Visual Reliance in Severe Hearing Loss: Visual Evoked Potentials (VEPs) Study
Abstract
:1. Introduction
2. Aim of the Work
3. Materials and Methods
4. All Children Were Submitted to the Following
- Thorough otological and audiological history.
- Hearing evaluation using pure tone audiometry (along the frequency range of 250–8000 Hz for air conduction and 500–4000 Hz for bone conduction) and speech audiometry using speech materials specially designed for children. The technique of hearing evaluation was dependent on the child’s cooperation, either play audiometry or voluntary thresholds. Speech audiometry included speech reception threshold (SRT) and discrimination scores (SD%), conducted with and without VCs. Both PTA and speech audiometry were conducted using Interacoustics AD629 (Middelfart, Denmark).
- Assessment of middle ear function through immittancemetry using Interacoustics AT235 (Middelfart, Denmark).
- Check up on CIs and HAs for both HL and CI groups, followed by sound field examination using warble tones (250–4000 Hz) and speech materials. The Arabic version of 50-PB-Kg lists were used to assess the SD% at 40 dBSL (re-aided SRTs).
- The ophthalmic examinations included evaluating the child’s medical and family history of ocular conditions. They also involved observing for external ocular abnormalities, examining the pupil and corneal light reflexes, assessing the range of ocular movements, visual acuity, and examining the anterior segment and posterior segment.
- Visual evoked potentials (VEPs) were recorded using a reversing white and black checkerboard with a mean luminance of 70 cd/m2 and a contrast close to 100%. The stimuli were displayed on a monitor with a central red dot for fixation. The electrode montage was set at 4 cm above the inion for the active electrode, at the forehead (Fz) for the reference electrode, and at the lower forehead (Fpz) for the ground electrode. For more details, see Gabr et al. [16]. Children were instructed to fixate on the central red dot in the checkerboard. The VEP analysis revealed three peaks: N75, P100, and N145. To ensure reproducibility, three responses were recorded where both P100 latency and P100-N145 peak-to-peak amplitude were calculated in each run. Recording of VEPs was by using Nihon Kohden MEB-2300 Neuropack X1 (Tokyo, Japan) and the stimuli were displayed on a monitor Model CPD-3214 (Samsung, Beijing, China)
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavani, F.; Bottari, D. Visual Abilities in Individuals with Profound Deafness A Critical Review. In The Neural Bases of Multisensory Processes; Murray, M.M., Wallace, M.T., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2012; Chapter 22. Available online: https://www.ncbi.nlm.nih.gov/books/NBK92865/ (accessed on 18 October 2024).
- Heffner, R.S.; Heffner, H.E. Visual factors in sound localization in mammals. J Comp Neurol. 1992, 317, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.K. Age related hearing loss and cognitive impairment—A current perspective. Int. J. Res. Med. Sci. 2021, 9, 317–321. [Google Scholar] [CrossRef]
- Babajanian, E.E.; Gurgel, R.K. Cognitive and behavioral effects of hearing loss. Curr. Opin. Otolaryngol. Head. Neck. Surg. 2022, 30, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.K. Hearing loss and its impact in the community. Matrix. Sci. Med. 2024, 8, 1–5. [Google Scholar] [CrossRef]
- Glick, H.; Sharma, A. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications. Hear Res. 2017, 343, 191–201. [Google Scholar] [CrossRef]
- Ching, T.Y.C.; Dillon, H.; Leigh, G.; Cupples, L. Learning from the longitudinal outcomes of children with hearing impairment (LOCHI) study: Summary of 5-year findings and implications. Int. J. Audiol. 2018, 57, S105–S111. [Google Scholar] [CrossRef]
- McGarrigle, R.; Munro, K.J.; Dawes, P.; Stewart, A.J.; Moore, D.R.; Barry, J.G.; Amita, S. Listening effort and fatigue: What exactly are we measuring? A British Society of Audiology Cognition in Hearing Special Interest Group ‘white paper’. Int. J. Audiol. 2014, 53, 433–440. [Google Scholar] [CrossRef]
- Bess, F.H.; Davis, H.; Camarata, S.; Hornsby, B.W.Y. Listening-related fatigue in children with unilateral hearing loss. Lang. Speech Hear. Serv. Sch. 2020, 51, 84–97. [Google Scholar] [CrossRef]
- Kim, J.; Cvejic, E.; Davis, C. Tracking eyebrows and head gestures associated with spoken prosody. Speech Commun. 2014, 57, 317–330. [Google Scholar] [CrossRef]
- Grant, K.W.; Seitz, P.F. The use of visible speech cues for improving auditory detection of spoken sentences. J. Acoust. Soc. Am. 2000, 108, 1197–1208. [Google Scholar] [CrossRef]
- Maidment, D.W.; Kang, H.J.; Stewart, H.J.; Amitay, S. Audiovisual integration in children listening to spectrally degraded speech. J. Speech Lang. Hear. Res. 2015, 58, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Taitelbaum-Swead, R.; Fostick, L. Audio-visual speech perception in noise: Implanted children and young adults versus normal hearing peers. Int. J. Pediatr. Otorhinolaryngol. 2017, 92, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Tillberg, I.; Ronnberg, J.; Svard, I.; Ahlner, B. Audio-visual speechreading in a group of hearing aid users: The effects of onset age, handicap age, and degree of hearing loss. Scand. Audiol. 1996, 25, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Bizley, J.K.; Nodal, F.R.; Bajo, V.M.; Nelken, I.; King, A.J. Physiological and anatomical evidence for multisensory interaction; in auditory cortex. Cerebr. Cortex. 2017, 17, 2172–2189. [Google Scholar] [CrossRef]
- Gabr, T.; Eldessouki, T.; Hashem, A.; Elgamal, S.; Zeinhom, M. Cochlear implants: Visual evoked potentials study. Int. J. Pediatr. Otorhinolaryngol. 2022, 161, 111250. [Google Scholar] [CrossRef]
- World Medical Association, Declaration of Helsinki ethical principles for medical research involving human subjects. Clinical review & education, JAMA 2013, 310, 2191–2194.
- Benetti, S.; Zonca, J.; Ferrari, A.; Rezk, M.; Rabini, G.; Collignon, O. Visual motion processing recruits regions selective for auditory motion in early deaf individuals. Neuroimage 2021, 230, 117816. [Google Scholar] [CrossRef]
- Kral, A.; Sharma, A. Crossmodal plasticity in hearing loss. Trends Neurosci. 2023, 46, 377–393. [Google Scholar] [CrossRef]
- Kral, A.; Tillein, J.; Heid, S.; Hartmann, R.; Klinke, R. Postnatal cortical development in congenital auditory deprivation. Cerebr. Cortex. 2005, 15, 552–562. [Google Scholar] [CrossRef]
- Sharma, P.M.; Gilley, M.F.; Dormant, R.; Baldwin, R. Deprivation-induced cortical reorganization in children with cochlear implants. Int. J. Audiol. 2007, 6, 494–499. [Google Scholar] [CrossRef]
- Shibata, D.K. Differences in brain structure in deaf persons on MR imaging studied with voxel-based morphometry. AJNR Am. J. Neuroradiol. 2007, 28, 243–249. [Google Scholar] [PubMed] [PubMed Central]
- Quartz, S.; Sejnowski, T. The neural basis of cognitive development: A constructivist manifesto. Behav. Brain Sci. 1997, 20, 537–556. [Google Scholar] [CrossRef] [PubMed]
- Frasnelli, J.; Collignon, O.; Voss, P.; Lepore, F. Crossmodal plasticity in sensory loss. Prog. Brain Res. 2011, 191, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Bottari, D.; Nava, E.; Ley, P.; Pavani, F. Enhanced reactivity to visual stimuli in deaf individuals. Restor. Neurol Neurosci. 2010, 28, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Fine, I.; Finney, E.M.; Boynton, G.M.; Dobkins, K.R. Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex. J. Cogn. Neurosci. 2005, 17, 1621–1637. [Google Scholar] [CrossRef]
- Pallas, S.L.; Roe, A.W.; Sur, M. Visual projections induced into the auditory pathway of ferrets. 1. Novel inputs to primary auditory-cortex (Ai) from the Lp pulvinar complex and the topography of the MGN-AI projection. J. Comp. Neurol. 1990, 298, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.W.; Pallas, S.L.; Kwon, Y.H.; Sur, M. Visual projections routed to the auditory pathway in ferrets: Receptive fields of visual neurons in primary auditory cortex. J. Neurosci. 1992, 12, 3651–3664. [Google Scholar] [CrossRef]
- Malhotra, S.; Hall, A.J.; Lomber, S.G. Cortical control of sound localization in the cat: Unilateral cooling deactivation of 19 cerebral areas. J. Neurophysiol. 2004, 92, 1625–1643. [Google Scholar] [CrossRef]
- Lomber, S.G.; Meredith, M.A.; Kral, A. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat. Neurosci. 2010, 13, 1421–1427. [Google Scholar] [CrossRef]
- Pisoni, D.; Kronenberger, W.; Roman, A.; Geers, A. Measures of digit span and verbal rehearsal speed in deaf children after more than 10 years of cochlear implantation. Ear. Hear. 2011, 32, 60s–74s. [Google Scholar] [CrossRef]
- McGarrigle, R.; Gustafson, S.J.; Hornsby, B.W.Y.; Bess, F.H. Behavioral measures of listening effort in school-age children: Examining the effects of signal-to-noise ratio, hearing loss, and amplification. Ear Hear. 2019, 40, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.; Bruggeman, L.; Demuth, K. Visual speech cues speed processing and reduce effort for children listening in quiet and noise. Appl. Psycholinguist. 2020, 41, 1–29. [Google Scholar] [CrossRef]
- Lalonde, K.; McCreery, R.W. Audiovisual enhancement of speech perception in noise by school-age children who are hard of hearing. Ear Hear. 2020, 41, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Waddington, E.; Jaekel, B.N.; Tinnemore, A.R.; Gordon-Salant, S.; Goupell, M.J. Recognition of accented speech by cochlear-implant listeners: Benefit of audiovisual cues. Ear Hear. 2020, 41, 1236–1250. [Google Scholar] [CrossRef]
- Campbell, R. The processing of audio-visual speech: Empirical and neural bases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 1001–1010. [Google Scholar] [CrossRef]
- Remez, R.E. Three puzzles of multimodal speech perception. In Textbook of Audiovisual Speech Processing; Vatikiotis-Bateson, E., Bailly, G., Perrier, P., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 4–20. [Google Scholar]
- Bavelier, D.; Dye, M.W.; Hauser, P.C. Do deaf individuals see better? Trends Cogn. Sci. 2006, 10, 512–518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voss, P.; Gougoux, F.; Zatorre, R.J.; Lassonde, M.; Lepore, F. Differential occipital responses in early- and late blind individuals during a sound-source discrimination task. Neuroimage 2008, 40, 746–758. [Google Scholar] [CrossRef]
- Humes, L. Spectral and temporal resolution by the hearing impaired. In The Vanderbilt Hearing aid Report. Monographs in Contemporary Audiology; Studebaker, G.A., Bess, F., Eds.; York Publisher: Upper Darby, PA, USA, 1982; pp. 16–31. [Google Scholar]
- Gulick, L.; Gescheider, G.; Frisina, R. Hearing: Physiological Acoustics, Neural Coding, and Psychoacoustics; Oxford University Press: Oxford, UK; New York, NY, USA, 1989; pp. 161–187. [Google Scholar]
- Moore, B.C.J. Dead regions in the cochlea: Implications for the choice of high-frequency amplification. In Sound Foundation Through Early Amplification; PHONAK: Atlanta, GA, USA, 2001; Chapter 12; pp. 153–166. [Google Scholar]
- Gabr, T.A.; Kotait, M.A. Cochlear implant versus hearing aids: Cortical auditory-evoked potentials study. Hear. Balance Comm. 2018, 16, 56–63. [Google Scholar] [CrossRef]
- Caldwell, M.; Rankin, S.K.; Jiradejvong, P.; Carver, C.; Limb, C.J. Cochlear implant users rely on tempo rather than on pitch information during perception of musical emotion. Cochlear. Implants. Int. 2015, 16 (Suppl. S3), S114–S120. [Google Scholar] [CrossRef]
- Jiam, N.T.; Pearl, M.S.; Carver, C.; Limb, C.J. Flat-Panel CT imaging for individualized pitch mapping in cochlear implant users. Otol. Neurotol. 2016, 37, 672–679. [Google Scholar] [CrossRef]
- Landsberger, D.M.; Padilla, M.; Srinivasan, A.G. Reducing current spread using current focusing in cochlear implant users. Hear. Res. 2012, 284, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Limb, C.J.; Roy, A.T. Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hear. Res. 2014, 308, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.Y.; Stickney, G.S.; Zeng, F.G. Speech and melody recognition in binaurally combined acoustic and electric hearing. J. Acoust. Soc. Am. 2005, 117, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Rouger, J.; Lagleyre, S.; Fraysse, B.; Deneve, S.; Deguine, O.; Barone, P. Evidence that cochlear-implanted deaf patients are better multisensory integrators. Proc. Natl. Acad. Sci. USA 2007, 104, 7295–7300. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.; Bruggeman, L.; Demuth, K. Effects of hearing loss and audio-visual cues on children’s speech processing speed. Speech Commun. 2023, 146, 11–21. [Google Scholar] [CrossRef]
- Moberly, A.C.; Vasil, K.J.; Ray, C. Visual Reliance During Speech Recognition in Cochlear Implant Users and Candidates. J. Am. Acad. Audiol. 2020, 31, 30–39. [Google Scholar] [CrossRef]
- Summerfield, Q. Lipreading and audio-visual speech perception. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. Lond. 1992, 335, 71–78. [Google Scholar]
- Bernstein, L.E.; Demorest, M.E.; Tucker, P.E. What makes a good speechreader? First you have to find one. In Hearing by Eye II: Advances in the Psychology of Speechreading and Auditory-Visual Speech; Campbell, R., Dodd, B., Burnham, D., Eds.; Psychology Press: Hove, UK, 1998; pp. 211–227. [Google Scholar]
- Alegria, J. The origin and functions of phonological representations in deaf people. In Reading and Spelling: Development and Disorders; Hulme, C., Joshi, R.M., Eds.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1998; pp. 263–286. [Google Scholar]
- MacSweeney, M.; Amaro, E.; Calvert, G.A.; Campbell, R.; David, A.S.; McGuire, P.; Williams, S.C.R.; Woll, B.; Brammer, M.J. Silent speechreading in the absence of scanner noise: An event-related fMRI study. Neuroreport 2000, 11, 1729–1733. [Google Scholar] [CrossRef]
- Brophy, J.; Alleman, J. Meaningful social studies for elementary students. Teach. Teac. 2009, 15, 357–376. [Google Scholar] [CrossRef]
- Nikolaraizi, M.; Vekiri, I.; Easterbrooks, S.R. Investigating deaf students’ use of visual multimedia resources in reading comprehension. Am. Ann. Deaf. 2013, 157, 458–474. [Google Scholar] [CrossRef]
- Graham, L.; Graham, A.; West, C. From research to practice: The effect of multi-component vocabulary ınstruction on ıncreasing vocabulary and comprehension performance in social studies. IEJEE 2017, 8, 147–160. Available online: https://www.iejee.com/index.php/IEJEE/article/view/103 (accessed on 18 October 2024).
- Whitby, P.J.S.; Leininger, M.L.; Grillo, K. Tips for using interactive whiteboards to increase participation of students with disabilities. Teach. Except. Child. 2012, 44, 50–57. [Google Scholar] [CrossRef]
- Akay, E. The Use of Audio-Visual Materials in the Education of Students with Hearing Loss. Int. Educ. Stud. 2021, 7, 1–11. [Google Scholar] [CrossRef]
- Picou, E.M.; Ricketts, T.A.; Hornsby, B.W.Y. How hearing aids, background noise, and visual cues influence objective listening effort. Ear Hear. 2013, 34, e52–e64. [Google Scholar] [CrossRef]
- Bergeson, T.R.; Pisoni, D.B.; Davis, R.A.O. Development of audiovisual comprehension skills in prelingually deaf children with cochlear implants. Ear Hear. 2005, 26, 149–164. [Google Scholar] [CrossRef]
- Rauschecker, J.P. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci. 1995, 18, 36–43. [Google Scholar] [CrossRef]
- Meredith, M.A.; Kryklywy, J.; McMillan, A.J.; Malhotra, S.; Lum-Tai, R.; Lomber, S.G. Crossmodal reorganization in the early deaf switches sensory, but not behavioral roles of auditory cortex. Proc. Natl. Acad. Sci. USA 2011, 108, 8856–8861. [Google Scholar] [CrossRef]
- Allman, B.L.; Keniston, L.P.; Meredith, M.A. Adult-deafness induces somatosensory conversion of ferret auditory cortex. Proc. Natl. Acad. Sci. USA 2009, 106, 5925–5930. [Google Scholar] [CrossRef]
- Innocenti, G.M.; Price, D.J. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 2005, 6, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Chabot, N.; Kok, M.A.; Lomber, S.G. Amplified somatosensory and visual cortical projections to a core auditory area, the anterior auditory field, following early- and late-onset deafness. J. Comp. Neurol. 2015, 523, 1925–1947. [Google Scholar] [CrossRef]
- Land, R.; Baumhoff, P.; Tillein, J.; Lomber, S.G.; Hubka, P.; Kral, A. Cross-Modal Plasticity in Higher-Order Auditory Cortex of Congenitally Deaf Cats Does Not Limit Auditory Responsiveness to Cochlear Implants. J. Neurosci. 2016, 36, 6175–6185. [Google Scholar] [CrossRef] [PubMed]
- Allman, B.L.; Meredith, M.A. Multisensory processing in “unimodal” neurons: Cross-modal subthreshold auditory effects in cat extrastriate visual cortex. J. Neurophysiol. 2007, 8, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Meredith, M.A.; Keniston, L.P.; Allman, B.L. Multisensory dysfunction accompanies crossmodal plasticity following adult hearing impairment. Neuroscience 2012, 214, 136–148. [Google Scholar] [CrossRef] [PubMed]
- McFarlan, A.R.; Chou, C.Y.C.; Watanabe, A.; Cherepacha, N.; Haddad, M.; Owens, H.; Sjöström, P.J. The plasticitome of cortical interneurons. Nat. Rev. Neurosci. 2023, 24, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.J.; Franzoni, E.; Jacobsen, R.I.; Erdelyi, F.; Szabo, G.; Clopath, C.; Keller, G.B.; Keck, T. Deprivation-Induced Homeostatic Spine Scaling In Vivo Is Localized to Dendritic Branches that Have Undergone Recent Spine Loss. Neuron 2017, 96, 871–882.e5. [Google Scholar] [CrossRef]
- Sharma, A.; Glick, H.; Campbell, J.; Torres, J.; Dorman, M.; Zeitler, D.M. Cortical Plasticity and Reorganization in Pediatric Single-sided Deafness Pre- and Postcochlear Implantation: A Case Study. Otol. Neurotol. 2016, 37, e26–e34. [Google Scholar] [CrossRef]
Aided PTA In CI Group (n = 26) | |||||||
---|---|---|---|---|---|---|---|
250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | SRT | SD% | SD% with VC |
26.15 ± 5.2 | 26.25 ± 6 | 25.58 ± 5.3 | 24.42 ± 5.3 | 25.5 ± 6.9 | 27.3 ± 5.8 | 54.46 ± 4.5 | 82.15 ± 3.8 |
T = 4.38 p < 0.0001 |
PTA in HL Group (N = 20) | ||||||||
---|---|---|---|---|---|---|---|---|
250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | 8000 Hz | PT Averages | Average Aided Thresholds | |
Right | 64.25 ± 11.68 | 68.5 ± 9.6 | 79.25 ± 7.6 | 89.25 ± 12.6 | 89.5 ± 18.3 | 96.25 ± 12 | 81.16 ± 11.64 | 34 ± 10.54 |
Left | 67.25 ± 13 | 69.75 ± 8.9 | 80.25 ± 8.6 | 87.5 ± 14.4 | 91.25 ± 20.4 | 95.8 ± 18.5 | 81.96 ± 10.6 | 37.2 ± 15.32 |
t = −0.7677 p = 0.447 | t = −0.427 p = 0.671 | t = −0.389 p = 0.699 | t = 0.409 p = 0.684 | t = 0.285 p = 0.776 | t = 0.091 p = 0.93 | t = −0.227 p = 0.82 | t = −0.796 p = 0.44 | |
Speech Audiometry | ||||||||
SRTs | Unaided SD% | Aided SD% | ||||||
Unaided | Aided | Without VCs | With VCs | Without VCs | With VCs | |||
80 ± 15.08 | 34.25 ± 10.2 | 37 ± 24.9 | 63 ± 21.42 | 40 ± 2.25 | 78.8 ± 25.4 | |||
Z = 11.24 p < 0.001 | Z = −3.54 p < 0.001 | Z = −4.75 p < 0.001 |
VEPs | NH (N = 22) | CI (N = 26) | HL (N = 20) | Test Statistic | p-Value | |
---|---|---|---|---|---|---|
Latency | N75 | 76.5 (72.6–88.7) | 75 (71.9–78.9) | 83.2 (72–103.5) | 1.200 | 0.55 |
P100 | 118.5 (116.7–119.9) | 114 (110.9–121.2) | 129 (113.9–157.3) | 3.994 | 0.14 | |
N145 | 166.8 (160.7–170.4) | 167.7 (154.5–177.3) | 197.3 (146.4–238.8) | 4.934 | 0.09 | |
Amplitude | P100 | 1.7 (1–2.7) | 10 (7.8–12.4) | 5.9 (3.2–6.9) | 37.445 | <0.001 ** |
Group | Test Statistic | p-Value |
---|---|---|
Normal-HL | 11.780 | 0.001 ** |
Normal-CI | 40.615 | <0.001 ** |
HL-CI | 11.896 | 0.001 ** |
CI group (N = 26) | r | p-Value | |
---|---|---|---|
Correlation Between VEPs Components and SD% with VCs | |||
Latency | N75 | 0.098 | 0.634 |
P100 | 0.1666 | 0.416 | |
N145 | 0.198 | 0.331 | |
Amplitude | P100 | 0.018 | 0.98 |
HL Group (N = 20) | r | p-value | |
Correlation between VEPs components and SD% with VCs | |||
Latency | N75 | 0.237 | 0.207 |
P100 | 0.279 | 0.136 | |
N145 | 0.077 | 0.685 | |
Amplitude | P100 | 0.565 | 0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabr, T.; Hashem, A.; Ahmed, S.R.; Zeinhom, M.G. Visual Reliance in Severe Hearing Loss: Visual Evoked Potentials (VEPs) Study. Audiol. Res. 2025, 15, 3. https://doi.org/10.3390/audiolres15010003
Gabr T, Hashem A, Ahmed SR, Zeinhom MG. Visual Reliance in Severe Hearing Loss: Visual Evoked Potentials (VEPs) Study. Audiology Research. 2025; 15(1):3. https://doi.org/10.3390/audiolres15010003
Chicago/Turabian StyleGabr, Takwa, Ahmed Hashem, Sherihan Rezk Ahmed, and Mohamed G. Zeinhom. 2025. "Visual Reliance in Severe Hearing Loss: Visual Evoked Potentials (VEPs) Study" Audiology Research 15, no. 1: 3. https://doi.org/10.3390/audiolres15010003
APA StyleGabr, T., Hashem, A., Ahmed, S. R., & Zeinhom, M. G. (2025). Visual Reliance in Severe Hearing Loss: Visual Evoked Potentials (VEPs) Study. Audiology Research, 15(1), 3. https://doi.org/10.3390/audiolres15010003