Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, C.C. Genetic Abnormalities and Challenges in the treatment of acute myeloid leukemia. Genes Cancer 2011, 2, 95–107. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, D.C.; Ossenkoppele, G.J.; Janssen, J.J. Older Patients with Acute Myeloid Leukemia Deserve Individualized Treatment. Curr. Oncol. Rep. 2022, 24, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Mehta, P. Determination of fitness and therapeutic options in older patients with acute myeloid leukemia. Am. J. Hematol. 2021, 96, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Colita, A.; Colita, A.; Berbec, N.M.; Angelescu, S.; Lupu, A.R. Particular Clinical and Therapeutical Aspects in Acute Myeloid Leukemia in Eldrely Patients. Maedica 2011, 6, 287–289. [Google Scholar] [PubMed]
- Oran, B.; Weisdorf, D.J. Survival for older patients with acute myeloid leukemia: A population-based study. Haematologica 2012, 97, 1916–1924. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Cairoli, R.; Caira, M.; Finsinger, P.; Finocchiaro, F.; Neri, B.; De Benedittis, D.; Rossi, G.; Ferrara, F. Assessing eligibility for treatment in acute myeloid leukemia in 2023. Expert Rev. Hematol. 2023, 16, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Serries, M.; Hahn-Ast, C.; Bisht, S.; Brossart, P.; Feldmann, G. Treatment of acute myeloid leukaemia in older patients—Scope of intensive therapy?—A retrospective analysis. Hematology 2023, 28, 2212536. [Google Scholar] [CrossRef] [PubMed]
- Lazarevici, V.L. Acute myeloid leukaemia in patients we judge as being older and/or unfit. J. Intern. Med. 2021, 290, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Stubbins, R.J.; Francis, A.; Kuchenbauer, F.; Sanford, D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr. Oncol. 2022, 29, 6245–6259. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.A.; Andreescu, N.I.; Arghirescu, T.S.; Petrescu, C.A.M.; Jincă, C.M.; Huţ, E.F.; Drăgoi, R.G.; Puenea, G.; Popa, D. Classic and molecular cytogenetic findings in leukemia patients from the Western part of Romania. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2024, 65, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Guyatt, G.H.; Teich, T.; Dawdy, J.L.; Shahid, S.; Altman, J.K.; Stone, R.M.; Sekeres, M.A.; Mukherjee, S.; LeBlanc, T.W.; et al. Intensive versus less-intensive antileukemic therapy in older adults with acute myeloid leukemia: A systematic review. PLoS ONE 2021, 16, e0249087. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Shukla, M.; Abdul-Hay, M. Acute Myeloid Leukemia Treatment in the Elderly: A Comprehensive Review of the Present and Future. Acta Haematol. 2023, 146, 431–457. [Google Scholar] [CrossRef] [PubMed]
- Oshikawa, G.; Sasaki, K. Optimizing Treatment Options for Newly Diagnosed Acute Myeloid Leukemia in Older Patients with Comorbidities. Cancers 2023, 15, 2399. [Google Scholar] [CrossRef] [PubMed]
- Negotei, C.; Colita, A.; Mitu, I.; Lupu, A.R.; Lapadat, M.E.; Popovici, C.E.; Crainicu, M.; Stanca, O.; Berbec, N.M. A Review of FLT3 Kinase Inhibitors in AML. J. Clin. Med. 2023, 12, 6429. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed]
Variable | Number of Patients | Percentage (%) | Chi-Square Test of Proportion | |||
---|---|---|---|---|---|---|
χ2 | A | p | ||||
Age (years) | 65–74 | 43 | 93.5 | 34.78 | 1 | <0.001 |
>75 | 3 | 6.5 | ||||
Gender | Male | 24 | 52.2 | 0.09 | 1 | 0.768 |
Female | 22 | 47.8 | ||||
AML classification | De novo | 41 | 89.1 | 28.17 | 1 | <0.001 |
Secondary | 5 | 10.9 | ||||
Karyotype | Normal | 20 | 83.3 | 10.67 | 1 | <0.001 |
Abnormal | 4 | 16.7 | ||||
Risk stratification | Favorable | 20 | 83.3 | 27.00 | 2 | <0.001 |
Intermediate | 2 | 8.3 | ||||
Adverse | 2 | 8.3 | ||||
Molecular biology | Yes | 39 | 84.8 | 22.26 | 1 | <0.001 |
No | 7 | 15.2 | ||||
The presence of mutations | Yes | 14 | 35.9 | 3.10 | 1 | 0.078 |
No | 25 | 64.1 | ||||
Risk stratification | Favorable | 27 | 69.2 | 23.23 | 2 | <0.001 |
Intermediate | 8 | 20.5 | ||||
Adverse | 4 | 10.3 | ||||
ECOG | 0–1 | 45 | 97.8 | 42.09 | 1 | <0.001 |
2–4 | 1 | 2.2 | ||||
CCI | 2 | 0 | 0 | 19.57 | 1 | <0.001 |
3 | 0 | 0 | ||||
4 | 8 | 17.4 | ||||
>4 | 38 | 82.6 | ||||
HCT-CI | 0 | 7 | 15.2 | 12.26 | 3 | <0.010 |
1–2 | 12 | 26.1 | ||||
3–4 | 6 | 13.0 | ||||
>4 | 21 | 45.7 | ||||
Number of comorbidities | <3 | 16 | 34.8 | 4.26 | 1 | <0.050 |
>3 | 30 | 65.2 | ||||
LVEF | Normal | 46 | 100 | |||
Abnormal | 0 | 0 | ||||
Leukocyte (mmc) | <4000 | 11 | 23.9 | 19.09 | 2 | <0.001 |
4000–10,000 | 6 | 13.0 | ||||
>10,000 | 29 | 63.0 | ||||
Hemoglobin (g/dL) | <8 | 28 | 60.9 | 2.17 | 1 | 0.140 |
>8 | 18 | 39.1 | ||||
Platelets (mmc) | <20,000 | 10 | 21.7 | 7.48 | 2 | <0.050 |
<100,000 | 24 | 52.2 | ||||
>100,000 | 12 | 26.1 | ||||
Bone marrow blasts (%) | <50% | 13 | 28.3 | 8.70 | 1 | <0.010 |
>50% | 33 | 71.7 |
Variable | Number of Patients | Percentage (%) | Chi-Square Test of Proportion | |||
---|---|---|---|---|---|---|
χ2 | df | p | ||||
First line | Yes | 46 | 100 | -- | -- | -- |
CR | 25 | 54.3 | 11.20 | 2 | <0.010 | |
CRi | 0 | 0 | ||||
PR | 1 | 2.2 | ||||
No response | 13 | 28.3 | ||||
Death | 7 | 15.2 | ||||
Second line | Yes | 32 | 69.6 | 7.04 | 1 | <0.010 |
CR | 9 | 30.0 | 1.36 | 2 | 0.507 | |
CRi | 1 | 3.3 | ||||
PR | 1 | 3.3 | ||||
No response | 12 | 40.0 | ||||
Death | 7 | 23.3 | ||||
Third line | Yes | 15 | 32.6 | 5.57 | 1 | <0.050 |
CR | 3 | 20 | 1.60 | 2 | 0.449 | |
Cri | 0 | 0 | ||||
PR | 0 | 0 | ||||
No response | 5 | 33.3 | ||||
Death | 7 | 46.7 | ||||
First disease relapse | 21/37 | 59.5 | 1.00 | 1 | 0.317 | |
<6 mo | 14 | 66.7 | 2.33 | 1 | 0.127 | |
6–12 mo | 7 | 33.3 | ||||
Second disease relapse | 8/32 | 25.0 | 9.53 | 1 | <0.010 | |
<6 mo | 5 | 62.5 | 0.50 | 1 | 0.480 | |
6–12 mo | 3 | 37.5 | ||||
Overall survival | <6 mo | 20 | 43.5 | 2.65 | 2 | 0.266 |
6–12 mo | 11 | 23.9 | ||||
>12 mo | 15 | 32.6 |
Variable | Number of Patients | Percentage (%) | Chi-Square Test of Proportion | |||
---|---|---|---|---|---|---|
χ2 | df | p | ||||
Complications | Cardiovascular | 26 | 56.5 | 0.78 | 1 | 0.376 |
Hematological | 46 | 100 | -- | -- | -- | |
Hemorrhagic | 28 | 60.9 | 2.17 | 1 | 0.140 | |
Thrombotic | 6 | 13.0 | 25.13 | 1 | <0.001 | |
Bacterial infections | 40 | 87.0 | 25.13 | 1 | <0.001 | |
Fungal infections | 2 | 4.3 | 38.35 | 1 | <0.001 | |
COVID infection | 13 | 28.3 | 8.70 | 1 | <0.010 | |
Current status | Deceased | 37 | 80.4 | 17.04 | 1 | <0.001 |
Alive | 9 | 19.6 | ||||
Lost from record | 0 | 0 | ||||
Cause of death | Cardiovascular | 5 | 13.9 | 14.00 | 4 | <0.010 |
Hemorrhagic | 11 | 30.6 | ||||
Thrombotic | 3 | 8.3 | ||||
Infectious | 14 | 38.9 | ||||
COVID | 3 | 8.3 | ||||
Death < 60 days | 9 | 19.6 | -- | -- | -- |
Median | Log-Rank (Mantel–Cox) | ||||||
---|---|---|---|---|---|---|---|
Estimate | Std. Error | 95% Confidence Interval | |||||
Lower Bound | Upper Bound | χ2 | df | p | |||
Overall | 8.00 | 1.80 | 4.47 | 11.53 | |||
RC Line 1 | |||||||
No | 4.00 | 2.29 | 0.0 | 8.49 | 9.89 | 1 | 0.002 |
Yes | 12.00 | 3.55 | 5.04 | 18.96 | |||
RC Line 1 duration | |||||||
<6 mo | 6.00 | 1.30 | 3.45 | 8.55 | 5.70 | 1 | 0.017 |
≥6 mo | 18.00 | 11.86 | 0.0 | 41.24 | |||
ECOG | |||||||
0–1 | 8.00 | 1.60 | 4.86 | 11.14 | 14.33 | 1 | 0.001 |
2–4 | 0.0 | ||||||
HCT-CI | |||||||
0–2 | 11.00 | 1.34 | 8.38 | 13.63 | 0.85 | 1 | 0.357 |
3– ≥4 | 6.00 | 1.28 | 3.50 | 8.50 | |||
CCI | |||||||
4 | 8.00 | 3.01 | 2.11 | 13.89 | 0.04 | 1 | 0.851 |
≥4 | 7.00 | 2.60 | 2.00 | 12.03 | |||
AML classification | |||||||
De novo | 9.00 | 2.53 | 4.04 | 13.96 | 0.48 | 1 | 0.487 |
Secondary | 6.00 | 2.19 | 1.71 | 10.29 | |||
Risk stratification for cytogenetic test | |||||||
Favorable | 11.00 | 5.14 | 0.92 | 21.08 | 1.60 | 1 | 0.205 |
Intermediate–adverse | 4.00 | ||||||
Risk stratification for molecular biology test | |||||||
Favorable | 12.000 | 4.267 | 3.637 | 20.363 | 8.32 | 1 | 0.004 |
Intermediate–adverse | 6.000 | 1.248 | 3.554 | 8.446 | |||
Bone marrow blasts (%) | |||||||
<50% | 7.00 | 2.27 | 2.56 | 11.44 | 0.53 | 1 | 0.465 |
≥50% | 8.00 | 1.91 | 4.25 | 11.75 |
Omnibus Test of Model | B | SE | Wald | df | Sig. | Exp(B) | 95.0% CI for Exp(B) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | df | p | Lower | Upper | |||||||
CR after first line of treatment | 5.26 | 1 | 0.022 | −1.22 | 0.56 | 4.81 | 1 | 0.028 | 0.30 | 0.10 | 0.88 |
HCT-CI (0–2) | |||||||||||
Risk stratification for cytogenetics (intermediate–adverse) | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
Risk stratification for molecular biology (intermediate–adverse) | 4.14 | 1 | 0.042 | 1.50 | 0.74 | 4.14 | 1 | 0.042 | 4.46 | 1.06 | 18.88 |
HCT-CI (3–≥4) | |||||||||||
Risk stratification for cytogenetics (intermediate–adverse) | 0.28 | 1 | 0.595 | 0.35 | 0.65 | 0.29 | 1 | 0.590 | 1.42 | 0.40 | 5.07 |
Risk stratification for molecular biology (intermediate–adverse) | 2.52 | 1 | 0.112 | 0.78 | 0.48 | 2.65 | 1 | 0.104 | 2.18 | 0.85 | 5.55 |
CCI (≥4) | |||||||||||
Risk stratification for cytogenetics (intermediate–adverse) | 1.24 | 1 | 0.265 | 0.72 | 0.62 | 1.36 | 1 | 0.243 | 2.05 | 0.61 | 6.86 |
Risk stratification for molecular biology (intermediate–adverse) | 5.36 | 1 | 0.021 | 1.00 | 0.42 | 5.63 | 1 | 0.018 | 2.73 | 1.19 | 6.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negotei, C.; Mitu, I.; Angelescu, S.; Gradinaru, F.; Mambet, C.; Stanca, O.; Lapadat, M.-E.; Barta, C.; Halcu, G.; Saguna, C.; et al. Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience. Hematol. Rep. 2024, 16, 781-794. https://doi.org/10.3390/hematolrep16040074
Negotei C, Mitu I, Angelescu S, Gradinaru F, Mambet C, Stanca O, Lapadat M-E, Barta C, Halcu G, Saguna C, et al. Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience. Hematology Reports. 2024; 16(4):781-794. https://doi.org/10.3390/hematolrep16040074
Chicago/Turabian StyleNegotei, Cristina, Iuliana Mitu, Silvana Angelescu, Florentina Gradinaru, Cristina Mambet, Oana Stanca, Mihai-Emilian Lapadat, Cristian Barta, Georgian Halcu, Carmen Saguna, and et al. 2024. "Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience" Hematology Reports 16, no. 4: 781-794. https://doi.org/10.3390/hematolrep16040074
APA StyleNegotei, C., Mitu, I., Angelescu, S., Gradinaru, F., Mambet, C., Stanca, O., Lapadat, M.-E., Barta, C., Halcu, G., Saguna, C., Arghir, A., Papuc, M. S., Turbatu, A., Berbec, N. M., & Colita, A. (2024). Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience. Hematology Reports, 16(4), 781-794. https://doi.org/10.3390/hematolrep16040074