [CrossRef]
- Harvey, P.D.; Isner, E.C. Cognition, Social Cognition, and Functional Capacity in Early-Onset Schizophrenia. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 171–182. [Google Scholar] [CrossRef] [PubMed]
- De Berardis, D.; De Filippis, S.; Masi, G.; Vicari, S.; Zuddas, A. A Neurodevelopment Approach for a Transitional Model of Early Onset Schizophrenia. Brain Sci. 2021, 11, 275. [Google Scholar] [CrossRef]
- Fraguas, D.; Díaz-Caneja, C.M.; Rodríguez-Quiroga, A.; Arango, C. Oxidative Stress and Inflammation in Early Onset First Episode Psychosis: A Systematic Review and Meta-Analysis. Int. J. Neuropsychopharmacol. 2017, 20, 435–444. [Google Scholar] [CrossRef]
- Hoffmann, A.; Ziller, M.; Spengler, D. Childhood-Onset Schizophrenia: Insights from Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2018, 19, 3829. [Google Scholar] [CrossRef]
- Zhan, N.; Sham, P.C.; So, H.C.; Lui, S.S.Y. The genetic basis of onset age in schizophrenia: Evidence and models. Front. Genet. 2023, 14, 1163361. [Google Scholar] [CrossRef]
- Lipner, E.; Murphy, S.K.; Ellman, L.M. Prenatal Maternal Stress and the Cascade of Risk to Schizophrenia Spectrum Disorders in Offspring. Curr. Psychiatry Rep. 2019, 21, 99. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.C.; Lee, F.S. Translating Developmental Neuroscience to Understand Risk for Psychiatric Disorders. Am. J. Psychiatry 2023, 180, 540–547. [Google Scholar] [CrossRef]
- Schmitt, A.; Falkai, P.; Papiol, S. Neurodevelopmental disturbances in schizophrenia: Evidence from genetic and environmental factors. J. Neural. Transm. 2023, 130, 195–205. [Google Scholar] [CrossRef]
- Hall, J.; Bray, N.J. Schizophrenia Genomics: Convergence on Synaptic Development, Adult Synaptic Plasticity, or Both? Biol. Psychiatry 2022, 91, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Polanczyk, G.; Moffitt, T.E.; Arseneault, L.; Cannon, M.; Ambler, A.; Keefe, R.S.E.; Houts, R.; Odgers, C.L.; Caspi, A. Etiological and Clinical Features of Childhood Psychotic Symptoms: Results From a Birth Cohort. Arch. Gen. Psychiatry 2010, 67, 328–338. [Google Scholar] [CrossRef]
- Filatova, S.; Koivumaa-Honkanen, H.; Hirvonen, N.; Freeman, A.; Ivandic, I.; Hurtig, T.; Khandaker, G.M.; Jones, P.B.; Moilanen, K.; Miettunen, J. Early motor developmental milestones and schizophrenia: A systematic review and meta-analysis. Schizophr. Res. 2017, 188, 13–20. [Google Scholar] [CrossRef]
- Niemi, L.T.; Suvisaari, J.M.; Tuulio-Henriksson, A.; Lönnqvist, J.K. Childhood developmental abnormalities in schizophrenia: Evidence from high-risk studies. Schizophr. Res. 2003, 60, 239–258. [Google Scholar] [CrossRef]
- Nicolson, R.; Lenane, M.; Singaracharlu, S.; Malaspina, D.; Giedd, J.N.; Hamburger, S.D.; Gochman, P.; Bedwell, J.; Thaker, G.K.; Fernandez, T.; et al. Premorbid speech and language impairments in childhood-onset schizophrenia: Association with risk factors. Am. J. Psychiatry 2000, 157, 794–800. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Zhao, Q.; Ou, P.; Zhao, W. Working memory deficits in children with schizophrenia and its mechanism, susceptibility genes, and improvement: A literature review. Front. Psychiatry 2022, 13, 899344. [Google Scholar] [CrossRef]
- Øie, M.G.; Sundet, K.; Haug, E.; Zeiner, P.; Klungsøyr, O.; Rund, B.R. Cognitive Performance in Early-Onset Schizophrenia and Attention-Deficit/Hyperactivity Disorder: A 25-Year Follow-Up Study. Front. Psychol. 2021, 11, 606365. [Google Scholar] [CrossRef]
- D’Angelo, E.J.; Morelli, N.; Lincoln, S.H.; Graber, K.; Tembulkar, S.; Gaudet, A.; Gonzalez-Heydrich, J. Social impairment and social language deficits in children and adolescents with and at risk for psychosis. Schizophr. Res. 2019, 204, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.M.; Cajão, R.; Lopes, R.; Jerónimo, R.; Barahona-Corrêa, J.B. Social Cognition in Schizophrenia and Autism Spectrum Disorders: A Systematic Review and Meta-Analysis of Direct Comparisons. Front. Psychiatry 2018, 9, 504. [Google Scholar] [CrossRef]
- Berman, R.A.; Gotts, S.J.; McAdams, H.M.; Greenstein, D.; Lalonde, F.; Clasen, L.; Watsky, R.E.; Shora, L.; Ordonez, A.E.; Raznahan, A.; et al. Disrupted sensorimotor and social-cognitive networks underlie symptoms in childhood-onset schizophrenia. Brain 2016, 139, 276–291. [Google Scholar] [CrossRef]
- de Boer, J.N.; van Hoogdalem, M.; Mandl, R.C.W.; Brummelman, J.; Voppel, A.E.; Begemann, M.J.H.; van Dellen, E.; Wijnen, F.N.K.; Sommer, I.E.C. Language in schizophrenia: Relation with diagnosis, symptomatology and white matter tracts. NPJ Schizophr. 2020, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Baltaxe, C.A.M.; Simmons, J.Q., III. Speech and Language Disorders in Children and Adolescents With Schizophrenia. Schizophr. Bull. 1995, 21, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.K.; Krantz, M.F.; Skovgaard, L.T.; Brandt, J.M.; Gregersen, M.; Søndergaard, A.; Knudsen, C.B.; Andreassen, A.K.; Veddum, L.; Rohd, S.B.; et al. Impaired motor development in children with familial high risk of schizophrenia or bipolar disorder and the association with psychotic experiences: A 4-year Danish observational follow-up study. Lancet Psychiatry 2023, 10, 108–118. [Google Scholar] [CrossRef]
- Alaghband-Rad, J.; McKenna, K.; Gordon, C.T.; Albus, K.E.; Hamburger, S.D.; Rumsey, J.M.; Frazier, J.A.; Lenane, M.C.; Rapoport, J.L. Childhood-onset schizophrenia: The severity of premorbid course. J. Am. Acad. Child Adolesc. Psychiatry 1995, 34, 1273–1283. [Google Scholar] [CrossRef]
- Jerrell, J.M.; McIntyre, R.S.; Deroche, C.B. Diagnostic clusters associated with an early onset schizophrenia diagnosis among children and adolescents. Hum. Psychopharmacol. 2017, 32, e2589. [Google Scholar] [CrossRef]
- Dickson, H.; Hedges, E.P.; Ma, S.Y.; Cullen, A.E.; MacCabe, J.H.; Kempton, M.J.; Downs, J.; Laurens, K.R. Academic achievement and schizophrenia: A systematic meta-analysis. Psychol. Med. 2020, 50, 1949–1965. [Google Scholar] [CrossRef]
- Verrotti, A.; Moavero, R.; Panzarino, G.; Di Paolantonio, C.; Rizzo, R.; Curatolo, P. The Challenge of Pharmacotherapy in Children and Adolescents with Epilepsy-ADHD Comorbidity. Clin. Drug Investig. 2018, 38, 1–8. [Google Scholar] [CrossRef]
- Nasrallah, H.; Tandon, R.; Keshavan, M. Beyond the facts in schizophrenia: Closing the gaps in diagnosis, pathophysiology, and treatment. Epidemiol. Psychiatr. Sci. 2011, 20, 317–327. [Google Scholar] [CrossRef]
- Greenwood, T.A.; Shutes-David, A.; Tsuang, D.W. Endophenotypes in Schizophrenia: Digging Deeper to Identify Genetic Mechanisms. J. Psychiatr. Brain Sci. 2019, 4, e190005. [Google Scholar] [CrossRef]
- Donati, F.L.; D’Agostino, A.; Ferrarelli, F. Neurocognitive and neurophysiological endophenotypes in schizophrenia: An overview. Biomark. Neuropsychiatry 2020, 3, 100017. [Google Scholar] [CrossRef]
- Kéri, S.; Janka, Z. Critical evaluation of cognitive dysfunctions as endophenotypes of schizophrenia. Acta Psychiatr. Scand. 2004, 110, 83–91. [Google Scholar] [CrossRef]
- Chen, Y. Abnormal visual motion processing in schizophrenia: A review of research progress. Schizophr. Bull. 2011, 37, 709–715. [Google Scholar] [CrossRef]
- Kaliuzhna, M.; Stein, T.; Sterzer, P.; Seymour, K.J. Examining motion speed processing in schizophrenia using the flash lag illusion. Schizophr. Res. Cogn. 2020, 19, 100165. [Google Scholar] [CrossRef]
- Kelemen, O.; Erdélyi, R.; Pataki, I.; Benedek, G.; Janka, Z.; Kéri, S. Theory of Mind and Motion Perception in Schizophrenia. Neuropsychology 2005, 19, 494–500. [Google Scholar] [CrossRef]
- Keane, B.P.; Peng, Y.; Demmin, D.; Silverstein, S.M.; Lu, H. Intact perception of coherent motion, dynamic rigid form, and biological motion in chronic schizophrenia. Psychiatry Res. 2018, 268, 53–59. [Google Scholar] [CrossRef]
- Spencer, J.; Sekuler, A.; Bennett, P.; Christensen, B. Contribution of coherent motion to the perception of biological motion among persons with Schizophrenia. Front. Psychol. 2013, 4, 507. [Google Scholar] [CrossRef]
- Doniger, G.M.; Foxe, J.J.; Murray, M.M.; Higgins, B.A.; Javitt, D.C. Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch. Gen. Psychiatry 2002, 59, 1011–1020. [Google Scholar] [CrossRef]
- Azadmehr, H.; Rupp, A.; Andermann, M.; Pavicic, D.; Herwig, K.; Weisbrod, M.; Resch, F.; Oelkers-Ax, R. Object recognition deficit in early- and adult-onset schizophrenia regardless of age at disease onset. Psychiatry Res. Neuroimaging 2013, 214, 452–458. [Google Scholar] [CrossRef]
- Adámek, P.; Langová, V.; Horáček, J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. Schizophrenia 2022, 8, 27. [Google Scholar] [CrossRef]
- Silverstein, S.M.; Keane, B.P. Perceptual organization impairment in schizophrenia and associated brain mechanisms: Review of research from 2005 to 2010. Schizophr. Bull. 2011, 37, 690–699. [Google Scholar] [CrossRef]
- Costa, A.L.L.; Costa, D.L.; Pessoa, V.F.; Caixeta, F.V.; Maior, R.S. Systematic review of visual illusions in schizophrenia. Schizophr. Res. 2023, 252, 13–22. [Google Scholar] [CrossRef]
- Green, M.F.; Lee, J.; Cohen, M.S.; Engel, S.A.; Korb, A.S.; Nuechterlein, K.H.; Wynn, J.K.; Glahn, D.C. Functional neuroanatomy of visual masking deficits in schizophrenia. Arch. Gen. Psychiatry 2009, 66, 1295–1303. [Google Scholar] [CrossRef]
- Butler, P.D.; Schechter, I.; Zemon, V.; Schwartz, S.G.; Greenstein, V.C.; Gordon, J.; Schroeder, C.E.; Javitt, D.C. Dysfunction of Early-Stage Visual Processing in Schizophrenia. Am. J. Psychiatry 2001, 158, 1126–1133. [Google Scholar] [CrossRef]
- Ho, N.F.; Lin, A.Y.; Tng, J.X.J.; Chew, Q.H.; Cheung, M.W.; Javitt, D.C.; Sim, K. Abnormalities in visual cognition and associated impaired interactions between visual and attentional networks in schizophrenia and brief psychotic disorder. Psychiatry Res. Neuroimaging 2022, 327, 111545. [Google Scholar] [CrossRef]
- Kravitz, D.J.; Saleem, K.S.; Baker, C.I.; Ungerleider, L.G.; Mishkin, M. The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends Cogn. Sci. 2013, 17, 26–49. [Google Scholar] [CrossRef]
- Freud, E.; Plaut, D.C.; Behrmann, M. ‘What’ Is Happening in the Dorsal Visual Pathway. Trends Cogn. Sci. 2016, 20, 773–784. [Google Scholar] [CrossRef]
- Milner, A.D. How do the two visual streams interact with each other? Exp. Brain Res. 2017, 235, 1297–1308. [Google Scholar] [CrossRef]
- Gold, J.M.; Robinson, B.; Leonard, C.J.; Hahn, B.; Chen, S.; McMahon, R.P.; Luck, S.J. Selective Attention, Working Memory, and Executive Function as Potential Independent Sources of Cognitive Dysfunction in Schizophrenia. Schizophr. Bull. 2018, 44, 1227–1234. [Google Scholar] [CrossRef]
- Butler, P.D. Early-Stage Visual Processing Deficits in Schizophrenia. In Handbook of Neurochemistry and Molecular Neurobiology: Schizophrenia; Lajtha, A., Javitt, D., Kantrowitz, J., Eds.; Springer: Boston, MA, USA, 2009; pp. 331–352. [Google Scholar]
- Fitapelli, B.; Lindenmayer, J.P. Advances in Cognitive Remediation Training in Schizophrenia: A Review. Brain Sci. 2022, 12, 129. [Google Scholar] [CrossRef]
- Atkinson, J.; King, J.; Braddick, O.; Nokes, L.; Anker, S.; Braddick, F. A specific deficit of dorsal stream function in Williams’ syndrome. Neuroreport 1997, 8, 1919–1922. [Google Scholar] [CrossRef]
- Spencer, J.; O’Brien, J.; Riggs, K.; Braddick, O.; Atkinson, J.; Wattam-Bell, J. Motion processing in autism: Evidence for a dorsal stream deficiency. Neuroreport 2000, 11, 2765–2767. [Google Scholar] [CrossRef]
- Van der Hallen, R.; Manning, C.; Evers, K.; Wagemans, J. Global Motion Perception in Autism Spectrum Disorder: A Meta-Analysis. J. Autism Dev. Disord. 2019, 49, 4901–4918. [Google Scholar] [CrossRef]
- Gunn, A.; Cory, E.; Atkinson, J.; Braddick, O.; Wattam-Bell, J.; Guzzetta, A.; Cioni, G. Dorsal and ventral stream sensitivity in normal development and hemiplegia. Neuroreport 2002, 13, 843–847. [Google Scholar] [CrossRef]
- Kogan, C.S.; Boutet, I.; Cornish, K.; Zangenehpour, S.; Mullen, K.T.; Holden, J.J.; Der Kaloustian, V.M.; Andermann, E.; Chaudhuri, A. Differential impact of the FMR1 gene on visual processing in fragile X syndrome. Brain 2004, 127, 591–601. [Google Scholar] [CrossRef]
- Micheletti, S.; Corbett, F.; Atkinson, J.; Braddick, O.; Mattei, P.; Galli, J.; Calza, S.; Fazzi, E. Dorsal and Ventral Stream Function in Children With Developmental Coordination Disorder. Front. Hum. Neurosci. 2021, 15, 703217. [Google Scholar] [CrossRef]
- Braddick, O.; Atkinson, J.; Wattam-Bell, J. Normal and anomalous development of visual motion processing: Motion coherence and ‘dorsal-stream vulnerability’. Neuropsychologia 2003, 41, 1769–1784. [Google Scholar] [CrossRef]
- Grinter, E.J.; Maybery, M.T.; Badcock, D.R. Vision in developmental disorders: Is there a dorsal stream deficit? Brain Res. Bull. 2010, 82, 147–160. [Google Scholar] [CrossRef]
- Hadad, B.-S.; Schwartz, S.; Maurer, D.; Lewis, T. Motion perception: A review of developmental changes and the role of early visual experience. Front. Integr. Neurosci. 2015, 9, 49. [Google Scholar] [CrossRef]
- Atkinson, J. The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—Motion, mathematics, amblyopia, actions, and attention. J. Vis. 2017, 17, 26. [Google Scholar] [CrossRef]
- Braddick, O.; Atkinson, J. Visual control of manual actions: Brain mechanisms in typical development and developmental disorders. Dev. Med. Child Neurol. 2013, 55 (Suppl. 4), 13–18. [Google Scholar] [CrossRef]
- First, M.B.; Williams, J.B.W.; Karg, R.S.; Spitzer, R.L. Structured Clinical Interview for DSM-5® Disorders—Clinician Version (SCID-5-CV); American Psychiatric Publishing: Washington, DC, USA, 2016. [Google Scholar]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Hollingshead, A.B. Four factor index of social status. Yale J. Sociol. 2011, 8, 21–52. [Google Scholar]
- Wechsler, D. Wechsler Adult Intelligence Scale-IV (WAIS-IV); Pearsons: San Antonio, TX, USA, 2008. [Google Scholar]
- Lu, Z.-L.; Dosher, B. Visual Psychophysics: From Laboratory to Theory; The MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Kéri, S.; Must, A.; Kelemen, O.; Benedek, G.; Janka, Z. Development of visual motion perception in children of patients with schizophrenia and bipolar disorder: A follow-up study. Schizophr. Res. 2006, 82, 9–14. [Google Scholar] [CrossRef]
- Donato, R.; Pavan, A.; Campana, G. Investigating the Interaction Between Form and Motion Processing: A Review of Basic Research and Clinical Evidence. Front. Psychol. 2020, 11, 566848. [Google Scholar] [CrossRef]
- Matheson, H.E.; McMullen, P.A. Neuropsychological dissociations between motion and form perception suggest functional organization in extrastriate cortical regions in the human brain. Brain Cogn. 2010, 74, 160–168. [Google Scholar] [CrossRef]
- Zachariou, V.; Klatzky, R.; Behrmann, M. Ventral and dorsal visual stream contributions to the perception of object shape and object location. J. Cogn. Neurosci. 2014, 26, 189–209. [Google Scholar] [CrossRef]
- Martin, C.B.; Barense, M.D. Perception and Memory in the Ventral Visual Stream and Medial Temporal Lobe. Annu. Rev. Vis. Sci. 2023, 9, 409–434. [Google Scholar] [CrossRef]
- Atkinson, J.; Braddick, O. Visual development. Handb. Clin. Neurol. 2020, 173, 121–142. [Google Scholar]
- James, K.H.; Kersey, A.J. Dorsal stream function in the young child: An fMRI investigation of visually guided action. Dev. Sci. 2018, 21, e12546. [Google Scholar] [CrossRef]
- Benassi, M.; Giovagnoli, S.; Pansell, T.; Mandolesi, L.; Bolzani, R.; Magri, S.; Forsman, L.; Hellgren, K. Developmental trajectories of global motion and global form perception from 4 years to adulthood. J. Exp. Child Psychol. 2021, 207, 105092. [Google Scholar] [CrossRef]
- Klaver, P.; Lichtensteiger, J.; Bucher, K.; Dietrich, T.; Loenneker, T.; Martin, E. Dorsal stream development in motion and structure-from-motion perception. NeuroImage 2008, 39, 1815–1823. [Google Scholar] [CrossRef]
- Männik, K.; Mägi, R.; Macé, A.; Cole, B.; Guyatt, A.L.; Shihab, H.A.; Maillard, A.M.; Alavere, H.; Kolk, A.; Reigo, A.; et al. Copy Number Variations and Cognitive Phenotypes in Unselected Populations. JAMA 2015, 313, 2044–2054. [Google Scholar] [CrossRef]
Controls (n = 21) | Childhood-Onset Schizophrenia (n = 21) | |
---|---|---|
Male/female | 15/6 | 15/6 |
Age (years) | 19.3 (4.2) | 19.5 (4.8) |
Parental socioeconomic status (Hollingshead) | 46.8 (17.9) | 47.0 (15.3) |
IQ (Wechsler-IV) | 89.6 (11.4) | 90.3 (12.5) |
Duration of illness (years) | - | 9.2 (3.4) |
PANSS—positive symptoms | - | 19.3 (5.7) |
PANSS—negative symptoms | - | 21.6 (8.0) |
PANSS—general symptoms | - | 45.9 (13.1) |
Type of antipsychotics | - | Clozapine (n = 17) Risperidone (n = 3) Olanzapine (n = 1) |
Chlorpromazine-equivalent dose of antipsychotics (mg/day) | 342.2 (119.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kéri, S.; Kelemen, O. Motion and Form Perception in Childhood-Onset Schizophrenia. Pediatr. Rep. 2024, 16, 88-99. https://doi.org/10.3390/pediatric16010009
Kéri S, Kelemen O. Motion and Form Perception in Childhood-Onset Schizophrenia. Pediatric Reports. 2024; 16(1):88-99. https://doi.org/10.3390/pediatric16010009
Chicago/Turabian StyleKéri, Szabolcs, and Oguz Kelemen. 2024. "Motion and Form Perception in Childhood-Onset Schizophrenia" Pediatric Reports 16, no. 1: 88-99. https://doi.org/10.3390/pediatric16010009
APA StyleKéri, S., & Kelemen, O. (2024). Motion and Form Perception in Childhood-Onset Schizophrenia. Pediatric Reports, 16(1), 88-99. https://doi.org/10.3390/pediatric16010009