The Role of 11C-Methionine PET Imaging for the Evaluation of Lymphomas: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Quality Assessment
2.4. Data Extraction
3. Results
3.1. Literature Search
3.2. Role of [11C]MET PET Imaging for the Evaluation of Lymphoma
3.3. Therapy Response Assessment and Prognostic Role of [11C]MET PET Imaging in Lymphomas
3.4. [11C]MET PET in the Differential Diagnosis of Lymphomas and Other Pathological Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Xu, B.; Liu, C.; Guan, Z.; Zhang, J.; Li, F.; Sun, L.; Zhu, H. Prognostic value of interim fluorodeoxyglucose and fluorothymidine PET/CT in diffuse large B-cell lymphoma. Br. J. Radiol. 2018, 91, 20180240. [Google Scholar] [CrossRef]
- Buck, A.K.; Bommer, M.; Juweid, M.E.; Glatting, G.; Stilgenbauer, S.; Mottaghy, F.M.; Schulz, M.; Kull, T.; Bunjes, D.; Möller, P.; et al. First demonstration of leukemia imaging with the proliferation marker 18F-fluorodeoxythymidine. J. Nucl. Med. 2008, 49, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Mugnaini, E.N.; Ghosh, N. Lymphoma. Prim. Care 2016, 43, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, E.S. Diagnosis and classification of lymphoma: Impact of technical advances. Semin. Hematol. 2019, 56, 30–36. [Google Scholar] [CrossRef]
- Dondi, F.; Pasinetti, N.; Gatta, R.; Albano, D.; Giubbini, R.; Bertagna, F. Comparison between Two Different Scanners for the Evaluation of the Role of 18F-FDG PET/CT Semiquantitative Parameters and Radiomics Features in the Prediction of Final Diagnosis of Thyroid Incidentalomas. J. Clin. Med. 2022, 11, 615. [Google Scholar] [CrossRef] [PubMed]
- Dondi, F.; Albano, D.; Bellini, P.; Volpi, G.; Giubbini, R.; Bertagna, F. 18F-fluorodeoxyglucose PET and PET/computed tomography for the evaluation of immunoglobulin G4-related disease: A systematic review. Nucl. Med. Commun. 2022, 43, 638–645. [Google Scholar] [CrossRef]
- Sammartino, A.M.; Falco, R.; Drera, A.; Dondi, F.; Bellini, P.; Bertagna, F.; Vizzardi, E. Vascular inflammation and cardiovascular disease: Review about the role of PET imaging. Int. J. Cardiovasc. Imaging 2023, 39, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Dondi, F.; Lazzarato, A.; Gorica, J.; Guglielmo, P.; Borgia, F.; Filice, R.; Vento, A.; Pacella, S.; Camedda, R.; Caracciolo, M.; et al. PET Criteria by Cancer Type from Imaging Interpretation to Treatment Response Assessment: Beyond FDG PET Score. Life 2023, 13, 611. [Google Scholar] [CrossRef]
- Santo, G.; Miceli, A.; Lazzarato, A.; Gorica, J.; Nappi, A.G.; Jonghi-Lavarini, L.; Dondi, F.; La Torre, F.; Filice, A.; De Rimini, M.L.; et al. Clinicians’ perspectives on PET/CT in oncological patients: An Italian National Survey. Clin. Transl. Imaging 2024, 12, 99–107. [Google Scholar] [CrossRef]
- Pauwels, E.K.; Ribeiro, M.J.; Stoot, J.H.; McCready, V.R.; Bourguignon, M.; Mazière, B. FDG accumulation and tumor biology. Nucl. Med. Biol. 1998, 25, 317–322. [Google Scholar] [CrossRef]
- Zanoni, L.; Bezzi, D.; Nanni, C.; Paccagnella, A.; Farina, A.; Broccoli, A.; Casadei, B.; Zinzani, P.L.; Fanti, S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin. Nucl. Med. 2023, 53, 320–351. [Google Scholar] [CrossRef]
- Dondi, F.; Bertagna, F. Applications of 18F-Fluorodesoxyglucose PET Imaging in Leukemia. PET Clin. 2024, 19, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Subocz, E.; Hałka, J.; Dziuk, M. The role of FDG-PET in Hodgkin lymphoma. Contemp. Oncol. 2017, 21, 104–114. [Google Scholar] [CrossRef]
- Voltin, C.A.; Mettler, J.; Grosse, J.; Dietlein, M.; Baues, C.; Schmitz, C.; Borchmann, P.; Kobe, C.; Hellwig, D. FDG-PET Imaging for Hodgkin and Diffuse Large B-Cell Lymphoma-An Updated Overview. Cancers 2020, 12, 601. [Google Scholar] [CrossRef]
- Valls, L.; Badve, C.; Avril, S.; Herrmann, K.; Faulhaber, P.; O’Donnell, J.; Avril, N. FDG-PET imaging in hematological malignancies. Blood Rev. 2016, 30, 317–331. [Google Scholar] [CrossRef]
- Barrington, S.F.; Mikhaeel, N.G.; Kostakoglu, L.; Meignan, M.; Hutchings, M.; Müeller, S.P.; Schwartz, L.H.; Zucca, E.; Fisher, R.I.; Trotman, J.; et al. Role of imaging in the staging and response assessment of lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 2014, 32, 3048–3058. [Google Scholar] [CrossRef]
- Withofs, N.; Bonnet, C.; Hustinx, R. 2-deoxy-2-[18F]FDG PET Imaging for Therapy Assessment in Hodgkin’s and Non-Hodgkin Lymphomas. PET Clin. 2024, 19, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Chauvie, S.; Castellino, A.; Bergesio, F.; De Maggi, A.; Durmo, R. Lymphoma: The Added Value of Radiomics, Volumes and Global Disease Assessment. PET Clin. 2024, 19, 561–568. [Google Scholar] [CrossRef]
- Murtazaliev, S.; Rowe, S.P.; Sheikhbahaei, S.; Werner, R.A.; Sólnes, L.B. Positron Emission Tomography/Computed Tomography Transformation of Oncology: Multiple Myeloma. PET Clin. 2024, 19, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, M.; Takahashi, M.; Yamaya, T.; Imai, Y. Current and Future PET Imaging for Multiple Myeloma. Life 2023, 13, 1701. [Google Scholar] [CrossRef] [PubMed]
- Zirakchian Zadeh, M. Clinical Application of 18F-FDG-PET Quantification in Hematological Malignancies: Emphasizing Multiple Myeloma, Lymphoma and Chronic Lymphocytic Leukemia. Clin. Lymphoma Myeloma Leuk. 2023, 23, 800–814. [Google Scholar] [CrossRef]
- Dondi, F.; Antonelli, A.; Suardi, N.; Treglia, G.; Bertagna, F. The Role of PSMA PET Imaging in the Classification of the Risk of Prostate Cancer Patients: A Systematic Review on the Insights to Guide an Active Surveillance Approach. Cancers 2024, 16, 1122. [Google Scholar] [CrossRef]
- Rizzo, A.; Racca, M.; Dall’Armellina, S.; Rescigno, P.; Banna, G.L.; Albano, D.; Dondi, F.; Bertagna, F.; Annunziata, S.; Treglia, G. The Emerging Role of PET/CT with PSMA-Targeting Radiopharmaceuticals in Clear Cell Renal Cancer: An Updated Systematic Review. Cancers 2023, 15, 355. [Google Scholar] [CrossRef] [PubMed]
- Lopci, E.; Fanti, S. Non-FDG PET/CT. Recent Results Cancer Res. 2020, 216, 669–718. [Google Scholar] [CrossRef] [PubMed]
- Giammarile, F.; Castellucci, P.; Dierckx, R.; Estrada Lobato, E.; Farsad, M.; Hustinx, R.; Jalilian, A.; Pellet, O.; Rossi, S.; Paez, D. Non-FDG PET/CT in Diagnostic Oncology: A pictorial review. Eur. J. Hybrid. Imaging 2019, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Caroli, P.; Nanni, C.; Rubello, D.; Alavi, A.; Fanti, S. Non-FDG PET in the practice of oncology. Indian J. Cancer 2010, 47, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Eisazadeh, R.; Shahbazi-Akbari, M.; Mirshahvalad, S.A.; Pirich, C.; Beheshti, M. Application of Artificial Intelligence in Oncologic Molecular PET-Imaging: A Narrative Review on Beyond [18F]F-FDG Tracers Part II. [18F]F-FLT, [18F]F-FET, [11C]C-MET and Other Less-Commonly Used Radiotracers. Semin. Nucl. Med. 2024, 54, 293–301. [Google Scholar] [CrossRef]
- Nappi, A.G.; Santo, G.; Jonghi-Lavarini, L.; Miceli, A.; Lazzarato, A.; La Torre, F.; Dondi, F.; Gorica, J. Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results. Hematol. Rep. 2024, 16, 32–41. [Google Scholar] [CrossRef]
- Enke, J.S.; Bundschuh, R.A.; Claus, R.; Lapa, C. New PET Tracers for Lymphoma. PET Clin. 2024, 19, 463–474. [Google Scholar] [CrossRef]
- Filippi, L.; Frantellizzi, V.; Bartoletti, P.; Vincentis, G.; Schillaci, O.; Evangelista, L. Head-to-Head Comparison between FDG and 11C-Methionine in Multiple Myeloma: A Systematic Review. Diagnostics 2023, 13, 2009. [Google Scholar] [CrossRef]
- Glaudemans, A.W.; Enting, R.H.; Heesters, M.A.; Dierckx, R.A.; van Rheenen, R.W.; Walenkamp, A.M.; Slart, R.H. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim. Biophys. Acta 1984, 738, 49–87. [Google Scholar] [CrossRef] [PubMed]
- Stern, P.H.; Wallace, C.D.; Hoffman, R.M. Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J. Cell Physiol. 1984, 119, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, D.N. On the problem of linear incorporation of amino acids into cell protein. Experientia 1982, 38, 818–820. [Google Scholar] [CrossRef] [PubMed]
- Stern, P.H.; Hoffman, R.M. Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 1984, 20, 663–670. [Google Scholar] [CrossRef]
- Isselbacher, K.J. Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture. Proc. Natl. Acad. Sci. USA 1972, 69, 585–589. [Google Scholar] [CrossRef]
- Xu, W.; Gao, L.; Shao, A.; Zheng, J.; Zhang, J. The performance of 11C-Methionine PET in the differential diagnosis of glioma recurrence. Oncotarget 2017, 8, 91030–91039. [Google Scholar] [CrossRef]
- Palanichamy, K.; Chakravarti, A. Diagnostic and Prognostic Significance of Methionine Uptake and Methionine Positron Emission Tomography Imaging in Gliomas. Front. Oncol. 2017, 7, 257. [Google Scholar] [CrossRef]
- Nakajima, R.; Kimura, K.; Abe, K.; Sakai, S. 11C-methionine PET/CT findings in benign brain disease. Jpn. J. Radiol. 2017, 35, 279–288. [Google Scholar] [CrossRef]
- Kong, F.L.; Ford, R.J.; Yang, D.J. Managing lymphoma with non-FDG radiotracers: Current clinical and preclinical applications. Biomed. Res. Int. 2013, 2013, 626910. [Google Scholar] [CrossRef]
- Lapa, C.; Kircher, M.; Da Via, M.; Schreder, M.; Rasche, L.; Kortüm, K.M.; Einsele, H.; Buck, A.K.; Hänscheid, H.; Samnick, S. Comparison of 11C-Choline and 11C-Methionine PET/CT in Multiple Myeloma. Clin. Nucl. Med. 2019, 44, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Leskinen-Kallio, S.; Ruotsalainen, U.; Någren, K.; Teräs, M.; Joensuu, H. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: A PET study. J. Nucl. Med. 1991, 32, 1211–1218. [Google Scholar]
- Leskinen-Kallio, S.; Lindholm, P.; Lapela, M.; Joensuu, H.; Nordman, E. Imaging of head and neck tumors with positron emission tomography and [11C]methionine. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 1195–1199. [Google Scholar] [CrossRef]
- Ogawa, T.; Kanno, I.; Hatazawa, J.; Inugami, A.; Fujita, H.; Shimosegawa, E.; Murakami, M.; Okudera, T.; Uemura, K.; Yasui, N.; et al. Methionine PET for follow-up of radiation therapy of primary lymphoma of the brain. Radiographics 1994, 14, 101–110. [Google Scholar] [CrossRef]
- Rodriguez, M.; Rehn, S.; Ahlström, H.; Sundström, C.; Glimelius, B. Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J. Nucl. Med. 1995, 36, 1790–1796. [Google Scholar] [PubMed]
- Nuutinen, J.; Leskinen, S.; Lindholm, P.; Söderström, K.O.; Någren, K.; Huhtala, S.; Minn, H. Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas. Eur. J. Nucl. Med. 1998, 25, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Sutinen, E.; Jyrkkiö, S.; Varpula, M.; Lindholm, P.; Grönroos, T.; Lehikoinen, P.; Teräs, M.; Minn, H. Nodal staging of lymphoma with whole-body PET: Comparison of. J. Nucl. Med. 2000, 41, 1980–1988. [Google Scholar]
- Kawai, N.; Okubo, S.; Miyake, K.; Maeda, Y.; Yamamoto, Y.; Nishiyama, Y.; Tamiya, T. Use of PET in the diagnosis of primary CNS lymphoma in patients with atypical MR findings. Ann. Nucl. Med. 2010, 24, 335–343. [Google Scholar] [CrossRef]
- Kawase, Y.; Yamamoto, Y.; Kameyama, R.; Kawai, N.; Kudomi, N.; Nishiyama, Y. Comparison of 11C-methionine PET and 18F-FDG PET in patients with primary central nervous system lymphoma. Mol. Imaging Biol. 2011, 13, 1284–1289. [Google Scholar] [CrossRef]
- Aki, T.; Nakayama, N.; Yonezawa, S.; Takenaka, S.; Miwa, K.; Asano, Y.; Shinoda, J.; Yano, H.; Iwama, T. Evaluation of brain tumors using dynamic 11C-methionine-PET. J. Neurooncol. 2012, 109, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Nihashi, T.; Fujii, M.; Kato, K.; Okochi, Y.; Ando, Y.; Yamashita, M.; Maesawa, S.; Takebayashi, S.; Wakabayashi, T.; et al. Differentiation of newly diagnosed glioblastoma multiforme and intracranial diffuse large B-cell Lymphoma using (11)C-methionine and (18)F-FDG PET. Clin. Nucl. Med. 2012, 37, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Kaste, S.C.; Snyder, S.E.; Metzger, M.L.; Sandlund, J.T.; Howard, S.C.; Krasin, M.; Shulkin, B.L. Comparison of 11C-Methionine and 18F-FDG PET/CT for Staging and Follow-up of Pediatric Lymphoma. J. Nucl. Med. 2017, 58, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.Y.; Kwon, S.Y.; Jung, S.H.; Ahn, J.S.; Yoo, S.W.; Min, J.J.; Bom, H.S.; Ki, S.Y.; Kim, H.J.; Lee, J.J.; et al. Prognostic Significance of Interim 11C-Methionine PET/CT in Primary Central Nervous System Lymphoma. Clin. Nucl. Med. 2018, 43, e259–e264. [Google Scholar] [CrossRef]
- Postnov, A.; Toutain, J.; Pronin, I.; Valable, S.; Gourand, F.; Kalaeva, D.; Vikhrova, N.; Pyzhik, E.; Guillouet, S.; Kobyakov, G.; et al. First-in-Man Noninvasive Initial Diagnostic Approach of Primary CNS Lymphoma Versus Glioblastoma Using PET With 18 F-Fludarabine and l-[methyl- 11 C]Methionine. Clin. Nucl. Med. 2022, 47, 699–706. [Google Scholar] [CrossRef]
- Inoue, A.; Matsumoto, S.; Ohnishi, T.; Miyazaki, Y.; Kinnami, S.; Kanno, K.; Honda, T.; Kurata, M.; Taniwaki, M.; Kusakabe, K.; et al. What is the Best Preoperative Quantitative Indicator to Differentiate Primary Central Nervous System Lymphoma from Glioblastoma? World Neurosurg. 2023, 172, e517–e523. [Google Scholar] [CrossRef]
- Ohmura, K.; Ikegame, Y.; Yano, H.; Shinoda, J.; Iwama, T. Methionine-PET to differentiate between brain lesions appearing similar on conventional CT/MRI scans. J. Neuroimaging 2023, 33, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Norikane, T.; Mitamura, K.; Yamamoto, Y.; Manabe, Y.; Murao, M.; Arai-Okuda, H.; Hatakeyama, T.; Miyake, K.; Nishiyama, Y. Comparative evaluation of 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography for distinguishing between primary central nervous system lymphoma and isocitrate dehydrogenase-wildtype glioblastoma. J. Neurooncol. 2024, 166, 195–201. [Google Scholar] [CrossRef]
- Nomura, Y.; Asano, Y.; Shinoda, J.; Yano, H.; Ikegame, Y.; Kawasaki, T.; Nakayama, N.; Maruyama, T.; Muragaki, Y.; Iwama, T. Characteristics of time-activity curves obtained from dynamic 11C-methionine PET in common primary brain tumors. J. Neurooncol. 2018, 138, 649–658. [Google Scholar] [CrossRef]
- Miyakita, Y.; Ohno, M.; Takahashi, M.; Kurihara, H.; Katai, H.; Narita, Y. Usefulness of carbon-11-labeled methionine positron-emission tomography for assessing the treatment response of primary central nervous system lymphoma. Jpn. J. Clin. Oncol. 2020, 50, 512–518. [Google Scholar] [CrossRef]
- D’souza, M.M.; Jaimini, A.; Bansal, A.; Tripathi, M.; Sharma, R.; Mondal, A.; Tripathi, R.P. FDG-PET/CT in lymphoma. Indian J. Radiol. Imaging 2013, 23, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Najjar, F.; Hustinx, R.; Jerusalem, G.; Fillet, G.; Rigo, P. Positron emission tomography (PET) for staging low-grade non-Hodgkin’s lymphomas (NHL). Cancer Biother. Radiopharm. 2001, 16, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Finessi, M.; Bisi, G.; Deandreis, D. Hyperglycemia and 18F-FDG PET/CT, issues and problem solving: A literature review. Acta Diabetol. 2020, 57, 253–262. [Google Scholar] [CrossRef]
- Mirpour, S.; Meteesatien, P.; Khandani, A.H. Does hyperglycemia affect the diagnostic value of 18F-FDG PET/CT? Rev. Esp. Med. Nucl. Imagen Mol. 2012, 31, 71–77. [Google Scholar] [CrossRef] [PubMed]
- de-Bonilla-Damiá, Á.; Fernández-López, R.; Capote-Huelva, F.J.; de la Cruz-Vicente, F.; Egea-Guerrero, J.J.; Borrego-Dorado, I. Role of 18F-FDG PET/CT in primary brain lymphoma. Rev. Esp. Med. Nucl. Imagen Mol. 2017, 36, 298–303. [Google Scholar] [CrossRef]
Exclusion | Inclusion |
---|---|
Preclinical studies Conference proceedings Reviews Editorials Only 1 lymphoma patient imaged with [11C]MET PET | English language |
First Author | N. Ref. | Year | Country | Study Design | N. Pts (with Lymphoma) | CNSL |
---|---|---|---|---|---|---|
Leskinen-Kallio S | [43] | 1991 | Finland | Prospective | 14 (14) | No |
Leskinen-Kallio S | [44] | 1994 | Finland | Prospective | 47 (8) | No |
Ogawa T | [45] | 1994 | Japan | ns | 10 (10) | Yes |
Rodriguez M | [46] | 1995 | Sweden | Prospective | 23 (23) | No |
Nuutinen J | [47] | 1998 | Finland | Retrospective | 32 (32) | No |
Sutinen E | [48] | 2000 | Finland | Prospective | 19 (19) | No |
Kawai N | [49] | 2010 | Japan | Retrospective | 17 (17) | Yes |
Kawase Y | [50] | 2010 | Japan | Retrospective | 13 (13) | Yes |
Aki T | [51] | 2012 | Japan | Retrospective | 144 (14) | Yes |
Okada Y | [52] | 2012 | Japan | Retrospective | 22 (7) | Yes |
Kaste SC | [53] | 2017 | USA | Prospective | 18 (18) | No |
Nomura Y | [59] | 2018 | Japan | Retrospective | 160 (8) | Yes |
Ahn SY | [54] | 2018 | Korea | Prospective | 26 (26) | Yes |
Miyakita Y | [60] | 2020 | Japan | Retrospective | 36 (36) | Yes |
Postnov A | [55] | 2022 | France | Prospective | 31 (18) | Yes |
Inoue A | [56] | 2023 | Japan | Retrospective | 96 (68) | Yes |
Ohmura K | [57] | 2023 | Japan | Retrospective | 129 (15) | Yes |
Norikane T | [58] | 2024 | Japan | Retrospective | 86 (22) | Yes |
First Author | Device | Tracer | Reported Mean Activity (MBq) | PET Analysis | Setting | Main Findings |
---|---|---|---|---|---|---|
Leskinen-Kallio S [43] | PET | [11C]MET, [18F]FDG | 125–300 for [11C]MET, 230–340 for [18F]FDG | Qualitative and semiquantitative | Assessment of disease | [11C]MET uptake rate was significantly higher than [18F]FDG. [18F]FDG accumulated clearly in high and intermediate lymphomas, while all but 1 had [11C]MET uptake. Tumor/plasma ratio increased faster in higher grade NHL for both tracers even with considerable overlap between grades. |
Leskinen-Kallio S [44] | PET | [11C]MET | 273.8 ± 59.2 | Qualitative and semiquantitative | Differential diagnosis | Lymphomas were clearly visible at PET imaging, even though uptake was lower than squamous cell carcinoma. |
Ogawa T [45] | PET | [11C]MET | 740–1480 | Qualitative and semiquantitative | Response assessment and prognosis | PET clearly depicted CNS lymphomas before RTT and the extent of uptake decreased after therapy. A patient was confirmed to have recurrence after PET images. |
Rodriguez M [46] | PET | [11C]MET, [18F]FDG | 800 for [11C]MET, 400 for [18F]FDG | Qualitative and semiquantitative | Assessment of disease | All tumors had uptake of both tracers. [18F]FDG had the ability to discriminate between high and low grade lymphomas, while [11C]MET did not. |
Nuutinen J [47] | PET | [11C]MET | 293 (125–537) | Qualitative and semiquantitative | Assessment of disease and prognosis | [11C]MET PET had a high sensitivity for the detection of lymphoma and could differentiate between high and low grade. [11C]MET uptake did not predict survival. |
Suutinen E [48] | PET | [11C]MET, [18F]FDG | 439 (321–478) for [11C]MET, 370 (292–395) for [18F]FDG | Qualitative | Assessment of disease | [18F]FDG and [11C]MET seemed to be comparable in the detection of lymphoma. Physiological accumulation of [11C]MET seemed to hamper the evaluation of images; however, this tracer may be preferable in hyperglycemic patients. |
Kawai N [49] | PET | [11C]MET, [18F]FDG | 142–321 for [11C]MET, 114–267 for [18F]FDG | Qualitative and semiquantitative | Assessment of disease | Typical primary CNS lymphoma showed strong uptake of both tracers, while visual analysis for atypical forms was not useful. SUVmax and influx rate of [18F]FDG were significantly lower in atypical forms. K3 values were similar for typical and atypical CNS lymphomas. |
Kawase Y [50] | PET | [11C]MET, [18F]FDG | 6/kg for [11C]MET, 4.5/kg for [18F]FDG. | Qualitative and semiquantitative | Assessment of disease | No significant differences of T/N between [11C]MET and [18F]FDG, although uptake of the first tracer was significantly lower than [18F]FDG. |
Aki T [51] | PET | [11C]MET | 6.2–7.4/kg | Qualitative and semiquantitative | Differential diagnosis | Significant dynamic increase of the maximum [11C]MET T/N was seen in glioblastomas and malignant lymphomas. |
Okada Y [52] | PET | [11C]MET, [18F]FDG | 11.1/kg for [11C]MET, 3.7/kg for [18F]FDG | Qualitative and semiquantitative | Differential diagnosis | [18F]FDG SUVmax was significantly higher for DLBCLs compared to GBM. SUVmax in the late and early phases of [11C]MET PET was not significantly different between the two conditions; however, the values of ΔSUVmax on MET PET in DLBCL were significantly higher than those in GBM. |
Kaste SC [53] | PET/CT | [11C]MET, [18F]FDG | 740/1.7 m2 for [11C]MET, 5.5/kg for [18F]FDG | Qualitative and semiquantitative | Assessment of disease and response assessment | [11C]MET is elevated in most regions involved at diagnosis and follow-up. At baseline, all nodal groups demonstrated concordant [11C]MET and [18F]FDG uptake, except for 3 groups that were Waldeyer’s ring, paraaortic region and liver. Normal intense [11C]MET uptake in the pancreas and liver reduced sensitivity for disease detection in these regions. |
Nomura Y [59] | PET | [11C]MET | 3.5/kg | Qualitative and semiquantitative | Response assessment and prognosis | Quantification of the time–activity curve in different brain tumors identified by a dynamic [11C]MET PET could be helpful in the non-invasive differential diagnosis. |
Ahn SY [54] | PET/CT | [11C]MET | 7/kg | Qualitative and semiquantitative | Response assessment and prognosis | Higher International Extranodal Lymphoma Study Group risk scores were associated with higher interim MTV and T/N. Interim MTV and T/N ratios predicted PFS and OS, respectively. High interim T/N was associated with decreased PFS. |
Miyakita Y [60] | PET/CT | [11C]MET | 4/kg | Qualitative and semiquantitative | Differential diagnosis | A T/N ≥ 1.80 could help in the detection of active PCNSL after treatment; therefore, [11C]MET PET may be a useful tool for accurate evaluation of the treatment efficacy in these neoplastic conditions. |
Postnov A [55] | PET/CT | [11C]MET, [18F]FLUDA | 3.22 ± 0.5/kg for [11C]MET, 4.05 ± 0.26/kg for [18F]FLUDA | Qualitative and semiquantitative | Differential diagnosis | No significant differences in [11C]MET uptakes were observed among PCNSL and GBM. Difference in dynamic [18F]FLUDA uptake was observed for GBM. |
Inoue A [56] | ns | [11C]MET, [18F]FDG | 5/kg for [11C]MET, 3.5/kg for [18F]FDG | Qualitative and semiquantitative | Differential diagnosis | T/N ≥ 2.4 on [18F]FDG PET was quite specific for PCNSL. No other examinations displayed any significant differences between PCNSL and GBM. |
Ohmura K [57] | PET/CT | [11C]MET | 3.5/kg | Qualitative and semiquantitative | Differential diagnosis | Five diagnostic criteria obtained from [11C]MET PET imaging could make differential diagnosis between five types of brain lesions. Differences in 5 diagnostic variables were unique to each of the 5 lesions. |
Norikane T [58] | PET/CT | [11C]MET, [18F]FDG | 6/kg for [11C]MET, 3.7/kg for [18F]FDG | Qualitative and semiquantitative | Differential diagnosis | All PCNSLs and glioblastomas were [11C]MET positive, while 95% and 84% were respectively [18F]FDG positive. No difference in [11C]MET T/N between PCNSL and glioblastoma was reported, while [18F]FDG T/N was significantly higher in PCNSL. AUC value was significantly higher for the [18F]FDG T/N ratio. |
Key Findings | Evidence Gaps |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dondi, F.; Gazzilli, M.; Viganò, G.L.; Pisani, A.R.; Ferrari, C.; Rubini, G.; Bertagna, F. The Role of 11C-Methionine PET Imaging for the Evaluation of Lymphomas: A Systematic Review. Hematol. Rep. 2024, 16, 752-768. https://doi.org/10.3390/hematolrep16040072
Dondi F, Gazzilli M, Viganò GL, Pisani AR, Ferrari C, Rubini G, Bertagna F. The Role of 11C-Methionine PET Imaging for the Evaluation of Lymphomas: A Systematic Review. Hematology Reports. 2024; 16(4):752-768. https://doi.org/10.3390/hematolrep16040072
Chicago/Turabian StyleDondi, Francesco, Maria Gazzilli, Gian Luca Viganò, Antonio Rosario Pisani, Cristina Ferrari, Giuseppe Rubini, and Francesco Bertagna. 2024. "The Role of 11C-Methionine PET Imaging for the Evaluation of Lymphomas: A Systematic Review" Hematology Reports 16, no. 4: 752-768. https://doi.org/10.3390/hematolrep16040072
APA StyleDondi, F., Gazzilli, M., Viganò, G. L., Pisani, A. R., Ferrari, C., Rubini, G., & Bertagna, F. (2024). The Role of 11C-Methionine PET Imaging for the Evaluation of Lymphomas: A Systematic Review. Hematology Reports, 16(4), 752-768. https://doi.org/10.3390/hematolrep16040072