Determination of Recovery by Total Restitution or Compensation Using Multifrequency Vestibular Tests and Subjective Functional Scales in a Human Model of Vestibular Neuritis
Abstract
:1. Introduction
- ▪
- Analyzing and determining possible risk factors of the disease;
- ▪
- Evaluating the compensatory process using changes in perceived disability and in vestibular testing from the onset of symptoms (T0) to 3 months after, i.e., 90 ± 15 days (T3);
- ▪
- Using the results to improve the therapeutic management of vestibular neuritis.
- ▪
- Emotional: because poor compensation can generate insecurity, emotional tension, and panic, which can intensify symptoms in a positive feedback loop;
- ▪
- Social: related to fear of leaving home, which can disrupt social relationships with other people;
- ▪
- Professional: related to deficits in the performance of daily work-related and recreational activities.
2. Materials and Methods
2.1. Patients
- ▪
- Acute or subacute onset of sustained spinning or non-spinning vertigo (i.e., acute vestibular syndrome) of moderate to severe intensity with symptoms lasting for at least 24 h;
- ▪
- Spontaneous peripheral vestibular nystagmus, i.e., nystagmus with a direction appropriate to the semicircular canal afferents involved, usually horizontal–torsional, direction-fixed, and enhanced by removal of visual fixation;
- ▪
- Definitive evidence of reduced VOR function on the side opposite to the direction of the fast phase of the spontaneous nystagmus;
- ▪
- No evidence of acute central neurological symptoms or acute audiological symptoms such as hearing loss or tinnitus or other otologic symptoms such as otalgia;
- ▪
- No acute central neurological signs, i.e., no central ocular motor or central vestibular signs; particularly no skew deviation, no gaze-evoked nystagmus, and no acute audiological signs;
- ▪
- Not better accounted for by another disease or disorder.
- ▪
- History of any vestibular or neurotologic disorders (including vestibular migraine);
- ▪
- History of otologic disorders or surgery;
- ▪
- Symptoms (aural fullness, tinnitus, hearing loss) leading to doubt about the initial Menière’s attack or the first recurrent attack of vertigo;
- ▪
- Medical condition or malignancy that can cause an immunocompromised status;
- ▪
- Regular intake of psychotropic drugs;
- ▪
- MRI that revealed acute infarction or other acute/chronic brain lesions, including cerebellopontine angle tumors.
2.2. Methods
2.2.1. Bedside Vestibular Testing
2.2.2. Laboratory Vestibular Testing
2.2.3. Questionnaires
2.3. Clinical Course of Vestibular Neuritis
- ▪
- Total restitution: complete recovery of functional activity of the labyrinth sometimes occurs, due to the resolution of the lesion and restoration of normal vestibular function through cellular regeneration and the disappearance of edema [55].
- ▪
- Compensation: there is occasionally an incomplete recovery of the functional activity of the labyrinth. In this case, a recalibration process of the activity of the vestibular nuclei must take place. This is enabled by a high degree of plasticity and occurs in the central nervous system in response to the sensory deficit [35,37]. The goal of the compensation process is to re-establish symmetrical neuronal activity at the level of the vestibular nuclei [36].
- ▪
- A group: DHI score < 32: complete recovery, as measured by clinical and laboratory tests and no subjective symptoms, i.e., total restitution.
- ▪
- B group: DHI total score ≥ 32: complete recovery, as measured by clinical and laboratory tests, with some persistent subjective symptoms.
- ▪
- C group: the objective vestibular test recovery and compensation criteria [54] are not met (uncompensated) and are associated with subjective symptoms, i.e., a DHI total score ≥ 32.
- ▪
- D group: the objective vestibular tests remain modified to differing degrees, and the compensation criteria [54] are met (compensated) and are not associated with subjective symptoms, i.e., a DHI total score < 32.
2.4. Patient Categories According to Clinical and Vestibular Results
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Features
3.2. Definition of Patient Groups
3.3. Results for Considered Parameters and Groups
3.3.1. Results for the 40-Patient Group
3.3.2. Results by Comparison of the Four Paired Groups
- Age, Sex, and BMI for the A + D group vs. the B + C group (DHI < 32 vs. DHI ≥ 32).
- Age, Sex, and BMI for the A + B group vs. the C + D group (normal exams vs. pathological exams).
- Cardiovascular risk factors for the A + D group vs. the B + C group (DHI < 32 vs. DHI ≥ 32).
- Cardiovascular risk factors for the A + B group vs. the C + D group (normal exams vs. pathological exams).
- BCT for the A + D group vs. the B + C group (DHI < 32 vs. DHI ≥ 32).
- BCT for the A + B group vs. the C + D group (normal exams vs. pathological exams).
- VHIT for the A + D group vs. the B + C group (DHI < 32 vs. DHI ≥ 32).
- VHIT for the A + B group vs. the C + D group (normal exams vs. pathological exams).
- SVINT for the A + D group vs. the B + C group (DHI < 32 vs. DHI ≥ 32).
- SVINT for the A + B group vs. the C + D group (normal exams vs. pathological exams).
4. Discussion
4.1. Vestibular Compensation Criteria in the Literature
4.2. Cardiovascular Risk Factors Among Patients with Vestibular Neuritis
4.3. Development of Laboratory Testing in Vestibular Neuritis
4.3.1. Bithermal Caloric Test (BCT)
4.3.2. Video Head Impulse Test (VHIT)
4.3.3. Skull Vibration-Induced Nystagmus Test (SVINT)
4.4. Patients with Increased DHI Total Score and Normal Laboratory Tests
4.5. Limitations of This Study and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Rujescu, D.; Hartmann, A.M.; Giegling, I.; Konte, B.; Herrling, M.; Himmelein, S.; Strupp, M. Genome-Wide Association Study in Vestibular Neuritis: Involvement of the Host Factor for HSV-1 Replication. Front. Neurol. 2018, 9, 591. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Wang, D.; Wu, Y.; Fan, Z.; Guo, X.; Guan, Q. Correlation between Vestibular Neuritis and cerebrovascular risk factors. Am. J. Otolaryngol. 2018, 39, 751–753. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Park, S.; Lee, S.-U.; Park, E.; Kim, B.; Kim, B.-J.; Kim, J.-S. Four-hour-delayed 3D-FLAIR MRIs in patients with acute unilateral peripheral vestibulopathy. Ann. Clin. Transl. Neurol. 2024, 11, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.; Chung, J.H.; Lee, S.H.; Park, C.W.; Park, D.W.; Kim, T.Y. Clinical value of 4-hour delayed gadolinium-Enhanced 3D FLAIR MR Images in Acute Vestibular Neuritis. Laryngoscope 2018, 128, 1946–1951. [Google Scholar] [CrossRef]
- Zwergal, A.; Möhwald, K.; Salazar López, E.; Hadzhikolev, H.; Brandt, T.; Jahn, K.; Dieterich, M. A Prospective Analysis of Lesion-Symptom Relationships in Acute Vestibular and Ocular Motor Stroke. Front. Neurol. 2020, 11, 822. [Google Scholar] [CrossRef]
- Esteban-Sanchez, J.; Martin-Sanz, E. Long-Term Evolution of Vestibular Compensation, Postural Control, and Perceived Disability in a Population of Patients with Vestibular Neuritis. J. Clin. Med. 2022, 11, 3941. [Google Scholar] [CrossRef]
- Kerber, K.A. Acute Vestibular Syndrome. Semin Neurol. 2020, 40, 59–66. [Google Scholar] [CrossRef]
- Choi, K.D.; Lee, H.; Kim, J.S. Ischemic syndromes causing dizziness and vertigo. Handb. Clin. Neurol. 2016, 137, 317–340. [Google Scholar] [CrossRef]
- Kattah, J.C. Use of HINTS in the acute vestibular syndrome. An Overview. Stroke Vasc. Neurol. 2018, 3, 190–196. [Google Scholar] [CrossRef]
- Asprella-Libonati, G. Lateral canal BPPV with Pseudo-Spontaneous Nystagmus masquerading as vestibular neuritis in acute vertigo: A series of 273 cases. J. Vestib. Res. 2014, 24, 343–349. [Google Scholar] [CrossRef]
- Himmelein, S.; Lindemann, A.; Sinicina, I.; Horn, A.K.; Brandt, T.; Strupp, M.; Hüfner, K. Differential Involvement during Latent Herpes Simplex Virus 1 Infection of the Superior and Inferior Divisions of the Vestibular Ganglia: Implications for Vestibular Neuritis. J. Virol. 2017, 91, e00331-17. [Google Scholar] [CrossRef] [PubMed]
- Büki, B.; Hanschek, M.; Jünger, H. Vestibular neuritis: Involvement and long-term recovery of individual semicircular canals. Auris Nasus Larynx 2017, 44, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Kim, B.G.; Lee, J.D.; Lee, E.-S.; Lee, T.K.; Sung, K.B. The extent of vestibular impairment is important in recovery of canal paresis of patients with Vestibular Neuritis. Auris Nasus Larynx 2019, 46, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Aw, S.T.; Fetter, M.; Cremer, P.D.; Karlberg, M.; Halmagyi, G.M. Individual semicircular canal function in superior and inferior vestibular neuritis. Neurology 2001, 57, 768–774. [Google Scholar] [CrossRef]
- Magliulo, G.; Gagliardi, G.; Ciniglio Appiani, M.; Iannella, G.; Re, M. Vestibular neurolabyrinthitis: A follow-up study with cervical and ocular vestibular evoked myogenic potentials and the video head impulse test. Ann. Otol. Rhinol. Laryngol. 2014, 123, 162–173. [Google Scholar] [CrossRef]
- Navari, E.; Casani, P.A. Lesion Patterns and Possible Implications for Recovery in Acute Unilateral Vestibulopathy. Otol. Neurotol. 2020, 41, e250–e255. [Google Scholar] [CrossRef]
- Lee, S.U.; Park, S.H.; Kim, H.J.; Koo, J.W.; Kim, J.S. Normal Caloric Responses during Acute Phase of Vestibular Neuritis. Normal Caloric Responses during Acute Phase of Vestibular Neuritis. J. Clin. Neurol. 2016, 12, 301–307. [Google Scholar] [CrossRef]
- Ahn, S.H.; Shin, J.E.; Kim, C.H. Final diagnosis of patients with clinically suspected vestibular neuritis showing normal caloric response. J. Clin. Neurosci. 2017, 41, 107–110. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.J.; Hwang, J.H.; Kim, K.S. Vestibular Neuritis with Minimal Canal Paresis: Characteristics and Clinical Implication. Clin. Exp. Otorhinolaryngol. 2017, 10, 148–152. [Google Scholar] [CrossRef]
- Lee, S.A.; Lee, E.S.; Kim, B.G.; Lee, T.K.; Sung, K.B.; Hwang, K.; Lee, J.D. Acute vestibular asymmetry disorder: A new disease entity in acute vestibular syndrome? Acta Otolaryngol. 2019, 139, 511–516. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kwon, E.; Hyo Kim, H.J.; Choi, J.Y.; Oh, H.J.; Koo, J.W.; Kim, J.S. Dissociated Results between Caloric and Video Head Impulse Tests in Dizziness: Prevalence, Pattern, Lesion Location, and Etiology. J. Clin. Neurol. 2020, 16, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Batuecas-Caletrío, A.; Martínez-Carranza, R.; García Nuñez, G.M.; Fernández Nava, M.J.; Sánchez Gómez, H.; Santacruz Ruiz, S.; Pérez Guillén, V.; Pérez-Fernández, N. Skull vibration-induced nystagmus in vestibular neuritis. Acta Otolaryngol. 2020, 140, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.P.G.; Torres-García, L.; Zamora, E.G.; Jiménez, A.B.C.; Pérez Guillén, V. Is Skull Vibration-Induced Nystagmus Useful in Vestibular Neuritis Follow Up? Audiol. Res. 2022, 12, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Ranjbaran, M.; Katsarkas, A.; Galiana, H.L. Vestibular Compensation in Unilateral Patients Often Causes Both Gain and Time Constant Asymmetries in the VOR. Front. Comput. Neurosci. 2016, 10, 26. [Google Scholar] [CrossRef]
- Martin-Sanz, E.; Diaz, J.Y.; Esteban-Sanchez, J.; Sanz-Fernández, R.; Perez-Fernandez, N. Delayed Effect and Gain Restoration After Intratympanic Gentamicin for Menière’s Disease. Otol. Neurotol. 2019, 40, 79–87. [Google Scholar] [CrossRef]
- Cousins, S.; Kaski, D.; Cutfield, N.; Arshad, Q.; Ahmad, H.; Gresty, M.A.; Seemungal, B.M.; Golding, J.; Bronstein, A.M. Predictors of clinical recovery from Vestibular Neuritis: A prospective study. Ann. Clin. Transl. Neurol. 2017, 4, 340–346. [Google Scholar] [CrossRef]
- Patel, M.; Arshad, Q.; Roberts, R.E.; Ahmad, H.; Bronstein, A.M. Chronic Symptoms After Vestibular Neuritis and the High-Velocity Vestibulo-Ocular Reflex. Otol. Neurotol. 2016, 37, 179–184. [Google Scholar] [CrossRef]
- Martin-Sanz, E.; Rueda, A.; Esteban-Sanchez, J.; Yanes, J.; Rey-Martinez, J.; Sanz-Fernandez, R. Vestibular Restoration and Adaptation in Vestibular Neuritis and Ramsay Hunt Syndrome with Vertigo. Otol. Neurotol. 2017, 38, e203–e208. [Google Scholar] [CrossRef]
- Yang, C.J.; Cha, E.H.; Park, J.W.; Kang, B.C.; Yoo, M.H.; Kang, W.S.; Ahn, J.H.; Chung, J.W.; Park, H.J. Diagnostic Value of Gains and Corrective Saccades in Video Head Impulse Test in Vestibular Neuritis. Otolaryngol. Head Neck Surg. 2018, 159, 347–353. [Google Scholar] [CrossRef]
- Arshad, Q.; Cousins, S.; Golding, J.F.; Bronstein, A.M. Factors influencing clinical outcome in vestibular neuritis–A focused review and reanalysis of prospective data. J. Neurol. Sci. 2023, 446, 120579. [Google Scholar] [CrossRef]
- Strupp, M.; Bisdorff, A.; Furman, J.; Hornibrook, J.; Jahn, K.; Maire, R.; Newman-Toker, D.; Magnusson, M. Acute unilateral vestibulopathy/vestibular neuritis: Diagnostic criteria. Consensus document of the committee for the classification of vestibular disorders of the Bárány Society. J. Vestib. Res. 2022, 32, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Newman-Toker, D.E.; Kerber, K.A.; Hsieh, Y.H.; Pula, J.H.; Omron, R.; Saber Tehrani, A.; Mantokoudis, G.; Hanley, D.F.; Zee, D.S.; Kattah, J.C. HINTS outperforms ABCD2 to screen for stroke in acute continuous vertigo and dizziness. Acad. Emerg. Med. 2013, 20, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Cullen, K.E. The vestibular system: Multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 2012, 35, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Cullen, K.E. Vestibular processing during natural self-motion: Implications for perception and action. Nat. Rev. Neurosci. 2019, 20, 346–363. [Google Scholar] [CrossRef]
- Curthoys, I.S.; Halmagyi, G.M. Vestibular compensation: A review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J. Vestib. Res. 1995, 5, 67–107. [Google Scholar] [CrossRef]
- Curthoys, I.S. The Neural Basis of Skull Vibration Induced Nystagmus (SVIN). Audiol. Res. 2021, 11, 557–566. [Google Scholar] [CrossRef]
- Lacour, M.; Helmchen, C.; Vidal, P.P. Vestibular compensation: The neuro-otologist’s best friend. J. Neurol. 2016, 263 (Suppl. 1), S54–S64. [Google Scholar] [CrossRef]
- Dumas, G.; Curthoys, I.S.; Lion, A.; Perrin, P.; Schmerber, S. The Skull Vibration-Induced Nystagmus Test of Vestibular Function-A Review. Front. Neurol. 2017, 8, 41. [Google Scholar] [CrossRef]
- Zellhuber, S.; Mahringer, A.; Rambold, H.A. Relation of video-head-impulse test and caloric irrigation: A study on the recovery in unilateral Vestibular Neuritis. Eur. Arch. Otorhinolaryngol. 2014, 271, 2375–2383. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Priscoveanu, A.; Böhmer, A.; Obzina, H.; Straumann, D. Caloric and search-coil head-impulse testing in patients after Vestibular Neuritis. J. Assoc. Res. Otolaryngol. 2001, 2, 72–78. [Google Scholar] [CrossRef]
- Halmagyi, G.M.; Chen, L.; MacDougall, H.G.; Weber, K.P.; Mc Garvie, L.A.; Curthoys, I.S. The Video Head Impulse Test. Front. Neurol. 2017, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- McGarvie, L.A.; MacDougall, H.G.; Curthoys, I.S.; Halmagyi, G.M. Spontaneous Recovery of the Vestibulo-Ocular Reflex After Vestibular Neuritis; Long-Term Monitoring with the Video Head Impulse Test in a Single Patient. Front. Neurol. 2020, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Batuecas-Caletrio, A.; Rey-Martinez, J.; Trinidad-Ruiz, G.; Matiño-Soler, E.; Santa Cruz-Ruiz, S.; Muñoz-Herrera, A.; Perez-Fernandez, N. Vestibulo-Ocular Reflex Stabilization after Vestibular Schwannoma Surgery: A Story Told by Saccades. Front. Neurol. 2017, 8, 15. [Google Scholar] [CrossRef]
- Dumas, G.; Perrin, P.; Ouedraogo, E.; Schmerber, S. How to perform the skull vibration-induced nystagmus test (SVINT). Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 343–348. [Google Scholar] [CrossRef]
- Fabre, C.; Tan, H.; Dumas, G.; Giraud, L.; Perrin, P.; Schmerber, S. Skull Vibration Induced Nystagmus Test: Correlations with Semicircular Canal and Otolith Asymmetries. Audiol. Res. 2021, 11, 618–628. [Google Scholar] [CrossRef]
- Chays, A.; Florant, A.; Ulmer, E. Les Vertiges; Collection consulter prescrire; Masson: Issy-les-Moulineaux, France, 2004; 113p. [Google Scholar]
- Jacobson, G.P.; Newman, C.W. The development of the Dizziness Handicap Inventory. Arch. Otolaryngol. Head Neck Surg. 1990, 116, 424–427. [Google Scholar] [CrossRef]
- Colnaghi, S.; Rezzani, C.; Gnesi, M.; Manfrin, M.; Quaglieri, S.; Nuti, D.; Mandalà, M.; Monti, M.C.; Versino, M. Validation of the Italian Version of the Dizziness Handicap Inventory, the Situational Vertigo Questionnaire, and the Activity-Specific Balance Confidence Scale for Peripheral and Central Vestibular Symptoms. Front. Neurol. 2017, 8, 528. [Google Scholar] [CrossRef]
- Whitney, S.L.; Wrisley, D.M.; Brown, K.E.; Furman, J.M. Is perception of handicap related to functional performance in persons with vestibular dysfunction? Otol. Neurotol. 2004, 25, 139–143. [Google Scholar] [CrossRef]
- Kunel’skaya, N.L.; Baibakova, E.V.; Guseva, A.L.; Nikitkina, Y.Y.; Chugunova, M.A.; Manaenkova, E.A. The compensation of the vestibulo-ocular reflex during rehabilitation of the patients presenting with Vestibular Neuritis. Vestn. Otorinolaringol. 2018, 83, 27–31. [Google Scholar] [CrossRef]
- Verbecque, E.; Wuyts, F.L.; Vanspauwen, R.; Van Rompaey, V.; Van de Heyning, P.; Vereeck, L. The Antwerp Vestibular Compensation Index (AVeCI)- an index for vestibular compensation estimation, based on functional balance performance. Eur. Arch. Otorhinolaryngol. 2021, 278, 1755–1763. [Google Scholar] [CrossRef]
- Giray, M.; Kirazli, Y.; Karapolat, H.; Celebisoy, H.; Bilgen, C.; Kirazli, T. Short-term effects of vestibular rehabilitation in patients with chronic unilateral vestibular dysfunction: A randomized controlled study. Arch. Phys. Med. Rehabil. 2009, 90, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Adamec, I.; Krbot Skorić, M.; Ozretić, D.; Habek, M. Predictors of development of chronic vestibular insufficiency after vestibular neuritis. J. Neurol. Sci. 2014, 347, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Guajardo-Vergara, C.; Perez-Fernandez, N. A New and Faster Method to Assess Vestibular Compensation: A Cross-Sectional Study. Laryngoscope 2020, 130, E911–E917. [Google Scholar] [CrossRef] [PubMed]
- Manzari, L.; Burgess, A.M.; MacDougall, H.G.; Curthoys, I.S. Vestibular function after Vestibular Neuritis. Int. J. Audiol. 2013, 52, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Eisenman, D.J.; Spears, R.; Telian, S.A. Labyrinthectomy versus Vestibular Neurectomy: Long-term Physiologic and Clinical Outcomes. Otol. Neurotol. 2001, 22, 539–548. [Google Scholar] [CrossRef]
- Yagi, C.; Kimura, A.; Horii, A. Persistent postural-perceptual dizziness: A functional neuro-otologic disorder. Auris Nasus Larynx 2024, 51, 588–598. [Google Scholar] [CrossRef]
- Matiñó-Soler, E.; Rey-Martinez, J.; Trinidad-Ruiz, G.; Batuecas-Caletrio, A.; Perez Fernanndez, N. A new method to improve the imbalance in chronic unilateral vestibular loss: The organization of refixation saccades. Acta Otolaryngol. 2016, 136, 894–900. [Google Scholar] [CrossRef]
- Oron, Y.; Shemesh, S.; Shushan, S.; Cinamon, U.; Goldfarb, A.; Dabby, R.; Ovnat Tamir, S. Cardiovascular Risk Factors Among Patients with Vestibular Neuritis. Ann. Otol. Rhinol. Laryngol. 2017, 126, 597–601. [Google Scholar] [CrossRef]
- Büki, B.; Mair, A.; Pogson, J.M.; Andresen, N.S.; Ward, B.K. Three-Dimensional High-Resolution Temporal Bone Histopathology Identifies Areas of Vascular Vulnerability in the Inner Ear. Audiol. Neurotol. 2022, 27, 249–259. [Google Scholar] [CrossRef]
- Waissbluth, S.; Becker, J.; Sepúlveda, V.; Iribarren, J.; García-Huidobro, F. Benign Paroxysmal Positional Vertigo Secondary to Acute Unilateral Peripheral Vestibulopathy: Evaluation of Cardiovascular Risk Factors. J. Int. Adv. Otol. 2023, 19, 28–32. [Google Scholar] [CrossRef]
- Pâris, P.; Charpiot, A.; Veillon, F.; Severac, F.; Djennaoui, I. Prevalence of cardiovascular risk factors in superior vestibular neuritis: A cross-sectional study following STROBE guidelines. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2022, 139, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Coronel-Touma, G.S.; Monopoli-Roca, C.; Almeida-Ayerve, C.N.; Marcos-Alonso, S.; de la Torre-Morales, D.G.; Serradilla-López, J.; Santa Cruz-Ruiz, S.; Batuecas-Caletrío, Á.; Sánchez-Gómez, H. Influence of Age and Cardiovascular Risk Factors in Vestibular Neuritis: Retrospective Cohort Study. J. Clin. Med. 2023, 12, 6544. [Google Scholar] [CrossRef] [PubMed]
- Allum, J.H.J.; Honegger, F. Correlations Between Multi-plane vHIT Responses and Balance Control After Onset of an Acute Unilateral Peripheral Vestibular Deficit. Otol. Neurotol. 2020, 41, e952–e960. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Kim, S.-H.; Jung, J. Long-Term Changes in Video Head Impulse and Caloric Tests in Patients with Unilateral Vestibular Neuritis. Korean J. Otorhinolaryngol. Head Neck Surg. 2019, 62, 23–27. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, M.-B. Importance of Video Head Impulse Test Parameters for Recovery of Symptoms in Acute Vestibular Neuritis. Otol. Neurotol. 2020, 41, 964–971. [Google Scholar] [CrossRef]
- Choi, K.-D.; Oh, S.-Y.; Kim, H.-J.; Koo, J.-W.; Cho, B.M.; Kim, J.S. Recovery of vestibular imbalances after vestibular neuritis. Laringoscope 2007, 117, 1307–1312. [Google Scholar] [CrossRef]
- Strupp, M.; Brandt, T. Vestibular Neuritis. Semin. Neurol. 2009, 29, 509–519. [Google Scholar] [CrossRef]
- Reinhard, A.; Maire, R. Névrite vestibulaire: Traitment et prognostic. Rev. Med. Suisse. 2013, 9, 1775–1779. [Google Scholar]
- Palla, A.; Straumann, D.; Bronstein, A.M. Vestibular neuritis: Vertigo and the high-acceleration vestibulo-ocular reflex. J. Neurol. 2008, 255, 1479–1482. [Google Scholar] [CrossRef]
- Nadol, J.B., Jr. Vestibular neuritis. Otolaryngol. Head Neck Surg. 1995, 112, 162–172. [Google Scholar] [CrossRef]
- Cousins, S.; Cutfield, N.J.; Kaski, D.; Palla, A.; Seemungal, B.M.; Golding, J.F.; Staab, J.P.; Bronstein, A.M. Visual Dependency and Dizziness after Vestibular Neuritis. PLoS ONE 2014, 9, e105426. [Google Scholar] [CrossRef] [PubMed]
- Bronstein, A.M.; Dieterich, M. Long-term clinical outcome in vestibular neuritis. Curr. Opin. Neurol. 2019, 32, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Allum, J.H.J.; Scheltinga, A.; Honegger, F. The Effect of Peripheral Vestibular Recovery on Improvements in Vestibulo-ocular Reflexes and Balance Control After Acute Unilateral Peripheral Vestibular Loss. Otol. Neurol. 2017, 38, e531–e538. [Google Scholar] [CrossRef] [PubMed]
- Cerchiai, N.; Navari, E.; Sellari-Franceschini, S.; Re, C.; Casani, A.P. Predicting the Outcome after Acute Unilateral Vestibulopathy Analysis of VOR Gain and Catch-up Saccades. Otolaryngol. Head Neck Surg. 2018, 158, 527–533. [Google Scholar] [CrossRef]
- Fu, W.; He, F.; Wei, D.; Bai, Y.; Shi, Y.; Wang, X.; Han, J. Recovery Pattern of High-Frequency Acceleration Vestibulo-Ocular Reflex in Unilateral Vestibular Neuritis: A Preliminary Study. Front. Neurol. 2019, 10, 85. [Google Scholar] [CrossRef]
- Manzari, L.; Tramontano, M. Suppression Head Impulse Paradigm (SHIMP) in evaluating the vestibulo-saccadic interaction in patients with vestibular neuritis. Eur. Arch. Otorhinolaryngol. 2020, 277, 3205–3212. [Google Scholar] [CrossRef]
- Manzari, L.; Burgess, A.M.; MacDougall, H.G.; Curthoys, I.S. Objective verification of full recovery of dynamic vestibular function after superior vestibular neuritis. Laryngoscope 2011, 121, 2496–2500. [Google Scholar] [CrossRef]
- Tighilet, B.; Bordiga, P.; Cassel, R.; Chabbert, C. Peripheral vestibular plasticity vs. central compensation: Evidence and questions. J. Neurol. 2019, 266 (Suppl. 1), 27–32. [Google Scholar] [CrossRef]
- Allum, J.H.J.; Honegger, F. Improvement of Asymmetric Vestibulo-Ocular Reflex Responses Following Onset of Vestibular Neuritis Is Similar Across Canal Planes. Front. Neurol. 2020, 11, 565125. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Kim, H.-J.; Kim, J.-S. Vestibular neuritis. Semin. Neurol. 2013, 33, 185–194. [Google Scholar] [CrossRef]
- Matos, R.; Navarro, M.; Pérez-Guillén, V.; Pérez-Garrigues, H. The role of vertical semicircular canal function in the vertical component of skull vibration-induced nystagmus. Acta Otolaryngol. 2020, 140, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xu, J.; Liu, D.; Wang, J.; Lu, L.; Gao, R.; Zhou, X.; Zhuang, J.; Zhang, S. Optimizing vestibular neuritis management with modular strategies. Front. Neurol. 2023, 14, 1243034. [Google Scholar] [CrossRef] [PubMed]
- Kabaya, K.; Tamai, H.; Okajima, A.; Minakata, T.; Kondo, M.; Nakayama, M.; Iwasaki, S. Presence of exacerbating factors of persistent perceptual-postural dizziness in patients with vestibular symptoms at initial presentation. Laryngoscope Investig. Otolaryngol. 2022, 7, 499–505, Erratum in Laryngoscope Investig. Otolaryngol. 2023, 8, 1692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jauregui-Renaud, K.; Sang, F.Y.; Gresty, M.A. Depersonalisation/derealisation symptoms and updating orientation in patients with vestibular disease. J. Neurol. Neurosurg. Psychiatry 2008, 79, 276–283. [Google Scholar] [CrossRef]
- Staab, J.P. Chronic subjective dizziness. Contin. Lifelong Learn. Neurol. 2012, 18, 1118. [Google Scholar] [CrossRef]
- Staab, J.P.; Eckhardt-Henn, A.; Horii, A.; Jacob, R.; Strupp, M.; Brandt, T. Diagnostic criteria for persistent postural-perceptual dizziness (PPPD): Consensus document of the committee for the Classification of Vestibular Disorders of the Bárány Society. J. Vestib. Res. 2017, 27, 191–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Soper, J.; Lohse, C.M.; Eggers, S.D.Z.; Kaufman, K.R.; McCaslin, D.L. Agreement between the Skull Vibration-Induced Nystagmus Test and Semicircular Canal and Otolith Asymmetry. J. Am. Acad. Audiol. 2021, 32, 283–289. [Google Scholar] [CrossRef]
(a) | ||||||||||
Without Symptoms DHI < 32 | With Symptoms DHI ≥ 32 | |||||||||
No Vestibular Laboratory Test Dysfunction | Total restitution → seven patients (17.5%) | Chronic dizziness → one patient (2.5%) | ||||||||
A group | B group | |||||||||
Vestibular Laboratory Test Dysfunction | Subjective compensation but not objective recovery → 22 patients (55%) | Neither subjective compensation nor objective recovery → 10 patients (25%) | ||||||||
D group | C group | |||||||||
(b) | ||||||||||
Positive Vestibular Tests (n=) | ||||||||||
Groups | DHI T0 | DHI T3 | L VHIT T0 | L VHIT T3 | SVINT T0 | SVINT T3 | HST T0 | HST T3 | BCT T0 | BCT T3 |
A | 68.00 ± 5.29 | 16.00 ± 12.17 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 0 |
B | 62 | 80 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
C | 62.2 ± 11.25 | 61.00 ± 9.49 | 10 | 10 | 10 | 9 | 10 | 8 | 10 | 10 |
D | 64.82 ± 15.52 | 18.36 ± 7.42 | 22 | 22 | 22 | 20 | 22 | 0 | 22 | 22 |
A + D | 65.59 ± 13.73 | 17.79 ± 8.61 | 29 | 22 | 29 | 20 | 29 | 0 | 29 | 22 |
B + C | 62.18 ± 10.68 | 62.73 ± 10.67 | 11 | 10 | 11 | 10 | 11 | 8 | 11 | 10 |
A + B | 67.25 ± 5.34 | 24.00 ± 25.28 | 8 | 0 | 8 | 1 | 8 | 0 | 8 | 0 |
C + D | 64.00 ± 14.20 | 50.00 ± 21.60 | 32 | 32 | 32 | 29 | 32 | 8 | 32 | 32 |
Age | DHI | BCT | Nb of Vascular Risks | SVINT | L VHIT VN Side | A VHIT VN Side | P VHIT VN Side | ||
---|---|---|---|---|---|---|---|---|---|
Age | Pearson’s r | — | |||||||
p value | — | ||||||||
DHI | Pearson’s r | −0.251 | — | ||||||
p value | 0.188 | — | |||||||
BCT | Pearson’s r | −0.017 | −0.086 | — | |||||
p value | 0.931 | 0.656 | — | ||||||
Nb of Vascular Risks | Pearson’s r | −0.112 | 0.322 | 0.284 | — | ||||
p value | 0.562 | 0.089 | 0.135 | — | |||||
SVINT | Pearson’s r | 0.111 | −0.008 | 0.506 ** | 0.057 | — | |||
p value | 0.566 | 0.968 | 0.005 | 0.769 | — | ||||
L VHIT VN Side | Pearson’s r | 0.182 | −0.250 | −0.716 *** | −0.298 | −0.623 *** | — | ||
p value | 0.345 | 0.191 | <0.001 | 0.117 | <0.001 | — | |||
A VHIT VN Side | Pearson’s r | 0.050 | −0.141 | −0.222 | 0.137 | −0.540 ** | 0.481 ** | — | |
p value | 0.795 | 0.465 | 0.246 | 0.478 | 0.003 | 0.008 | — | ||
P VHIT VN Side | Pearson’s r | 0.178 | −0.275 | −0.233 | −0.353 | −0.169 | 0.304 | 0.364 | — |
p value | 0.356 | 0.148 | 0.224 | 0.060 | 0.381 | 0.109 | 0.052 | — |
Group | Sex | Age | BMI |
---|---|---|---|
A + D | 15M/14F | 65.10 ± 15.17 | 25.43 ± 3.42 |
B + C | 6M/4F | 70.37 ± 9.99 | 26.46 ± 4.05 |
A + B | 4M/4F | 63.89 ± 18.84 | 25.12 ± 3.54 |
C + D | 17M/15F | 67.22 ± 13.72 | 25.86 ± 3.64 |
Eisenman et al. (2001) [56] | Guajardo-Vergara et al. (2020) [54] |
---|---|
Spontaneous Ny ≥ 2°/s | Videonystagmography: Spontaneous Ny ≥ 3°/s; direction-fixed positional Ny ≥ 4°/s in at least three of the four positions evaluated |
Positional Ny persistent ≥ 3°/s in more than half of the eleven positions assessed, sporadic in nearly all positions, or ≥ 6°/s in any one position | Caloric test: Directional preponderance ≥ 25% |
Directional preponderance ≥ 25% | Rotatory chair test: Sinusoidal Harmonic Acceleration Test: Asymmetry in the SPV ≥ 5°/s on at least three frequencies; Impulsive Test: Time Constant asymmetry < 20% |
Asymmetry of slow-component eye velocity responses, outside of established normal ranges, at two or more of the six frequencies evaluated on rotatory chair testing | Clinical situation: Instability |
Dizziness Handicap Inventory: ≥ 32 total score |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armato, E.; Dumas, G.; Perottino, F.; Casteran, M.; Perrin, P. Determination of Recovery by Total Restitution or Compensation Using Multifrequency Vestibular Tests and Subjective Functional Scales in a Human Model of Vestibular Neuritis. Audiol. Res. 2024, 14, 958-982. https://doi.org/10.3390/audiolres14060080
Armato E, Dumas G, Perottino F, Casteran M, Perrin P. Determination of Recovery by Total Restitution or Compensation Using Multifrequency Vestibular Tests and Subjective Functional Scales in a Human Model of Vestibular Neuritis. Audiology Research. 2024; 14(6):958-982. https://doi.org/10.3390/audiolres14060080
Chicago/Turabian StyleArmato, Enrico, Georges Dumas, Flavio Perottino, Matthieu Casteran, and Philippe Perrin. 2024. "Determination of Recovery by Total Restitution or Compensation Using Multifrequency Vestibular Tests and Subjective Functional Scales in a Human Model of Vestibular Neuritis" Audiology Research 14, no. 6: 958-982. https://doi.org/10.3390/audiolres14060080
APA StyleArmato, E., Dumas, G., Perottino, F., Casteran, M., & Perrin, P. (2024). Determination of Recovery by Total Restitution or Compensation Using Multifrequency Vestibular Tests and Subjective Functional Scales in a Human Model of Vestibular Neuritis. Audiology Research, 14(6), 958-982. https://doi.org/10.3390/audiolres14060080