Genetic Evaluation of Prelingual Hearing Impairment: Recommendations of an European Network for Genetic Hearing Impairment
1. Introduction
2. Families’ Expectations Regarding Genetic Investigations
- -
- to establish the etiology of the hearing impairment;
- -
- to identify associated features;
- -
- to establish a prognosis of the hearing impairment;
- -
- to improve the management of hearing loss;
- -
- to evaluate the recurrence risk in parents’ and patient’s offspring (genetic counseling);
- -
- to detect possibly other affected subjects within the family.
3. Mandatory Investigations for All Cases
- -
- CMV serology in the child and mother (in order to exclude CMV fetopathy if at least one of the two is negative) and if possible CMV research on dried blood spot, urine or saliva samples (depending on the age of the child), collected as early as possible to diagnose prenatal CMV infection [3];
- -
- Ophthalmological examination in order to take care of refractive problems for optimal visual acuity and to research visual pathologies associated within a syndromic form;
- -
- Audiograms of the siblings to diagnose familial cases of variable severity or progressive hearing loss and other family members if indicated by pedigree analysis.
4. Other Investigations Required after Clinical Suspicion of Specific Syndromic Forms
- -
- An electroretinogram in the case of a bilateral profound congenital hearing impairment with motor delay without malformation of the inner ear (suspicion of Usher syndrome type 1) [4];
- -
- A renal ultrasound in the case of sensorineural and/or conductive hearing loss associated with preauricular tags or pits (suspicion of branchiootorenal syndrome (BOR)) [5];
- -
- A dosage of free thyroid hormones, TSH and Tg, in the case of a hearing defect with bilateral dilatation of the vestibular aqueduct (suspicion of Pendred syndrome) [6];
- -
- An electrocardiogram in the case of profound congenital bilateral deafness without inner ear malformations and without GJB2 pathogenic variations (cf infra) (suspicion of Jervel–Lange-Nielsen syndrome);
- -
- A specialized ophthalmological examination in case of an auditory neuropathy (search of an optical atrophy in a syndromic form);
- -
- Audiograms of the parents at the slightest doubt of a hearing defect or in a second intention (undiagnosed cases).
5. Genetic Investigations
- -
- The search for alterations at the DFNB1 locus (GJB2 pathogenic variations and/or GJB6 deletions: del(GJB6-D13S1830) and del(GJB6-D13S1854)): responsible for 20 to 30% of bilateral NSCSHIs. The imaging of the inner ear is normal in the vast majority of cases and there is no vestibular deficit [7,8,9]. The hearing loss is globally symmetrical ranging from mild to profound. If the deficit is not immediately profound, it can progress over time in about 20% of cases;
- -
- -
- The search for SLC26A4 pathogenic variations: hearing impairment is often prelingual, immediately or rapidly bilateral, sometimes asymmetrical, fluctuating and often progressive [6]. Temporal bone imaging systematically finds a bilateral dilatation of the vestibular aqueducts (CT scan) and endolymphatic ducts (MRI); frequently associated with incomplete cochlear partition type 2 malformation (Mondini malformation) [12];
- -
- -
- The search for POU3F4 pathogenic variations or alterations at the DFNX2 locus: moderate to profound bilateral congenital isolated, mixed or sensorineural hearing loss among males and moderate postlingual, mixed or sensorineural hearing loss among females [15]. Among males and some females, temporal bone imaging also identifies a bilateral important malformation of the auditory canals and cochlea (incomplete partition type 3) [16].
- -
- The clinical presentation suggests a known syndromic diagnosis (for example: Waardenburg, Usher, Pendred, BOR syndromes, etc.), and the clinician will ask for an analysis of the gene(s) known to be responsible for this phenotype (targeted analysis or NGS panel testing) [19];
- -
- The patient has a polymalformative syndrome or a set of clinical signs associated with deafness that does not evoke a known diagnosis, and the clinician will most often request a chromosome assessment by a CGH array (comparative genomic hybridization array). This technique makes it possible to identify an abnormal number of copies of a chromosomal segment (deletion or duplication = copy number variation). These chromosomal abnormalities may involve one to hundreds of different genes located contiguously on a chromosome segment. An unusual association of clinical signs may be due to a fortuitous association of several genetic defects.
- Phenotype of proband case’s hearing impairment: age of onset, type of deficit, degree, evolution, laterality/symmetry and shape of the audiometric curve;
- Complete clinical examination, personal and familial history;
- CMV research on dried blood spot or CMV serology in the patient and their mother;
- Ophthalmological examination;
- Temporal bone and brain imaging;
- Audiograms of the kinship.
- Targeted molecular analysis: e.g., DFNB1 locus (GJB2 pathogenic variations and/or GJB6 deletions; symmetrical bilateral mild to profound NSCSHI with normal inner ear morphology and no vestibular deficit); DFN16 locus (STRC pathogenic variations or deletions, stable bilateral mild or moderate NSCSHI); SLC26A4 (prelingual fluctuating or progressive NSCSHI with bilateral dilatation of the vestibular aqueducts; OTOF (early bilateral auditory neuropathy/synaptopathy);
- Chromosomal analysis by CGH array for polymalformative syndrome or a set of clinical signs associated with deafness that does not evoke a known diagnosis;
- Next generation sequencing: High-throughput sequencing technology to simultaneously analyze a set of genes implicated in syndromic or non-syndromic HL;
- Exome or genome analysis.
Conflicts of Interest
References
- Toriello, H.V.; Smith, S.D. (Eds.) Hereditary Hearing Loss and Its Syndromes, 3rd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Hereditary Hearing Loss. Available online: https://hereditaryhearingloss.org/ (accessed on 16 November 2022).
- Goderis, J.; De Leenheer, E.; Smets, K.; Van Hoecke, H.; Keymeulen, A.; Dhooge, I. Hearing loss and congenital CMV infection: A systematic review. Pediatrics 2014, 134, 972–982. [Google Scholar] [CrossRef] [PubMed]
- Flores-Guevara, R.; Renault, F.; Loundon, N.; Marlin, S.; Pelosse, B.; Momtchilova, M.; Auzoux-Cheve, M.; Vermersch, A.I.; Richard, P. Usher syndrome type 1: Early detection of electroretinographic changes. Eur. J. Paediatr. Neurol. 2009, 13, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Krug, P.; Morinière, V.; Marlin, S.; Koubi, V.; Gabriel, H.D.; Colin, E.; Bonneau, D.; Salomon, R.; Antignac, C.; Heidet, L. Mutation screening of the EYA1, SIX1 and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations. Hum. Mutat. 2011, 32, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Roesch, S.; Bernardinelli, E.; Nofziger, C.; Tóth, M.; Patsch, W.; Rasp, G.; Paulmichl, M.; Dossena, S. Functional Testing of SLC26A4 Variants-Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria. Int. J. Mol. Sci. 2018, 19, 209. [Google Scholar] [CrossRef]
- 7. Denoyelle, F.; Marlin, S.; Weil, D.; Moatti, L.; Chauvin, P.; Garabédian, E.N.; Petit, C. Clinical features of the prevalent form of chilhood deafness, DFNB1, underlied by a connexin 26 gene defect: Implication for the genetic counselling. Lancet 1999, 353, 1298–1303. [Google Scholar] [CrossRef]
- Kecskeméti, N.; Szönyi, M.; Gáborján, A.; Küstel, M.; Milley, G.M.; Süveges, A.; Illés, A.; Kékesi, A.; Tamás, L.; Molnár, M.J.; et al. Analysis of GJB2 mutations and the clinical manifestation in a large Hungarian cohort. Eur. Arch. Otorhinolaryngol. 2018, 275, 2441–2448. [Google Scholar] [CrossRef]
- Del Castillo, F.J.; Del Castillo, I. DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front. Mol. Neurosci. 2017, 10, 428. [Google Scholar] [CrossRef]
- Verpy, E.; Masmoudi, S.; Zwaenepoel, I.; Leibovici, M.; Hutchin, T.P.; Del Castillo, I.; Nouaille, S.; Blanchard, S.; Lainé, S.; Popot, J.L.; et al. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat. Genet. 2001, 29, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Malekpour, M.; Al-Madani, N.; Kahrizi, K.; Zanganeh, M.; Lohr, N.J.; Mohseni, M.; Mojahedi, F.; Daneshi, A.; Najmabadi, H.; et al. Sensorineural deafness and male infertility: A contiguous gene deletion syndrome. J. Med. Genet. 2007, 44, 233–240. [Google Scholar] [CrossRef]
- Sennaroglu, L. Cochlear implantation in inner ear malformations—A review article. Cochlear. Implant. Int. 2010, 11, 4–41. [Google Scholar] [CrossRef]
- Marlin, S.; Feldmann, D.; Nguyen, Y.; Rouillon, I.; Loundon, N.; Jonard, L.; Bonnet, C.; Couderc, R.; Garabedian, E.N.; Petit, C.; et al. Temperature-sensitive auditory neuropathy associated with an otoferlin mutation: Deafening fever! Biochem. Biophys. Res. Commun. 2010, 394, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Zadro, C.; Ciorba, A.; Fabris, A.; Morgutti, M.; Trevisi, P.; Gasparini, P.; Martini, A. Five new OTOF gene mutations and auditory neuropathy. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 494–498. [Google Scholar] [CrossRef]
- Marlin, S.; Moizard, M.; David, A.; Chaissang, N.; Raynaud, M.; Jonard, L.; Feldmann, D.; Loundon, N.; Denoyelle, F.; Toutain, A. Phenotype and genotype in females with pou3f4 mutations. Clin. Genet. 2009, 76, 558–563. [Google Scholar] [CrossRef]
- Corvino, V.; Apisa, P.; Malesci, R.; Laria, C.; Auletta, G.; Franzé, A. X-Linked Sensorineural Hearing Loss: A Literature Review. Curr. Genom. 2018, 19, 327–338. [Google Scholar] [CrossRef]
- Cabanillas, R.; Diñeiro, M.; Cifuentes, G.A.; Castillo, D.; Pruneda, P.C.; Álvarez, R.; Sánchez-Durán, N.; Capín, R.; Plasencia, A.; Viejo-Díaz, M.; et al. Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients. BMC Med. Genom. 2018, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Sommen, M.; Wuyts, W.; Van Camp, G. Molecular diagnostics for hereditary hearing loss in children. Expert Rev. Mol. Diagn. 2017, 17, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, C.; Riahi, Z.; Chantot-Bastaraud, S.; Smagghe, L.; Letexier, M.; Marcaillou, C.; Lefèvre, G.M.; Hardelin, J.P.; El-Amraoui, A.; Singh-Estivalet, A.; et al. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients. Eur. J. Hum. Genet. 2016, 24, 1730–1738. [Google Scholar] [CrossRef]
- DiStefano, M.T.; Hemphill, S.E.; Oza, A.M.; Siegert, R.K.; Grant, A.R.; Hughes, M.Y.; Cushman, B.J.; Azaiez, H.; Booth, K.T.; Chapin, A.; et al. ClinGen expert clinical validity curation of 164 hearing loss gene-disease pairs. Genet. Med. 2019, 21, 2239–2247. [Google Scholar] [CrossRef] [PubMed]
- Zazo Seco, C.; Wesdorp, M.; Feenstra, I.; Pfundt, R.; Hehir-Kwa, J.Y.; Lelieveld, S.H.; Castelein, S.; Gilissen, C.; de Wijs, I.J.; Admiraal, R.J.; et al. The diagnostic yield of whole-exome sequencing targeting a gene panel for hearing impairment in The Netherlands. Eur. J. Hum. Genet. 2017, 25, 308–314. [Google Scholar] [CrossRef]
- Kremer, H. Hereditary hearing loss; about the known and the unknown. Hear. Res. 2019, 376, 58–68. [Google Scholar] [CrossRef]
- Mittal, R.; Nguyen, D.; Patel, A.P.; Debs, L.H.; Mittal, J.; Yan, D.; Eshraghi, A.A.; Van De Water, T.R.; Liu, X.Z. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front. Mol. Neurosci. 2017, 31, 236. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Shubina-Oleinik, O.; Holt, J.R. Emerging Gene Therapies for Genetic Hearing Loss. J. Assoc. Res. Otolaryngol. 2017, 18, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Tertrais, M.; Bouleau, Y.; Emptoz, A.; Belleudy, S.; Sutton, R.B.; Petit, C.; Safieddine, S.; Dulon, D. Viral Transfer of Mini-Otoferlins Partially Restores the Fast Component of Exocytosis and Uncovers Ultrafast Endocytosis in Auditory Hair Cells of Otoferlin Knock-Out Mice. J. Neurosci. 2019, 39, 3394–3411. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonard, L.; Brotto, D.; Moreno-Pelayo, M.A.; del Castillo, I.; Kremer, H.; Pennings, R.; Caria, H.; Fialho, G.; Boudewyns, A.; Van Camp, G.; et al. Genetic Evaluation of Prelingual Hearing Impairment: Recommendations of an European Network for Genetic Hearing Impairment. Audiol. Res. 2023, 13, 341-346. https://doi.org/10.3390/audiolres13030029
Jonard L, Brotto D, Moreno-Pelayo MA, del Castillo I, Kremer H, Pennings R, Caria H, Fialho G, Boudewyns A, Van Camp G, et al. Genetic Evaluation of Prelingual Hearing Impairment: Recommendations of an European Network for Genetic Hearing Impairment. Audiology Research. 2023; 13(3):341-346. https://doi.org/10.3390/audiolres13030029
Chicago/Turabian StyleJonard, Laurence, Davide Brotto, Miguel A. Moreno-Pelayo, Ignacio del Castillo, Hannie Kremer, Ronald Pennings, Helena Caria, Graça Fialho, An Boudewyns, Guy Van Camp, and et al. 2023. "Genetic Evaluation of Prelingual Hearing Impairment: Recommendations of an European Network for Genetic Hearing Impairment" Audiology Research 13, no. 3: 341-346. https://doi.org/10.3390/audiolres13030029
APA StyleJonard, L., Brotto, D., Moreno-Pelayo, M. A., del Castillo, I., Kremer, H., Pennings, R., Caria, H., Fialho, G., Boudewyns, A., Van Camp, G., Ołdak, M., Oziębło, D., Deggouj, N., De Siati, R. D., Gasparini, P., Girotto, G., Verstreken, M., Dossena, S., Roesch, S., ... Marlin, S. (2023). Genetic Evaluation of Prelingual Hearing Impairment: Recommendations of an European Network for Genetic Hearing Impairment. Audiology Research, 13(3), 341-346. https://doi.org/10.3390/audiolres13030029