Investigating the Relationship Between Midazolam Serum Concentrations and Paediatric Delirium in Critically Ill Children
Abstract
:1. Introduction
1.1. Paediatric Delirium
1.2. Midazolam in the PICU
1.3. Pharmacokinetics and Interactions
1.4. Identification of PD
1.5. Objectives and Hypothesis
2. Materials and Methods
2.1. Design and Setting
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.3.1. Midazolam Concentrations
2.3.2. Midazolam Dosage
2.3.3. SOS-PD Score
2.3.4. Patient Characteristics
2.3.5. Co-Medication
2.3.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gangopadhyay, M.; Smith, H.; Pao, M.; Silver, G.; Deepmala, D.; De Souza, C.; Garcia, G.; Giles, L.; Denton, D.; Jacobowski, N.; et al. Development of the Vanderbilt Assessment for Delirium in Infants and Children to Standardize Pediatric Delirium Assessment By Psychiatrists. Psychosomatics 2017, 58, 355–363. [Google Scholar] [CrossRef]
- The DSM-5 criteria, level of arousal and delirium diagnosis: Inclusiveness is safer. BMC Med. 2014, 12, 141. [CrossRef]
- Bettencourt, A.; Mullen, J.E. Delirium in Children: Identification, Prevention, and Management. Crit. Care Nurse 2017, 37, e9–e18. [Google Scholar] [CrossRef]
- van Dijk, M.; Knoester, H.; van Beusekom, B.S.; Ista, E. Screening pediatric delirium with an adapted version of the Sophia Observation withdrawal Symptoms scale (SOS). Intensive Care Med. 2012, 38, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.A.B.; Gangopadhyay, M.; Goben, C.M.; Jacobowski, N.L.; Chestnut, M.H.; Thompson, J.L.; Chandrasekhar, R.; Williams, S.R.; Griffith, K.; Ely, E.W.; et al. Delirium and Benzodiazepines Associated With Prolonged ICU Stay in Critically Ill Infants and Young Children. Crit. Care Med. 2017, 45, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- van der Mast, R.C. Pathophysiology of delirium. J. Geriatr. Psychiatry Neurol. 1998, 11, 138–145; discussion 157–158. [Google Scholar] [CrossRef]
- Schieveld, J.N.; Leroy, P.L.; van Os, J.; Nicolai, J.; Vos, G.D.; Leentjens, A.F. Pediatric delirium in critical illness: Phenomenology, clinical correlates and treatment response in 40 cases in the pediatric intensive care unit. Intensive Care Med. 2007, 33, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Mody, K.; Kaur, S.; Mauer, E.A.; Gerber, L.M.; Greenwald, B.M.; Silver, G.; Traube, C. Benzodiazepines and Development of Delirium in Critically Ill Children: Estimating the Causal Effect. Crit. Care Med. 2018, 46, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M. Clinical pharmacology of midazolam in neonates and children: Effect of disease-a review. Int. J. Pediatr. 2014, 2014, 309342. [Google Scholar] [CrossRef] [PubMed]
- Ista, E.; van Dijk, M.; Tibboel, D.; de Hoog, M. Assessment of sedation levels in pediatric intensive care patients can be improved by using the COMFORT “behavior” scale. Pediatr. Crit. Care Med. 2005, 6, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.E. Paradoxical reaction to midazolam in children. Korean J. Anesthesiol. 2013, 65, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Peter, J.-U.; Dieudonné, P.; Zolk, O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals 2024, 17, 473. [Google Scholar] [CrossRef]
- Mandema, J.W.; Tuk, B.; van Steveninck, A.L.; Breimer, D.D.; Cohen, A.F.; Danhof, M. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin. Pharmacol. Ther. 1992, 51, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.M.; Ritz, R.; Haberthür, C.; Ha, H.R.; Hunkeler, W.; Sleight, A.J.; Scollo-Lavizzari, G.; Haefeli, W.E. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet 1995, 346, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Spina, S.P.; Ensom, M.H. Clinical pharmacokinetic monitoring of midazolam in critically ill patients. Pharmacotherapy 2007, 27, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Nordt, S.P.; Clark, R.F. Midazolam: A review of therapeutic uses and toxicity. J. Emerg. Med. 1997, 15, 357–365. [Google Scholar] [CrossRef]
- Fragen, R.J. Pharmacokinetics and pharmacodynamics of midazolam given via continuous intravenous infusion in intensive care units. Clin. Ther. 1997, 19, 405–419; discussion 367–408. [Google Scholar] [CrossRef] [PubMed]
- MacGilchrist, A.J.; Birnie, G.G.; Cook, A.; Scobie, G.; Murray, T.; Watkinson, G.; Brodie, M.J. Pharmacokinetics and pharmacodynamics of intravenous midazolam in patients with severe alcoholic cirrhosis. Gut 1986, 27, 190–195. [Google Scholar] [CrossRef]
- Ahonen, J.; Olkkola, K.T.; Takala, A.; Neuvonen, P.J. Interaction between fluconazole and midazolam in intensive care patients. Acta Anaesthesiol. Scand. 1999, 43, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Favié, L.M.A.; Groenendaal, F.; van den Broek, M.P.H.; Rademaker, C.M.A.; de Haan, T.R.; van Straaten, H.L.M.; Dijk, P.H.; van Heijst, A.; Simons, S.H.P.; Dijkman, K.P.; et al. Phenobarbital, Midazolam Pharmacokinetics, Effectiveness, and Drug-Drug Interaction in Asphyxiated Neonates Undergoing Therapeutic Hypothermia. Neonatology 2019, 116, 154–162. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Y.; Kang, Y.; Xu, B.; Wang, P.; Lv, Y.; Wang, Z. Risk Factors of Delirium in Sequential Sedation Patients in Intensive Care Units. Biomed. Res. Int. 2017, 2017, 3539872. [Google Scholar] [CrossRef] [PubMed]
- Madden, K.; Hussain, K.; Tasker, R.C. Anticholinergic Medication Burden in Pediatric Prolonged Critical Illness: A Potentially Modifiable Risk Factor for Delirium. Pediatr. Crit. Care Med. 2018, 19, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Baarslag, M.A.; Allegaert, K.; Knibbe, C.A.; van Dijk, M.; Tibboel, D. Pharmacological sedation management in the paediatric intensive care unit. J. Pharm. Pharmacol. 2017, 69, 498–513. [Google Scholar] [CrossRef] [PubMed]
- Traube, C.; Silver, G.; Kearney, J.; Patel, A.; Atkinson, T.M.; Yoon, M.J.; Halpert, S.; Augenstein, J.; Sickles, L.E.; Li, C.; et al. Cornell Assessment of Pediatric Delirium: A valid, rapid, observational tool for screening delirium in the PICU. Crit. Care Med. 2014, 42, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Janssen, N.J.; Tan, E.Y.; Staal, M.; Janssen, E.P.; Leroy, P.L.; Lousberg, R.; van Os, J.; Schieveld, J.N. On the utility of diagnostic instruments for pediatric delirium in critical illness: An evaluation of the Pediatric Anesthesia Emergence Delirium Scale, the Delirium Rating Scale 88, and the Delirium Rating Scale-Revised R-98. Intensive Care Med. 2011, 37, 1331–1337. [Google Scholar] [CrossRef]
- Ista, E.; van Beusekom, B.; van Rosmalen, J.; Kneyber, M.C.J.; Lemson, J.; Brouwers, A.; Dieleman, G.C.; Dierckx, B.; de Hoog, M.; Tibboel, D.; et al. Validation of the SOS-PD scale for assessment of pediatric delirium: A multicenter study. Crit. Care 2018, 22, 309. [Google Scholar] [CrossRef] [PubMed]
- Popli, V.; Kumar, A. Validation of PRISM III (Pediatric Risk of Mortality) Scoring System in Predicting Risk of Mortality in a Pediatric Intensive Care Unit. Children 2018, 50, 65–75. [Google Scholar]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204. [Google Scholar] [CrossRef]
- Whelan, K.T.; Heckmann, M.K.; Lincoln, P.A.; Hamilton, S.M. Pediatric Withdrawal Identification and Management. J. Pediatr. Intensive Care 2015, 4, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.A.; Rosen, K.R. Midazolam for sedation in the paediatric intensive care unit. Intensive Care Med. 1991, 17 (Suppl. 1), S15–S19. [Google Scholar] [CrossRef] [PubMed]
- Silver, G.; Traube, C.; Gerber, L.M.; Sun, X.; Kearney, J.; Patel, A.; Greenwald, B. Pediatric delirium and associated risk factors: A single-center prospective observational study. Pediatr. Crit. Care Med. 2015, 16, 303–309. [Google Scholar] [CrossRef]
- Harris, J.; Ramelet, A.S.; van Dijk, M.; Pokorna, P.; Wielenga, J.; Tume, L.; Tibboel, D.; Ista, E. Clinical recommendations for pain, sedation, withdrawal and delirium assessment in critically ill infants and children: An ESPNIC position statement for healthcare professionals. Intensive Care Med. 2016, 42, 972–986. [Google Scholar] [CrossRef] [PubMed]
- Kosaki, Y.; Nishizawa, D.; Hasegawa, J.; Yoshida, K.; Ikeda, K.; Ichinohe, T. γ-Aminobutyric acid type A receptor β1 subunit gene polymorphisms are associated with the sedative and amnesic effects of midazolam. Mol. Brain 2024, 17, 70. [Google Scholar] [CrossRef] [PubMed]
- Smeets, T.J.L.; de Geus, H.R.H.; Valkenburg, A.J.; Baidjoe, L.; Gommers, D.; Koch, B.C.P.; Hunfeld, N.G.M.; Endeman, H. The Clearance of Midazolam and Metabolites during Continuous Renal Replacement Therapy in Critically Ill Patients with COVID-19. Blood Purif. 2024, 53, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Martínez, P.; Montosa-García, R.; Marín-Yago, A.; Baeza-Mirete, M.; Muñoz-Rubio, G.M.; Rojo-Rojo, A. Challenges of the Implementation of a Delirium Rate Scale in a Pediatric Intensive Care Unit: A Qualitative Approach. Healthcare 2024, 12, 52. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall Cohort (n = 28) | PD (n = 7) | No PD (n = 21) | p |
---|---|---|---|---|
N (%) or Median (IQR) | N (%) or Median (IQR) | N (%) or Median (IQR) | ||
Gender | 1 | |||
Male | 14 (50.0) | 4 (57.1) | 10 (47.6) | |
Female | 14 (50.0) | 3 (42.9) | 11 (52.4) | |
Age at admission (months) | 4.0 (1.5–21.3) | 16.0 (2.0–34.0) | 3.0 (1.5–9.0) | |
Age category | 0.11 | |||
0–3 months | 13 (46.4) | 2 (28.6) | 11 (52.3) | |
≥3–24 months | 9 (32.1) | 2 (28.6) | 7 (33.3) | 0.333 |
≥2–5 years | 3 (10.7) | 2 (28.6) | 1 (4.8) | |
≥5–12 years | 2 (7.1) | 1 (14.3) | 1 (4.8) | |
≥ 12 years | 1 (3.6) | 0 (0) | 1 (4.8) | |
Weight (kg) | 5.8 (4.4–9.1) | 8.9 (4.9–14.0) | 5.3 (4.2–7.7) | 0.185 |
Height (cm) | 61.3 (55.1–78.8) | 74.0 (58.0–92.5) | 58.0 (55.0–74.8) | 0.184 |
BMI (kg/m2) | 15.2 (14.2–16.3) | 16.0 (14.5–18.1) | 15.0 (14.2–16.3) | 0.458 |
Admission diagnosis | 0.83 | |||
Respiratory failure | 13 (46.4) | 3 (43.0) | 10 (47.6) | |
Cardiac surgery | 5 (17.9) | 1 (14) | 4 (19.0) | |
Liver failure | 4 (14.3) | 2 (290) | 2 (9.5) | |
Infectious | 2 (7.1) | 0 (0.0) | 2 (9.5) | |
Renal/metabolic disorder | 2 (7.1) | 0 (0.0) | 2 (9.5) | |
Neurologic disease | 2 (7.1) | 1 (14) | 1 (4.8) | |
Severity of illness (PRISM-III) | 3.0 (2.0–5.0) | 4.0 (2.0–5.0) | 3.0 (1.5–4.5) | 0.434 |
p-RIFLE admission day 3 | 0.529 | |||
No-Risk | 20 (71.4) | 4 (57.1) | 16 (76.2) | |
Risk | 4 (14.3) | 1 (14.3) | 3 (14.3) | |
Injury | 4 (14.3) | 2 (28.6) | 2 (9.5) | |
Failure | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
p-RIFLE admission day 10 | 0.648 | |||
No-Risk | 7 (25.0) | 3 (42.9) | 4 (19.1) | |
Risk | 2 (7.1) | 0 (0.0) | 2 (9.5) | |
Injury | 2 (7.1) | 1 (14.3) | 1 (4.8) | |
Failure | 2 (7.1) | 0 (0.0) | 2 (9.5) | |
Need for dialysis | 5 (17.9) | 2 (28.6) | 3 (14.3) | 0.574 |
Type of respiratory support | 0.27 | |||
None | 1 (3.6) | 1 (14.3) | 0 (0.0) | |
Conventional nasal | 11 (39.3) | 3 (42.9) | 8 (38.1) | |
Conventional oral | 9 (32.1) | 3 (42.9) | 6 (28.6) | |
Tracheostomy tube | 1 (3.6) | 0 (0.0) | 1 (4.8) | |
High-frequency oscillation | 6 (21.4) | 0 (0.0) | 6 (28.6) | |
Length of mechanical ventilation (days) | 6.0 (5.0–12.5) | 6.0 (4.0–13.0) | 6.0 (5.0–12.0) | 0.767 |
Length of stay PICU (days) | 8.0 (6.3–28.5) | 10.0 (8.0–20.0) | 8.0 (6.0–33.50) | 0.557 |
Length of stay PICU to PD (days) | 8.0 (6.3–28.5) | 8.0 (7.0–10.0) | 8.0 (6.0–33.5) | 0.979 |
Previous hospitalization (yes) | 13 (46.4) | 3 (42.9) | 10 (47.6) | 1 |
Survived to PICU discharge (yes) | 26 (92.9) | 6 (85.7) | 20 (95.2) | 0.444 |
Medicine | Overall Cohort (n = 28) | PD (n = 7) | No PD (n = 21) | p |
---|---|---|---|---|
N (%) or Median (IQR) | N (%) or Median (IQR) | N (%) or Median (IQR) | ||
Fentanyl | ||||
None | 11 (39.3) | 2 (28.6) | 9 (42.9) | 0.668 |
Yes | 17 (60.7) | 5 (71.4) | 12 (57.1) | |
Maintenance dose (mcg/kg/day) | 35.4 (30.3–66.0) | 37.8 (30.2–61.0) | 33.6 (29.8–67.7) | 0.799 |
Cumulative dose (mcg/kg) | 189.0 (149.9–315.8) | 209.5 (171.0–640.4) | 178.4 (132.1–338.9) | 0.383 |
Number of days | 5.0 (3.5–6.5) | 6.0 (5.5–9.5) | 5.0 (3.0–6.8) | 0.219 |
Morphine | ||||
None | 13 (46.4) | 2 (28.6) | 11 (52.4) | 0.396 |
Yes | 15 (53.6) | 5 (71.4) | 10 (47.6) | |
Maintenance dose (mcg/kg/day) | 210.9 (185.0–334.4) | 210.9 (109.7–268.3) | 246.0 (183.5–351.6) | 0.594 |
Cumulative dose (mcg/kg) | 1070.0 (710.0–2467.5) | 710.0 (360.0–2539.7) | 1092.5 (817.0– 2603.1) | 0.371 |
Number of days | 6.0 (3.0–9.0) | 4.0 (2.5–12.5) | 6.0 (3.8–7.5) | 0.757 |
Lorazepam when tapering off midazolam | ||||
None | ||||
Yes | 11 (39.3) | 2 (28.6) | 9 (42.9) | 0.668 |
Cumulative dose (mcg/kg) | 17 (60.7) | 5 (71.4) | 12 (57.1) | |
267.9 (132.5–684.9) | 757.8 (175.6–953.3) | 233.6 (113.4–455.5) | 0.195 | |
Phenobarbital | ||||
None | 20 (71.4) | 5 (71.4) | 15 (71.4) | 1 |
Yes | 8 (28.6) | 2 (28.6) | 6 (28.6) | |
Fluconazole | ||||
None | 16 (57.1) | 7 (100.0) | 19 (90.5) | 1 |
Yes | 2 (7.1) | 0 (0.0) | 2 (9.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marongiu, S.; Bolhuis, M.S.; Touw, D.J.; Kneyber, M.C.J. Investigating the Relationship Between Midazolam Serum Concentrations and Paediatric Delirium in Critically Ill Children. Pediatr. Rep. 2025, 17, 7. https://doi.org/10.3390/pediatric17010007
Marongiu S, Bolhuis MS, Touw DJ, Kneyber MCJ. Investigating the Relationship Between Midazolam Serum Concentrations and Paediatric Delirium in Critically Ill Children. Pediatric Reports. 2025; 17(1):7. https://doi.org/10.3390/pediatric17010007
Chicago/Turabian StyleMarongiu, Sabrina, Mathieu S. Bolhuis, Daan J. Touw, and Martin C. J. Kneyber. 2025. "Investigating the Relationship Between Midazolam Serum Concentrations and Paediatric Delirium in Critically Ill Children" Pediatric Reports 17, no. 1: 7. https://doi.org/10.3390/pediatric17010007
APA StyleMarongiu, S., Bolhuis, M. S., Touw, D. J., & Kneyber, M. C. J. (2025). Investigating the Relationship Between Midazolam Serum Concentrations and Paediatric Delirium in Critically Ill Children. Pediatric Reports, 17(1), 7. https://doi.org/10.3390/pediatric17010007