Photodegradation of Flucetosulfuron, a Sulfonylurea-Based Herbicide in the Aqueous Media Is Influenced by Ultraviolet Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Reagents
2.3. Experimental Details
2.3.1. Water Samples
2.3.2. Irradiation Experiment
2.4. Sample Extraction
2.5. LC–MS/MS Analysis
2.6. Extraction, Isolation, and Identification of Products from Solution
2.7. Method Validation Parameters
2.8. Data Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Photodegradation Kinetics
3.3. Column Chromatographic Isolation and Characterization of Metabolites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Statement
Abbreviations
ALS | Acetolactate synthase |
AOP | Advanced Oxidation processes |
CE | Collision energy |
CH3COONH4 | Ammonium acetate |
CV | Cone voltage |
EA | Ethyl acetate |
EDC | Endocrine-disrupting compound |
ESI-MS | Electrospray ionization-Mass spectroscopy |
FEP | Fluorinated ethylene propylene |
H2O2 | Hydrogen peroxide |
HA | Humic acid |
HPLC | High-pressure liquid chromatography |
KNO3 | Potassium nitrite |
kV | kilo volt |
LC–MS/MS | Liquid chromatography-Mass spectroscopy/Mass spectroscopy |
LOD | limit of detection |
LOQ | limit of quantification |
MeCN | Acetonitrile |
MRM | Multiple reaction monitoring |
•NO2 | nitrite ions produce hydroxyl radicals |
N2O4 | nitrogen monoxide |
Na2SO4 | Sodium sulphate |
NMR | Nuclear magnetic resonance |
•OH | hydroxyl radicals |
1O2 | Singlet oxygen |
PCA | Photocatalytic activity |
PFC | Perfluorinatedcompound |
PPCP | Pharmaceuticals and personal care product |
RT | Retention times |
T&O | Taste and odor compounds |
TiO2 | Titanium oxide |
UV | Ultraviolet |
XRD | X-ray diffraction |
References
- Kim, D.S.; Koo, S.J.; Lee, J.N.; Hwang, K.H.; Kim, T.Y.; Kang, K.G.; Hwang, K.S.; Joe, G.H.; Cho, J.H.; Kim, D.W. Flucetosulfuron: A new sulfonylurea herbicide. In The BCPC International Congress: Crop Science and Technology, Volumes 1 and 2, Proceedings of the International Congress Held at the SECC, Glasgow, Scotland, UK, 10–12 November 2003; British Crop Protection Council: Farnham, UK, 2003; pp. 87–92. [Google Scholar]
- Koo, S.J.; Kim, D.S.; Kang, K.G.; Kim, T.Y.; Lee, J.N.; Hwang, K.H.; Cho, G.H.; Kwon, Y.W.; Kim, D.W. LGC-42153: A new generation sulfonylurea herbicide. In Proceedings of the 19th Asian-Pacific Weed Science Society Conference, Manila, Philippines, 21–23 March 2003; pp. 662–667. [Google Scholar]
- Kim, D.S.; Hwang, K.H.; Lee, J.N.; Koo, S.J. Herbicidal action mechanism of flucetosulfuron. Korean J. Weed Sci. 2006, 26, 316–322. [Google Scholar]
- Central Insecticide Board & Registration Committee, DPPQS. Major Uses of Pesticides (Herbicides). 2012. Available online: http://ppqs.gov.in/divisions/cib-rc/major-uses-of-pesticides (accessed on 10 July 2021).
- Ganguly, P.; Mandal, J.; Mandal, N.; Rakshit, R.; Patra, S. Benzophenyl urea insecticides–useful and eco-friendly options for insect pest control. J. Environ. Biol. 2020, 41, 527–538. [Google Scholar] [CrossRef]
- Katagi, T. Direct photolysis mechanism of pesticides in water. J. Pestic. Sci. 2018, 43, 57–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, S.; Joardar, S.; Das, S.; Bhattacharyya, A. Photodegradation of hexythiazox in different solvent systems under the influence of ultraviolet light and sunlight in the presence of TiO2, H2O2, and KNO3 and identification of the photometabolites. J. Agric. Food Chem. 2011, 59, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Wong, C.C. The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations. Water Res. 2004, 38, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Dârjan, A.; Drăghici, C.; Perniu, D.; Duţă, A. Degradation of pesticides by TiO2 photocatalysis. In Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe; NATO Science for Peace and Security Series C: Environmental, Security; Simeonov, L.I., Macaev, F.Z., Simeonova, B.G., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 155–163. [Google Scholar]
- Affam, A.C.; Chaudhuri, M. Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2photocatalysis. J. Environ. Manag. 2013, 130, 160–165. [Google Scholar] [CrossRef]
- Laoufi, N.A.; Bentahar, F. Pesticide removal from water suspension by UV/TiO2 process: A parametric study. Desalin. Water Treat. 2014, 52, 1947–1955. [Google Scholar] [CrossRef]
- Kieber, R.J.; Li, A.; Seaton, P.J. Production of nitrite from the photodegradation of dissolved organic matter in natural waters. Environ. Sci. Technol. 1999, 33, 993–998. [Google Scholar] [CrossRef]
- Malouki, M.A.; Lavédrine, B.; Richard, C. Phototransformation of methabenthiazuron in the presence of nitrate and nitrite ions. Chemosphere 2005, 60, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Nelieu, S.; Shankar, M.V.; Kerhoas, L.; Einhorn, J. Photo-transformation of monuron induced by nitrate and nitrite ions in water: Contribution of photo-nitration. J. Photochem. Photobiol. A 2008, 193, 1–9. [Google Scholar] [CrossRef]
- Kim, I.; Yamashita, N.; Tanaka, H. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere 2009, 77, 518–525. [Google Scholar] [CrossRef]
- Shu, Z.; Bolton, J.R.; Belosevic, M.; El Din, M.G. Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process. Water Res. 2013, 47, 2881–2889. [Google Scholar] [CrossRef]
- Bolton, J.R. Advanced Photochemical Oxidation Processes. In Ultraviolet Applications Handbook; Bolton Photo-Sciences Inc.; USEPA: Washington, DC, USA, 2010. [Google Scholar]
- Morel, F.M.; Hering, J.G. Photochemical Reactions. In Principles and Applications of Aquatic Chemistry; John Wiley & Sons Inc.: New York, NY, USA, 1993; pp. 477–491. [Google Scholar]
- Han, S.K.; Sik, R.H.; Motten, A.G.; Chignell, C.F.; Bilski, P.J. Photosensitized oxidation of tetrabromobisphenol a by humic acid in aqueous solution. Photochem. Photobiol. 2009, 85, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Liu, K.H.; Kang, S.H.; Koo, S.J.; Kim, J.H. Aerobic soil metabolism of a new herbicide, LGC-42153. J. Agric. Food Chem. 2003, 51, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Liu, K.H.; Kang, S.H.; Koo, S.J.; Kim, J.H. Degradation of the sulfonylurea herbicide LGC-42153 in flooded soil. Pest Manag. Sci. 2003, 59, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Kim, B.R.; Park, S.E.; Kim, M.J.; Jung, K.J.; Kim, J.J.; Kang, S.B.; Lee, S.G.; Yoon, Y.J. Synthesis of 2-(2-Fluoro-1-hydroxypropyl)-N-(N-(hydroxyl-methylcarbamoyl)-carbamimidoylcarbamoyl) pyridine-3-sulfonamide as a potent metabolite of flucetosulfuron. Bull. Korean Chem. Soc. 2009, 30, 1184–1186. [Google Scholar] [CrossRef]
- Patra, S.; Ganguly, P.; Barik, S.R.; Samanta, A. Dissipation kinetics and risk assessment of chlorfenapyr on tomato and cabbage. Environ. Monit. Assess. 2018, 190, 71. [Google Scholar] [CrossRef]
- Horwitz, W.; Albert, R. The Horwitz ratio (HorRat): A useful index of method performance with respect to precision. J. AOAC Int. 2006, 89, 1095–1109. [Google Scholar] [CrossRef]
- Horwitz, W.; Kamps, L.V.R.; Boyer, K.W. Quality assurance in the analysis of foods for trace constituents. J. Assoc. Off. Anal. Chem. 1980, 63, 1344–1354. [Google Scholar] [CrossRef]
- Barik, S.R.; Ganguly, P.; Patra, S.; Dutta, S.K.; Goon, A.; Bhattacharyya, A. Persistence behavior of metamifop and its metabolite in rice ecosystem. Chemosphere 2018, 193, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Vulliet, E.; Emmelin, C.; Chovelon, J.M.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2. Appl. Catal. B Environ. 2002, 38, 127–137. [Google Scholar] [CrossRef]
- Vulliet, E.; Chovelon, J.M.; Guillard, C.; Herrmann, J.M. Factors influencing the photocatalytic degradation of sulfonylurea herbicides by TiO2 aqueous suspension. J. Photochem. Photobiol. A Chem. 2003, 159, 71–79. [Google Scholar] [CrossRef]
- Lee, Y.S.; Moon, J.K.; Liu, K.H.; Kim, E.; Choi, H.; Kim, J.H. In vitro metabolism of flucetosulfuron by artificial gastrointestinal juices. J Korean Soc. Appl. Biol. Chem. 2014, 57, 397–405. [Google Scholar] [CrossRef]
- Saha, S.; Kulshrestha, G. Degradation of sulfosulfuron, a sulfonylurea herbicide, as influenced by abiotic factors. J. Agric. Food Chem. 2002, 50, 4572–4575. [Google Scholar] [CrossRef] [PubMed]
- Rering, C.; Williams, K.; Hengel, M.; Tjeerdema, R. Comparison of direct and indirect photolysis in imazosulfuron photodegradation. J. Agric. Food Chem. 2017, 65, 3103–3108. [Google Scholar] [CrossRef] [PubMed]
- Scrano, L.; Bufo, S.A.; Perucci, P.; Meallier, P.; Mansour, M. Photolysis and hydrolysis of rimsulfuron. Pestic. Sci. 1999, 55, 955–961. [Google Scholar] [CrossRef]
- Hwang, K.H.; Koo, S.J.; Lee, J.N.; Chang, H.R.; Kim, K. Comparative absorption, translocation and metabolism of the herbicide flucetosulfuron in rice and barnyard grass. In Proceedings of the 21st Asian Pacific Weed Science Society (APWSS) Conference, Colombo, Sri Lanka, 2–6 October 2007; Asian Pacific Weed Science Society: Peradeniya, Sri Lanka, 2007; pp. 571–575. [Google Scholar]
- Lee, Y.S.; Liu, K.H.; Moon, J.K.; Ko, B.J.; Choi, H.; Hwang, K.S.; Kim, E.; Kim, J.H. In vitro metabolism of flucetosulfuron by human liver microsomes. J. Agric. Food Chem. 2014, 62, 3057–3063. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.K.; Das, S.; Bhattacharyya, A. Photodegradation of the herbicide penoxsulam in aqueous methanol and acetonitrile. J. Environ. Sci. Health Part B 2008, 43, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.K.; Joarder, S.; Das, S.; Roy, S.; Bhattacharyya, A. Photodegradation of oryzalin in aqueous isopropanol and acetonitrile. J. Environ. Sci. Health Part B 2016, 51, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Chand, D. Persistence of Flucetosulfuron Herbicide as Affected by Biotic and Abiotic Factors in Indian Soils. Master’s Thesis, Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, India, 2018. [Google Scholar]
Parameters | Pure Water | Irrigation Water | River Water |
---|---|---|---|
pH | 7.00 | 6.67 | 7.48 |
Electric Conductivity (EC) (dS m−1) | ND | 0.47 | 0.35 |
Dissolved Oxygen (DO) (mg L−1) | 5.60 | 6.80 | 7.30 |
Biological Oxygen Demand (BOD) (mg L−1) | ND | 1.20 | 1.80 |
Chemical Oxygen Demand (COD) (mg L−1) | 4.00 | 24.00 | 44.00 |
Total Solid (TS) (mg L−1) | ND | 41.00 | 340.00 |
Total Dissolved Solid (TDS) (mg L−1) | ND | 24.90 | 252.00 |
Total Soluble Solid (TSS) (mg L−1) | ND | 16.10 | 88.00 |
Total Hardness (mg CaCO3 L−1) | ND | 220.00 | 156.00 |
Pesticide | RT (min) | Q | Q1 | CV (V) | CE (V) | Q2 | CV (V) | CE (V) |
---|---|---|---|---|---|---|---|---|
Flucetosulfuron | 0.69 | 487.87 | 155.89 | 32 | 16 | 273.00 | 32 | 28 |
Substrate | Spiked Level (mg L−1) | Parameters | |||||
---|---|---|---|---|---|---|---|
Mean Residue (mg L−1) | SD | RE (%) | RSD (%) | PRSD | HorRat | ||
Pure water | 0.03 | 0.03 | 0.00 | 85.00 | 11.28 | 9.77 | 1.15 |
0.15 | 0.13 | 0.01 | 87.44 | 9.80 | 7.64 | 1.28 | |
0.30 | 0.28 | 0.03 | 92.83 | 11.19 | 6.83 | 1.64 | |
Irrigation water | 0.03 | 0.03 | 0.00 | 83.33 | 13.09 | 9.80 | 1.34 |
0.15 | 0.14 | 0.01 | 92.11 | 6.61 | 7.59 | 0.87 | |
0.30 | 0.28 | 0.03 | 92.67 | 9.49 | 6.83 | 1.39 | |
River water | 0.03 | 0.03 | 0.00 | 86.67 | 8.27 | 9.75 | 0.85 |
0.15 | 0.14 | 0.01 | 92.67 | 9.11 | 7.58 | 1.20 | |
0.30 | 0.27 | 0.03 | 90.67 | 10.38 | 6.85 | 1.51 |
Time (h) | Dissipation (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | TiO2 | KNO3 | H2O2 | HA | |||||||||||
PW | IW | RW | PW | IW | RW | PW | IW | RW | PW | IW | RW | PW | IW | RW | |
0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 1.99 | 7.71 | 1.47 | 20.91 | 10.99 | 5.21 | 12.85 | 8.35 | 2.43 | 15.41 | 7.42 | 8.02 | 10.13 | 12.52 | 10.09 |
6 | 12.35 | 10.16 | 11.15 | 39.13 | 25.37 | 24.00 | 24.19 | 12.80 | 10.70 | 33.61 | 22.99 | 16.51 | 21.29 | 21.37 | 18.21 |
12 | 25.93 | 16.99 | 19.98 | 58.39 | 40.48 | 40.55 | 53.64 | 23.93 | 18.68 | 40.45 | 30.68 | 32.17 | 28.61 | 30.79 | 22.16 |
24 | 34.76 | 31.74 | 28.81 | 75.49 | 62.00 | 58.22 | 62.96 | 41.93 | 38.13 | 52.91 | 43.22 | 44.43 | 48.87 | 41.90 | 39.96 |
36 | 40.55 | 37.01 | 38.28 | 87.54 | 75.37 | 71.20 | 76.32 | 60.76 | 56.71 | 62.41 | 56.04 | 55.28 | 50.28 | 55.27 | 43.91 |
48 | 43.87 | 43.16 | 47.42 | 92.28 | 83.52 | 81.41 | 84.41 | 70.13 | 71.11 | 77.32 | 68.41 | 58.49 | 62.76 | 68.46 | 52.55 |
60 | 49.10 | 46.97 | 52.89 | BDL | 89.10 | 86.62 | 87.15 | 80.98 | 79.18 | 83.96 | 77.93 | 65.57 | 66.14 | 70.81 | 61.29 |
72 | 52.71 | 50.39 | 56.78 | BDL | 91.03 | 90.50 | 92.21 | 89.15 | 83.17 | 85.80 | 79.21 | 74.91 | 79.36 | 73.16 | 71.38 |
84 | 57.93 | 56.15 | 60.15 | BDL | 95.05 | 91.22 | BDL | 91.09 | 84.92 | 91.22 | 81.59 | 79.15 | 83.96 | 79.47 | 75.65 |
96 | 62.58 | 59.38 | 63.51 | BDL | BDL | 93.05 | BDL | 94.25 | 91.54 | 96.22 | 84.98 | 82.55 | 85.83 | 82.30 | 78.56 |
108 | 64.67 | 67.97 | 66.67 | BDL | BDL | BDL | BDL | BDL | 92.22 | BDL | 90.38 | 86.79 | 92.96 | 85.31 | 80.75 |
120 | 66.57 | 70.61 | 73.82 | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | 90.75 | BDL | 88.23 | 86.78 |
Regression Equation | y = 3.9730 − 0.0038x | y = 3.9804 − 0.0041x | y = 3.9495 − 0.0045x | y = 3.9270 − 0.0227x | y = 4.0025 − 0.0150x | y = 3.9340 − 0.0125x | y = 3.9358 − 0.0148x | y = 4.0628 − 0.0129x | y = 4.0262 − 0.0108x | y = 3.9611 − 0.0129x | y = 3.9969 − 0.0088x | y = 3.9946 − 0.0079x | y = 4.0166 − 0.0094x | y = 3.9648 − 0.0074x | y = 3.9573 − 0.0068x |
Half-life (T1/2) (h) | 182.41 | 169.06 | 154.30 | 30.54 | 46.21 | 55.45 | 46.83 | 53.73 | 64.18 | 53.73 | 78.77 | 87.74 | 73.74 | 93.67 | 101.93 |
Products | Fraction | Relative Amount (%) |
---|---|---|
M1 | Hexane: Ethyl Acetate (95:5) | 17.75 |
M2 | Hexane: Ethyl Acetate (70:30) | 10.15 |
M3 | Hexane: Ethyl Acetate (50:50) | 1.0 |
Flucetosulfuron (M4) | Hexane: Ethyl Acetate (10:90) | 36.60 |
Unidentified | - | 34.50 |
Parameters | Product M1 | Product M2 |
---|---|---|
Empirical Formula | C6H9N3O2 | C8H10FNO4S |
Formula Weight | 155.16 | 235.24 |
space group | Monoclinic, C2/c | Triclinic, P-1 |
a, Å | 12.51 (2) | 7.5034 (14) |
b, Å | 8.50 (2) | 8.0341 (16) |
c, Å | 14.69 (3) | 10.394 (3) |
α, deg | 90.00 | 67.842 (5) |
β, deg | 105.98 (6) | 94.670 (2) |
γ, deg | 90.00 | 63.489 (3) |
V, Å3 | 1501 (6) | 505.45 (19) |
Z | 8 | 2 |
Crystalsize, mm3 | 0.14 × 0.08 × 0.04 | 0.48 × 0.32 × 0.21 |
Color | Colorless | Colorless |
T, K | 273 (2) | 273 (2) |
μ, mm−1 | 1.372 | 1.546 |
Absorption correction method | Multi-scan | Multi-scan |
Tmin/Tmax | 0.991/0.996 | 0.881/0.933 |
Data/parameters | 1264/102 | 1819/139 |
θ Range (°) | 2.89–25.21 | 2.17–25.26 |
Δρmax, Δρmin | 0.236, −0.331 | 0.452, −0.419 |
Final R indices [F2 > 2σ(F2)] | R1 = 0.0713 wR2 = 0.1770 | R1 = 0.0402 wR2 = 0.1064 |
Final R indices (all data) | R1 = 0.1450 wR2 = 0.2279 | R1 = 0.0478 wR2 = 0.1122 |
GOF | 0.996 | 1.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goon, A.; Bhattacharyya, A.; Ghosh, B.; Rakshit, R.; Das, A.; Choudury, S.R.; Kundu, C.; Ganguly, P.; Hossain, A. Photodegradation of Flucetosulfuron, a Sulfonylurea-Based Herbicide in the Aqueous Media Is Influenced by Ultraviolet Irradiation. J. Xenobiot. 2021, 11, 142-154. https://doi.org/10.3390/jox11040010
Goon A, Bhattacharyya A, Ghosh B, Rakshit R, Das A, Choudury SR, Kundu C, Ganguly P, Hossain A. Photodegradation of Flucetosulfuron, a Sulfonylurea-Based Herbicide in the Aqueous Media Is Influenced by Ultraviolet Irradiation. Journal of Xenobiotics. 2021; 11(4):142-154. https://doi.org/10.3390/jox11040010
Chicago/Turabian StyleGoon, Arnab, Arijita Bhattacharyya, Bappa Ghosh, Rajiv Rakshit, Anupam Das, Suborna Roy Choudury, Chiranjit Kundu, Pritam Ganguly, and Akbar Hossain. 2021. "Photodegradation of Flucetosulfuron, a Sulfonylurea-Based Herbicide in the Aqueous Media Is Influenced by Ultraviolet Irradiation" Journal of Xenobiotics 11, no. 4: 142-154. https://doi.org/10.3390/jox11040010
APA StyleGoon, A., Bhattacharyya, A., Ghosh, B., Rakshit, R., Das, A., Choudury, S. R., Kundu, C., Ganguly, P., & Hossain, A. (2021). Photodegradation of Flucetosulfuron, a Sulfonylurea-Based Herbicide in the Aqueous Media Is Influenced by Ultraviolet Irradiation. Journal of Xenobiotics, 11(4), 142-154. https://doi.org/10.3390/jox11040010